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Comments on area spectra in loop quantum gravity
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We examine and compare different area spectra that have been recently considered in Loop Quantum Gravity (LQG). In particular we focus
our attention on an Equally Spaced (ES) spectrum operator introduced recently by Alekseevet al that has gained some attention. We show
that such operator is not well defined within the LQG framework, and comment on the issues regarding area spectra and QNM frequencies.
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Se examinan y comparan diferentes espectros del operador deárea considerados recientemente dentro del formalismo cuántico de lazos. En
particular se considera el operador con un espectro uniformemente espaciado introducido recientemente por Alekseevet al. y que ha recibido
cierta atencíon. Se muestra que dicho operador no esta bien definido dentro del formalismo cuántico de lazos y se comenta sobre la relación
entre gravedad de lazos y los modos cuasinormales de hoyos negros.
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1. Introduction

Loop quantum gravity (LQG) has become in the past years a
serious candidate for a non-perturbative quantum theory of
gravity [1]. Its most notable predictions are the quantiza-
tion of geometry [2] and the computation of black hole en-
tropy [3]. One of its peculiarities is the existence of one pa-
rameter family of inequivalent quantum theories labelled by
the Immirzi parameterγ [4]. The black hole entropy calcu-
lation was proposed as a way of fixing the Immirzi param-
eter γ (and thus the spectrum of the geometric operators),
when a systematic approach to quantum black hole entropy
was available [3]. This was used to fix the value of the Im-
mirzi parameterγ to the valueγ0 = ln(2)/(π

√
3) [3]. Re-

cently, Dreyer made the suggestion that there is an indepen-
dent way of fixing the Immirzi parameter [5]. The new ap-
proach is based on a conjecture by Hod, where thereal part
of the quasinormal mode frequenciesωQNM, for largen has
an asymptotic behavior given by [6]MωQNM = ln 3/(8π),
whereM is the mass of the black hole. This conjecture was
proved analytically by Motl [7]. These modes have an imag-
inary part that goes to infinity asn grows, therefore, these
are highly damped oscillatory modes. The Hod’s conjecture
for the limit of the real part of the frequency was within the
(quantum) framework pioneered by Bekenstein, in which the
area spectrum is assumed to be equally spaced [8]. Dreyer
showed that in order to have consistence between the BH en-
tropy calculation and QNM frequencies, one had to assume
that the minimum value ofj of the spin network piercing the
horizon and contributing significantly to the entropy had to
bej = 1. With this choice, the resulting Immirzi parameter
is given by the new valueγd = ln(3)/(2π

√
2). Furthermore,

Dreyer suggested that if the gauge group of the theory was

changed fromSU(2) to SO(3) then this requirement would
be immediately satisfied. After this observation, there have
been several attempts to suggest different scenarios. One
could classify these attempts in two categories: those that
try to explain thej = 1 appearance by means of extra re-
quirements [9], but without changing the geometric opera-
tor; and those attempts that suggest modifying the area spec-
tra [10–12].

In this note we shall focus our attention to this later pro-
posal, where the Equally-Spaced (ES) area operator is em-
ployed [10–12]:

Â(S)ES ·Ψ = 8πl2P γ
∑

v

(jv + 1/2)Ψ. (1)

This is to be contrasted to the standard Rovelli-Smolin spec-
trum (for simple intersections),

Â(S)RS ·Ψ = 8πl2P γ
∑

v

√
jv(jv + 1)Ψ. (2)

The ES spectrum has been argued to be relevant for explain-
ing thej = 1 contribution while keepingSU(2) as the gauge
group [11, 12]. Probably the most important property of
the ES-area operator (1) is that it assigns a quantum of area
(4πl2P γ) to all edges that pierce the surface and carry aj = 0
label.

In this note, we shall consider the operator (1) within the
framework of LQG. We shall give two different (but related)
arguments to show that the operator is not well defined in the
theory. The first argument will use the ‘old’ language of Wil-
son loops and the second argument uses spin networks and
graphs. As we will show, the fact that the operator assigns
area toj = 0 label is what makes it senseless. We hope that
this note will help to settle the issue of this particular operator
(or any operator that ‘sees’j = 0 edges for that matter).
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The structure of this note is as follows. In Sec. 2. we con-
sider theC∗-holonomy algebra to show that the ES-operator
does not respect the (Hoop) equivalence classes. In Sec. 3.
we consider the operator within the graph perspective and
show that cylindrical consistency is violated by the operator.
In Sec. 4. we comment on the result. Loop Quantum Gravity
experts may safely skip the remainder of the note.

