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We examine and compare different area spectra that have been recently considered in Loop Quantum Gravity (LQG). In particular we f
our attention on an Equally Spaced (ES) spectrum operator introduced recently by Alekaeétnat has gained some attention. We show
that such operator is not well defined within the LQG framework, and comment on the issues regarding area spectra and QNM frequenc
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Se examinan y comparan diferentes espectros del operadoeaeonsiderados recientemente dentro del formalisi@atico de lazos. En
particular se considera el operador con un espectro uniformemente espaciado introducido recientemente poetdéksges ha recibido
cierta atendn. Se muestra que dicho operador no esta bien definido dentro del formalianiizoule lazos y se comenta sobre la rélaci
entre gravedad de lazos y los modos cuasinormales de hoyos negros.

Descriptores: Gravedad cantica; espectro darea; redes de esp
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1. Introduction changed fromSU (2) to SO(3) then this requirement would
be immediately satisfied. After this observation, there have

. ) been several attempts to suggest different scenarios. One
Loop quantum gravity (LQG) has become in the past years 4 classify these attempts in two categories: those that

serious candidate for a non-perturbative quantum theory qfry to explain thej — 1 appearance by means of extra re-

gravity [1]. Its most notable predictions are the quantiza-quirements [9], but without changing the geometric opera-

tion of geometry _[2] and t_he_ (_:om_putation_of black hole €N"tor; and those attempts that suggest modifying the area spec-
tropy [3]. One of its peculiarities is the existence of one Pa-4 [10-12].

rameter family of inequivalent quantum theories labelled by
the Immirzi parametey [4]. The black hole entropy calcu- 5| “\where the Equally-Spaced (ES) area operator is em-
lation was proposed as a way of fixing the Immirzi param- .- o4 110-121:

. ployed [10-12]:
eter~ (and thus the spectrum of the geometric operators),
when a systematic approach to quantum black hole entropy A(S)gs - ¥ = SWZ%WZ(J}J +1/2) 0. 1)
was available [3]. This was used to fix the value of the Im- v
mirzi parametery to the valuey, = In(2)/(7v/3) [3]. Re-  This is to be contrasted to the standard Rovelli-Smolin spec-
cently, Dreyer made the suggestion that there is an indepefrum (for simple intersections),
dent way of fixing the Immirzi parameter [5]. The new ap- .
proach is based on a conjecture by Hod, whera¢aépart A(S)rs - U = 87lpy Y /iju(ju + 1) L. (2
of the quasinormal mode frequenciegxw, for largen has v
an asymptotic behavior given by [8fwqnv = In3/(87),  The ES spectrum has been argued to be relevant for explain-
where M is the mass of the black hole. This conjecture wasing thej = 1 contribution while keepingU (2) as the gauge
proved analytically by Motl [7]. These modes have an imag-group [11, 12]. Probably the most important property of
inary part that goes to infinity as grows, therefore, these the ES-area operator (1) is that it assigns a quantum of area
are highly damped oscillatory modes. The Hod'’s conjecturd4ri%) to all edges that pierce the surface and caryy-a0
for the limit of the real part of the frequency was within the label.
(quantum) framework pioneered by Bekenstein, in which the In this note, we shall consider the operator (1) within the
area spectrum is assumed to be equally spaced [8]. Dreyéramework of LQG. We shall give two different (but related)
showed that in order to have consistence between the BH earguments to show that the operator is not well defined in the
tropy calculation and QNM frequencies, one had to assuméheory. The first argument will use the ‘old’ language of Wil-
that the minimum value of of the spin network piercing the son loops and the second argument uses spin networks and
horizon and contributing significantly to the entropy had tographs. As we will show, the fact that the operator assigns
be j = 1. With this choice, the resulting Immirzi parameter area toj = 0 label is what makes it senseless. We hope that
is given by the new valugy = In(3)/(27v/2). Furthermore,  this note will help to settle the issue of this particular operator
Dreyer suggested that if the gauge group of the theory wagr any operator that ‘seeg’= 0 edges for that matter).

