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We formulate mathematically the process of pair production in electromagnetic fields for spinless particles. We compute the probab
thatn pairs are created in the semiclassical approximation, and herein we prove that the pair creation phenomenon is a stochastic Po
process. Finally, we prove rigorously and interpret suitably the Schwinger formula.
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Damos la formuladin matenatica del proceso de creaci de pares de paculas sin spin en campos electromaticos. Calculamos la
probabilidad de que se creenpares en la aproximam semichsica, y probamos, en esta aproxindacique la creadn de pares es un
proceso estdxstico de Poisson. Finalmente, damos una demo8straigjurosa y una interpretaui correcta de ladrmula de Schwinger.

Descriptores: Creacon de pares;drmula de Schwinger; aproximaci semichsica.
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1. Introduction However, there are authors who interpret the relativistic
. o tunneling effect in another way. For example, in [26], the
The phenomenon of pair production in the presence of a clagyythors study particle production in purely time-independent

sical electromagnetic background has been studied by somgagnetic fields. It is clear that, in this case, the energy of the
authors. Many of them say that particle-antiparticle cre-system is only kinetic. Consequently, Klein's paradox is not
ation is due to a kind of relativistic tunneling effect. This is present and no pairs are created. However, in [26], the au-
stated, generally, when the electromagnetic potential is timeyors always interpret the transmission coefficient as the rel-
independent and has the following forifi7(z),0,0,0),i.e,  ative probability that a pair is produced. They then conclude
the p(_)tential vector is zero, and therefore the field is purelxhat’ in the presence of a purely time-independent magnetic
electric. field, pairs are created from the vacuum state. On the other
These authors study for spinless (spin) particles the nofhgngd. using Schwinger’s interpretation [10,18,19,25,26], the
mal modes of the Klein-Gordon (Dirac) equation, which is, in exponential of minus twice the imaginary part of the effective
this case, an ordinary differential equation in the variable  action gives the probability that the vacuum state remains un-
The equation depends on the two first components of the mMQshanged. However, since purely magnetic fields do not have
mentum, namely, := (p1,p2). When the electric field jmaginary part [26], they reach the conclusion that no pairs
is spatially confined, these modes are asymptotically plangre created in this situation. Consequently, the authors claim
waves, and we can compute the transmission and reflectiafat a contradiction arises from the tunneling interpretation
coefficients corresponding to themode. Therefore, when anq Schwinger's interpretation. It is clear that, if we do not
the energy of thg-mode, namely;, verifies the inequality  correctly interpret the relativistic tunneling effect, some type

of contradiction appears.
Ej —eV(z) > y/c?p? + m2ct

in a region ofR, and In this paper, in order to avoid wrong interpretations, we
prefer to approach the pair production phenomenon using
eV(z) — E; > /Czpzl + m2c Dirac’s point of view, that is, using the Quantum Field The-

ory of the electron provided by Fock [27]. For this reason, it
in another region,ie. when the kinetic energy in a region is appropriate to study first the case of particles with spin 1/2.
is greater thar/c2p* + m2c*, and the kinetic energy is less Due to the Dirac Sea hypothesis and the Pauli Exclusion Prin-
than —/c?p3 4+ m?c* in another region), we have Klein's ciple, the vacuum state is the one in which all (Dirac would
paradox. Itis also well-known that, when Klein's paradox ex-say nearly all [4]) the negativeinetic energy states are ful-
ists, the modulus of the transmission coefficient correspondfilled. The state of a particle is that in which all the nega-
ing to the j-mode is interpreted as the relative probability tive kinetic energy states are fulfilled and one positive kinetic
that a pair is created in thgestate [8,10,17,23]. This is the energy state is fulfilled. In the same way, the state of an an-
interpretation of the particle-antiparticle production using thetiparticle is that in which the negative kinetic energy states
relativistic tunneling effect. are fulfilled except one, etc. [5,13].
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From this interpretation we can deduce very interesting The paper is organized as follows: In Sec. 2, we study the
consequences. For example, when the electromagnetic baghroduction of spinless particles by uniform electric fields. We
ground is time-independent two different situations arise: use the Sclirdinger picture afterwards the Heisenberg pic-

ture. Using the Bogolubov coefficients, we show the way

A) The scalar potential is zerbe., the field is purely mag- o compute probabilities in the two pictures. At the end of
netic. In this situation, the energy is kinetic only, and is the section we prove that, in the semiclassical approxima-
constant over time. Consequently, the eigenfunctiongjon, pair production is a stochastic Poisson process, and we

of the energy operator are stationary states, and ther@bmpute the average number of pairs produced.