2. Holonomy Algebras

In this section we shall analyze the ES area operator as
seen from the perspective of Holonomy Algebras (HA) and
the GNS construction of the (kinematical) Hilbert space
H = L2(A/G, dµAL) of the theory. It is now well un-
derstood, that there are several ways of characterizing the
quantum configuration spaceA/G of gauge invariant gener-
alized connections and of the Hilbert space. Historically, the
first construction made use of the fact that one could define
an AbelianC∗-algebra of configuration observables, the so-
calledHolonomy AlgebraHA [13]. The Gelfand-Naimark
theory tells us that theHA can be seen as the space of contin-
uous functionsC(∆) on the spectrum∆ of the algebraHA.
This is the quantum configurations space. Furthermore, the
Hilbert space can be constructed via the GNS procedure for a
properly defined positive functional (the so called Ashtekar-
Lewandowski state). Since the elements of the Hilbert space
are to be built out of elementshα ∈ HA of the holonomy
algebra, then it better be that any operatorÔ in H respects
the algebraic properties of the algebraHA if it is to be well
defined.

Why should there be any problem? The reason for the
existence of consistency conditions to be met is that the el-
ements ofHA areequivalence classesof loops (closely re-
lated to Wilson loops), where two loopsα andβ are equiv-
alent if the holonomies along them are the samefor all con-
nections. Furthermore, in order to defineHA, one needs to
quotient the original algebra by an ideal that takes care of the
so-called Mandelstam identities arriving at a new equivalence
classK (for details see [13]).

Thus, there are loops that are K-equivalent to the zero
loop, and the corresponding algebra element[hα=0] = Id
corresponds to the unit element. The unit element of the al-
gebra, as its name indicates, can be multiplied freely and the
resulting state is the same in the GNS construction.

Now, how do we make contact with the operator (1), and
the j = 0 spin networks? A closed loop is a particular case
of a closed graph, and there we can define a spin network by
assigning representation ofSU(2) to it, labelled byj. If one
choosesj = 0, one has the trivial (identity) function, and
therefore the unit elementhα=0. That is, the zero-j spin net-
works correspond to an element of the algebra equivalent to
the zero-loop, or, in other words the unit element of the alge-
bra. This means that we can add or remove closed loops with
zero-j for free to a state, and get the “same physical state”.
The ES-area operator (1) endows with different eigen-values
for the area to the state, each time one adds or removes a

j = 0 loop that crosses the surface. Thus, the fact that the
ES operator counts zero-j spin networks and assigns area to
them means that its action depends on the representative of
the equivalence class[hα]. The operator does not respect the
K-equivalence classes and is, therefore, not well defined on
the Hilbert spaceH of the theory.

3. Graphs and Spin Networks

There are alternative ways of characterizing the Hilbert
spaceH and the quantum configuration spaceA/G of the
theory. Of particular relevance are the so-called projective
techniques that make use of graphs families and projective
families (for a nice review see Ref. 14). The basic idea is
to define a family of quantum theories that live on closed
graphsΓ, corresponding, roughly speaking, to a lattice gauge
theory on the graph. The continuum theory is recovered by
taking the projective limit of thelargestgraph.

To be concrete, if we have a graphΓ and a spin network
Ψ(Γ,~j)(A) on it, we can define a unique functionΨ′

(Γ′,~j)
(A)

on a larger graphΓ′ > Γ as follows: IfΓ′ > Γ is such that
can be obtained byΓ by adding artificial vertices to already
existing edges, define the new function by trivial composi-
tion [14]. Here, by artificial vertices, we simply mean declar-
ing a pointp lying on the edgeeJ (different from the one
of the original vertices) to be a vertex. The original edgeeJ

is divided now in two edges. If the graphΓ′ > Γ contains
new edges, then the new functionΨ′

(Γ′,~j)
(A) is obtained by

assigning the identity function to each new edge. This means
defining a new spin network withjI = 0 for all new edgeseI .