In this note we shall focus our attention to this later pro-
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The structure of this note is as follows. In Sec. 2. we con-j = 0 loop that crosses the surface. Thus, the fact that the
sider theC*-holonomy algebra to show that the ES-operatorES operator counts zerpspin networks and assigns area to
does not respect the (Hoop) equivalence classes. In Sec. tBem means that its action depends on the representative of
we consider the operator within the graph perspective anthe equivalence clada,]. The operator does not respect the
show that cylindrical consistency is violated by the operatorK-equivalence classes and is, therefore, not well defined on
In Sec. 4. we comment on the result. Loop Quantum Gravitythe Hilbert spacé{ of the theory.
experts may safely skip the remainder of the note.

2. Holonomy Algebras 3. Graphs and Spin Networks

In this section we shall analyze the ES area operator ashere are alternative ways of characterizing the Hilbert
seen from the perspective of Holonomy Algebras (HA) andspace? and the quantum configuration spadggG of the

the GNS construction of the (kinematical) Hilbert spacetheory. Of particular relevance are the so-called projective
H = L?(A/G,duaw) of the theory. It is now well un- techniques that make use of graphs families and projective
derstood, that there are several ways of characterizing thmilies (for a nice review see Ref. 14). The basic idea is
quantum configuration spacé/G of gauge invariant gener- to define a family of quantum theories that live on closed
alized connections and of the Hilbert space. Historically, thegraphsI", corresponding, roughly speaking, to a lattice gauge
first construction made use of the fact that one could defingheory on the graph. The continuum theory is recovered by
an AbelianC*-algebra of configuration observables, the so-taking the projective limit of théargestgraph.

called Holonomy AlgebraH.A [13]. The Gelfand-Naimark To be concrete, if we have a graphand a spin network
theory tells us that the{.4 can be seen as the space of contin-\I,(F 5 (A) on it, we can define a unique functidrf(r, . (A)

uous functiong” (A) on the spectrur of the algebraH.A. on a larger graph” > T as follows: [fT" > T'is Such that

-Iznlbselr?[ ;,gcheug;:]ut;g ggzzgﬂr:tlzgr:/?astﬂicg}\lgu;ggggg:g’f(';?gan be obtained b¥ by adding artificial vertices to already
properly defined positive functional (the so called Ashtekar- xisting edges, define the new function by trivial composi-

: . : tion [14]. Here, by atrtificial vertices, we simply mean declar-
el SIt) S e clement o 1S rer Bting oty yingon the g (afren o th one
algebra, then it better be that any operafbin # respects of the original vertices) to be a vertex. The original edge

. . o is divided now in two edges. If the gragh > T contains
ghee;ir?;gdebralc properties of the algeliad if it is to be well new edges, then the new functidrh,/ " (A) is obtained by

Why should there be any problem? The reason for th&Ssigning the identity function to eaclz1 new edge. This means