is no particle creation. In Sec. 3, we study the spinless particle production by
é)otentials that are spatially and temporally confined. We pro-
vide the method to obtain the kinetic energy decomposition in

posed into kinetic and potential energy. Now, the StateQarmonic oscillators. Once we have obtained this decompo-
that describe a definite number of particles and antipar_sition, we introduce the creation and annihilation operators,
ticles,i.e. the eigenfunctions of the kinetic energy op- that are time-dependent when the potential vector is so. From

erator, arenot eigenfunctions of the total energy of these operators, we can construct the function corresponding

the system. Consequently, there is particle productio 'goetge states with a definite number of particles and antiparti-

Physically, when a state with a definite number of par-C i ) . )
ticles and antiparticles evolves, a part of its potential Finally, in Sec. 4, we give rigorous proof and a suitable
energy becomes transformed into kinetic energy. Thidnterpretation of the Schwinger formula.

can become mass, and pair production appears.

B) The scalar potential is not zero. In this case, there i
an electric field. The energy of the system is decom

Another important case appears when the potential doe%' Spinless particles in homogeneous fields

not erend on the spatial variablées,, _ther_e _is onlyanelec- 54 The Schidinger Picture
tric field. Using a gauge transformation, it is easy to see that
the system is equivalent to another system that only has ki this section we consider the Klein-Gordon equation
netic energy. In this case, the energy operator depends on
time and so do the eigenfunctions. For this reason, the state—pn29,y)(Z, ) = [iheV — ef (£)]20(Z, ) + m2c (T, 1),
with a definite number of particles and antiparticles is not sta-
tionary, thus there is particle creation. Physically, when thedn a box of volumelL?, with a periodic boundary condition.
kinetic energy of the system changes, part of it becomes mass In the Schodinger picture, the Klein-Gordon equation is
and pairs are produced. equivalent to a Hamiltonian system, composed of an infinite

For spinless particles we obtain similar results. Namelynumber of harmonic oscillators with frequencies which de-
the kinetic energy operator is composed by an infinite numpend on time [10,12].
ber of harmonic oscillators with frequencies that depend on  The energy and the electric charge of the system are as
time when the vector potential is time-dependent. For thigollows:
reason, we will find situations similar to the case of particles 1
with spin 1/2. o Bs(t) =5 Y (P;f(t) +W%(t)Q%(t)>

The way to compute any type of probability is clear
through this interpretation. In fact, it can be demonstrated
that, when the potential is spatially and temporally confined, + ( P2(t) + w%(t)Q%(t))
the probability that the vacuum state remains unchanged is
equal to the exponential of minus twice the imaginary part ps(t) = 1 Z (Qq(t)pq(t) - Q:(b) ~(t))

. . . ! . h k k ’

of the effective action. Proof of this result for particles with =
spin 1/2isin[19]. In order to prove it, the authors use the Per-
turbation Theory in all the orders. Following this demonstra-where
tion step, by step in the case of the Klein-Gordon field, we ob-
tain that the result is also valid for spinless particles. We thus 1 1
conclude that our interpretation coincides with Schwinger’s wi(t) == 5612(’5) =% c?
interpretation of the exponential of minus twice the imagi-

nary part of the effective action. Schwinger and some alis the frequency.

thors [10,19,24-26] also interpreted that twice the imaginary In order to obtain the quantum theory we must quantize
part of the effective action is the probability that a pair is Cre-hese oscillators.e. we make the replacement

ated. In this paper, following [5,11,14,23] we can see that

2

2mhk 4 m2e

L

e -
+Ef(t)

this interpretation is not correct at all. Precisely, we see that Q:(t) = Or == Qr; (t) — O+ .
twice the imaginary part of the effective action is, within the k A k.' ’;_L’a . Tk Xk '];187
semiclassical limit, the average number of produced pairs. 7(t) = Ppo= —ihdg;  Pp(t) — Ppo=—i Qp
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and the quantum equation, in the Saflinger picture, be- T(0,¢) maps the eigenfuctions of the energy operator in the

comes Schiddinger picture to the eigenfuctions of the energy opera-
1 tor in the Heisenberg picture.
ih0y|®) s = 3 Z {(ifagg +w%(t)Q%) In this picture, the creation and annihilation operators
Eezs are [27]:
+ (41235% + w%(t)@%) ] @)s — > ex(t)|®)s. a5 (t) = T(0,0)ag z(OT(£,0),....0} .(¢)
kezs

= T(0,£)b%, _-()T(t,0).
The eigenfunctions of the energy and electric charge op- ’
erators must now be found. First, we must introduce the cre- Then, the “in” and “out” creation and annihilation opera-
ation and annihilation operators for particles and antiparticlesors are

in the Schédinger picture, at time[12].