Thus, for each spin network onΓ, there exists an infinity
of spin network states defined on any larger graphΓ′ > Γ,
with lots of j = 0 edges. A function on the full Hilbert space
is made of the collection of all these functions that are part of
the ‘cylindrical family’.

Any operatorÔ of the full theory needs to satisfy what
is calledcylindrical consistency, which means that its action
should be the same for all elements of the family. Now, we
come back to thej = 0 spin networks. If the operator̂OΓ

is able to see thej = 0 edges of the graphΓ, then its ac-
tion will depend on the element of the cylindrical family and
therefore will not be consistent. We can then state that any
operator that acts non-trivially on a given graph onj = 0
edges, will not be part of a consistent cylindrical family, of
operators, and willnot define an operator on the continuum.
The ES-area operator (1) is clearly an example of this class
of operators and is, therefore, not well defined.

As may be expected, the reason why the operator does
not exist is simple to understand, and can be seem from these
two (slightly different) perspectives. In fact, the langauge
of loops or closed graphs is only a matter of convenience,
but they are equivalent. Every graphΓ can be decomposed
into N independent loopsαi, i = 1, . . . , N . On the other
hand, the graph might haveM edgeseI , I = 1, . . . ,M , with
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M ≥ N , and therefore any cylindrical function is a func-
tion fΓ : GM 7→ C from M copies of the gauge groupG to
the complex numbers. On the other hand, one hasN Wilson
loops W [αi, A] = (1/2)TrP exp(

∮
αi

A) that are complex
valued functions. The statement is that any Spin network
Ψ(Γ,~j,~m)(A) on Γ can be written as a polynomial of degree
given by the maximum value of the labelsjI as follows,

Ψ(Γ,~j,~m)(A)=
∑
ni

An1···nN
W [α1]n1W [α2]n2 · · ·W [αN ]nN .

The advantage of working with spin networks is that they
form a convenient basis that diagonalizes the geometric oper-
ators, in particular, the area operator for simple intersections
of the spin network and the surfaceS.

4. Discussion

In the previous sections we have shown that the ES-area oper-
ator as proposed by Alekseev, Polychronakos, and Smedback
(APS) [10], and used in Refs. 11 and 12 is not a valid operator
in LQG from the mathematical viewpoint, using arguments in
both the GNS construction and in the projective families con-
struction. This conclusion also applies to the length operator
recently suggested in2 + 1 gravity in [16].

It has been noted that one might modify the operator (1)
such that itis well defined, by changing its action when act-
ing on aj = 0 edge. The choice that makes it well defined
is to ask that the new operator̂A′(S) annihilates the state
(i.e. it yields zero eigenvalue). This is not the action that was
originally proposed by APS [10] (and analyzed later on by
Polychronakos in Ref. 11), where the operator was motivated
by a new regularization that included ‘quantum corrections’,
with a resulting behavior similar to the zero point energy of
a harmonic oscillator [10]. With this modification, the new

and well defined operator̂A′(S) would cease to be Equally-
Spaced (ES), since there would be a larger area gap from
j = 0 to j = 1/2 edges of8πl2P γ, as opposed to4πl2P γ that
is the the area gap in the rest of the ES part of the spectrum.
This would presumably make it less appealing for providing
an explanation of the QNM frequencies.

There might be some further considerations on why an
ES-area spectrum (without the nontrivial contribution from
j = 0) is not the most desirable one, such as the so-called
Bekenstein-Mukhanov effect [5, 7, 15], but we shall not go
further into that discussion (see, for instance, the first Ref. 1
and 11 for some discussion).

The standard spectrum of Rovelli-Smolin has not only
been obtained by different regularization procedures [2], but
seems to be robust given its physical and mathematical prop-
erties. However, whether or not Loop Quantum Gravity (with
the Rovelli-Smolin spectrum) should have anything to say
about the asymptotic Quasi-Normal Modes frequencies re-
mains, in our opinion, an open issue. The reason for this is
that recent numerical and analytical explorations of charged
and rotating Black Holes do not show the asymptotic behav-
ior that one would expect if one assumes a Bohr correspon-
dence principle, as originally conjectured by Hod [6] (for an
incomplete list of recent references in QNM see Ref. 17).

Finally, let us note that a similar argument to that pre-
sented in Sec. 3. has already been given in Ref. 18, from a
slightly different perspective.
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