existence of consistency conditions to be met is that the elc_iefmmg anewspin ngtwork witfy = 0 for all r?ew Edge@j
ements ofH.A areequivalence classasf loops (closely re- Thus, for each spin network dy there exists an infinity
lated to Wilson loops), where two loopsand 3 are equiv-  ©f SPin network states defined on any larger gréph> T',
alent if the holonomies along them are the sdoreall con- ywth lotsofj =0 edge_s. A function on the_ full Hilbert space
nections. Furthermore, in order to defifed, one needs to 1S made of the collection of all these functions that are part of
quotient the original algebra by an ideal that takes care of thé1€ ‘cylindrical family’.
so-called Mandelstam identities arriving at a new equivalence Any operatorO of the full theory needs to satisfy what
classK (for details see [13]). is calledcylindrical consistencywhich means that its action
Thus, there are loops that are K-equivalent to the zerghould be the same for all elements of the family. Now, we
loop, and the corresponding algebra elemignt.o] = Id ~ come back to thg = 0 spin networks. If the operat@r
corresponds to the unit element. The unit element of the aliS able to see thg = 0 edges of the graph, then its ac-
gebra, as its name indicates, can be multiplied freely and théon will depend on the element of the cylindrical family and
resulting state is the same in the GNS construction. therefore will not be consistent. We can then state that any
Now, how do we make contact with the operator (1), andoperator that acts non-trivially on a given graph pr= 0
the j = 0 spin networks? A closed loop is a particular caseedges, will not be part of a consistent cylindrical family, of
of a closed graph, and there we can define a spin network bgperators, and wilhot define an operator on the continuum.
assigning representation 617(2) to it, labelled byj. If one ~ The ES-area operator (1) is clearly an example of this class
choosesj = 0, one has the trivial (identity) function, and of operators and is, therefore, not well defined.
therefore the unit element,—y. That is, the zerg-spin net- As may be expected, the reason why the operator does
works correspond to an element of the algebra equivalent toot exist is simple to understand, and can be seem from these
the zero-loop, or, in other words the unit element of the algetwo (slightly different) perspectives. In fact, the langauge
bra. This means that we can add or remove closed loops withf loops or closed graphs is only a matter of convenience,
zero+ for free to a state, and get the “same physical state”but they are equivalent. Every graphcan be decomposed
The ES-area operator (1) endows with different eigen-valuemto N independent loops;, i = 1,..., N. On the other
for the area to the state, each time one adds or removeshand, the graph might havd edges;, I =1,..., M, with
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M > N, and therefore any cylindrical function is a func- and well defined operatot’(.S) would cease to be Equally-
tion fr : GM — C from M copies of the gauge grougto  Spaced (ES), since there would be a larger area gap from
the complex numbers. On the other hand, oneMa&ilson  j = 0toj = 1/2 edges o8xl%+, as opposed tdri~y that
loops Wa;, A] = (1/2)TrPexp(§, A) that are complex is the the area gap in the rest of the ES part of the spectrum.
valued functions. The statement is that any Spin networkrhis would presumably make it less appealing for providing
‘I’(r,j,m)(A) on T can be written as a polynomial of degree an explanation of the QNM frequencies.
given by the maximum value of the labelsas follows, There might be some further considerations on why an
ES-area spectrum (without the nontrivial contribution from
Uz (A=Y Apyy W Wiag]™ - Wlan]™. = 0) is not the most desirable one, such as the so-called
i Bekenstein-Mukhanov effect [5, 7, 15], but we shall not go
The advantage of working with spin networks is that theyfurther into that discussion (see, for instance, the first Ref. 1
form a convenient basis that diagonalizes the geometric opeand 11 for some discussion).
ators, in particular, the area operator for simple intersections The standard spectrum of Rovelli-Smolin has not only
of the spin network and the surfase been obtained by different regularization procedures [2], but
seems to be robust given its physical and mathematical prop-
erties. However, whether or not Loop Quantum Gravity (with
the Rovelli-Smolin spectrum) should have anything to say

In the previous sections we have shown that the ES-area opetPout the asymptotic Quasi-Normal Modes frequencies re-
ator as proposed by Alekseev, Polychronakos, and Smedba@Rains, in our opinion, an open issue. The reason for this is
(APS)[10], and used in Refs. 11 and 12 is not a valid operatthat recent numerical and analytical explorations 01_‘ charged
in LQG from the mathematical viewpoint, using arguments in@nd rotating Black Holes do not show the asymptotic behav-
both the GNS construction and in the projective families con Or that one would expect if one assumes a Bohr correspon-
struction. This conclusion also applies to the length operatofl€nce principle, as originally conjectured by Hod [6] (for an
recently suggested i+ 1 gravity in [16]. mcor_nplete list of recent referen-ce.s in QNM see Ref. 17).

It has been noted that one might modify the operator (1)  Finally, let us note that a similar argument to that pre-
such that itis well defined, by changing its action when act- S€nted in Sec. 3. has already been given in Ref. 18, from a
ing on aj = 0 edge. The choice that makes it well defined Slightly different perspective.
is to ask that the new operatat' (S) annihilates the state
(i.e. it yields zero eigenvalue). This is not the action that waspcknowledgments
originally proposed by APS [10] (and analyzed later on by
Polychronakos in Ref. 11), where the operator was motivatedhe author would like to thank C. Fleischhack for com-
by a new regularization that included ‘quantum corrections’;ments. This work was partially supported by a DGAPA-
with a resulting behavior similar to the zero point energy ofUNAM grant No. IN112401 and a CONACyT grant No.

a harmonic oscillator [10]. With this modification, the new J32754-E.
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