&(gw’]z = lim aHk() "bzéﬂt)ﬁ = lim b k(t)

t—Foo t—Foo H,

g (1) = W;W | (e +x(00z)

and the “in” and “out” vacuum state is

+i (iP: + wi (1) Qs R
(i +()Q) \ok,(éﬂ )i= lim_[0g )
A 1 ~ ~
T — _ip. . . .
bl (0= =0 [( iPs +wk(t)Qk) O(iny) H‘O () = Jim_[0)n
+ Z( —ib wﬁ(t)Ql?)} In order to obtain the relationship between the creation

and annihilation operators in the Heisenberg picture at differ-
ent times, we define the Bogolubov coefficients in the follow-

Es(t) = 3~ et (ak@ag(t) + 5 L0b (1)) ing form [11]
kezZ3 C:L{{jc‘(tQ) :( Oz;%(tg,tl) ﬁg(tmtl) ) ATH E(t )
ps(t) =Y (a;(t)a,;(t) — b E(t)b_,;(t)) . by, (t2) Bilta ) ag(ta,ta) J\ by, p(t)
he Remark 2.1. The Bogolubov coefficients verify
Now, we construct the vacuum state at titndf we con- oz (ta, t1)]? — |8z (ta, )% = 1.
sider It is easy to check that [11,14]
wp(®) wWilt) o = n
005 = B e (52 @2 4 03 IR O YDA NN
Th 2h 0% 4,08 = € nzz:o aZ(t2, 1) 70,1
then the vacuum state at timg0;), is - N
0 >H:542 M Iny Vo
|0t>S = H ‘Oﬁ,t>57 k.t k —re Oél-g‘(tg,tl) ko f 5

kez?

where|cz|? = |cz]? = |ag(t2, t1)] 72 and|nkt>Histhevec—
tor that, at timet, containsn particles in thek-state andh
antiparticles in the-k-state, i.e.

sinceEs(t)[0¢)s = 0 andps(t)|0;)s = 0.
Therefore, starting at the vacuum state and using the cre
ation operators we can construct the Fock space.

2.2. The Heisenberg Picture, “in” and “out” formalism,
and Bogolubov coefficients

Ing )m =

In order to obtain the Heisenberg picture, we must first defing'3' Probability Formulae

Ep(t) =T(0,t)Es(t)T(2,0), whereT'(t,0) is the quantum | o p z(t2,t1) be the probability that pairs are created in
evolution operatoti.e., it verifies "

the k-state, after the evolution of the vacuum state from
{ ihT(t,0) = Es(t)T(t,0) ) to t,. Then, in the Sclidinger and Heisenberg picture, the

7(0,0) = Id. formulae that give this probability are:
Let |4;)s be an eigenfunction of the operatb (¢) with P, p(ta,t1) = [s(ng | T(t2, £1)0,) 5|
eigenvalue\(t), then|yy) m := T'(0,1)[¢4) s is an eigenfunc- B 5 2
tion of the operatoi&y (¢t) with eigenvalue\(t). That is, = i {ng 4, 100 ml%, @)
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and for the average number of produced pairs inkttstate  2.4. Semiclassical Results

at timet, created from the vacuum state at time namely

N (t2,t1), the formulae are We shall now show the results obtained using the W.K.B.
method [3,6,8,12,16,21].

Ni(ta, t1) Theorem 2.1. In the semiclassical approach, if we assume
— (04, [Tty t2)at (t2)aw #(t2)T (s, 1)|0 that f € C§°(—o0, 00), the probability that: pairs are pro-
5{0u [Tt 2)%7%( 2)5 p(t2)T (12, 1) |0us)s duced at time is [12]
At A
= (0 ]ay, (t2)ay ;(t2)|0n ) pr- @) 1 n
e 3 Palt,—o0) = — (53 8(t)) exp (— o E(1))
Now, using the Bogolubov coefficients we have [23] n! \64me 64me
2n where,« is the fine structure constant and

(t27 tl

Btz t1)
ag(ta, t1)
)
)

_Pa
=P, ~(ta, t1) [ =25
O’k(%l (POE

Pnk(t27t1) ‘O‘E(t%tl” 2

(1) : :8% ‘ '*(t)f

is the energy of the electric field at timeMoreover, the av-
erage number of produced pairs at tirhes

P, =(to, 1)
Ni(to, t to, t1)]? = ==
k( 2, 1) ‘ﬁk( 2, 1)| 02 (tg,tl) N
o
and, using the “in” and “out” formalism, we obtain [9] ZN* (t,—00)=Y nPu(t, —00)=g ().

Z3
Py (00, =50) = (0,10, I’ -
Consequently, in the semiclassical approximation, pair pro-
Ni(+00, —00) = (0 m|aout kAout,;;|0in>~ duction is an stochastic Poisson process with expected value
(a/64mc?)E(t).

Therefore, the formula that gives the probability that theRemark 2.2. For particles with spin% we have [13]

vacuum state remains unchanged between timesdi; is

[9,11,23]:
Poltoty) = [] Pypltets) = [ lagess (b2, )]~ Polt,—00) = ~ (=29 ety exp (——2£(t)) .
. n! \ 32mc? 32mc?
kez? kez?
_ H 1 (4) Using the results in [3], we can prove the following [16]:
iz 1+ Ni(t2,t1) Theorem 2.2.Assuming that the electric field@s' (R\{T'})
andC™~1 in T; and that the field is switched on and off, the
average number of produced pairs after the field is switched
=exp{ — » log[l+ Ni(ta,t1)] ¢ - off, in the semiclassical approximation, is
kez3
2N 73| DN+1 £])2
In general, if we define (for details see Refs. 14 and 23) N(+00, —00) ~ W7 aL”||D fHOO_ (5)
) (mc2)2N+1¢2
P, »(ta,t1)\
g(z) = H 1-— xM , For N = 0 this average number is
Rezs PO,I_c‘(t2 t1)
’ a 1 = N
then, the probability that pairs are created at tima, A2 & E(TY) - E(T™))?

namelyP,, (t2, t1), is

P,(ta, t1) =

1 D"g(0) where E(T) = (1/¢)f(T ) is the electric field at timé".
nl g(1) - In particular, whenN = 0, if we assumel(T+)=0 or

. . . ) E( )= 0, we have
Finally, in accordance with Feynman [7], the relative

probability that a pair is produced, namety; 1 (t2, 1), is N (400, —00) = 64a _E(T)
_ Pi(ta, 1) Py g (t2,t1) e
Pra(tz,t1) == Polta, t1) P o(ta,th) in the semiclassical approximation.
Rezs O Remark 2.3. Using the results obtained in ([6], [21]), and
z(ta, 1) assuming that the electric field is analytic & with gen-
- Z m tle properties, thenV(+oo, —oo) is exponentially small in

h (see for example Refs. 20 and 24).
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3. Spinless particles in non-homogeneous
fields

In this case, the Klein-Gordon equation is ([10], [15]) = E(Z,t) + E,(T,1),

(ihdy — eV (Z,1))20(F, t) = (iheV — eA(T,1))2)(Z, 1) where
+mPP(T, L), EF ) = %Mﬁ(f, D2 + [iheV (3, 1) — A7, ) (3, 1)

4
The Lagrangian density at timés: +m?ct [y (2, 1)

is the kinetic energy density, arf)(Z, t)=V (Z,t)p(Z,t) is
L(Z,t) = [ihdup(Z,t) — eV (Z,t)(Z, )] the potential energy density. We have introduced the electric
- S h densit
iR (F,1) — e A@ (R - mE @R
— Z o d * (= ~ * (=
p(@,t) = =5 e[d(T )97 (T, 1) — (T, 8)¢7 (7, 1)] -
Let ¢(Z,t) = —ih(ihdy — eV (Z, 1)) (¥, t) be the mo-

mentum. Then, the energy density is Please note that if we perform the change= (i/h)®,
| then the Klein-Gordon equation is [10]

10 (550 ) = (anee— et miet iz ) (500 )

In order to simplify let us assume that the operator
(iheV — eA(7F,t))? + m2c* has a discrete spectrum, and let'  In this case, the creation and annihilation operators are
&;(Z,t) be the eigenfuction with eigenvaluét). We write

SILNCIED (1) = 2ﬁ[(z Py +w,(0)Q; )
and +i (1B +ws(HQ;) |
) ;Bj(t)gj(f’ U bL;(6) = 2\/)1\j(t) (-1 +i(00x)

Then, we have

Et) = [ eu@ t)dE = Z‘B £ X014, 0
R3 Using these operators, we have

Now, if we make the canonlcal change: t
ZA ) (alast) + 6, (00-5(1))

o) =Y (al (a0 = b1, (1))

B;(t) = 7
Q;(t) +1iQ;(1)), j

1
A:(t) = —
10 =55
we obtain

1 R
) = Z —— (a5(t) +5,(1)) &(@.0),
—~ /o) (1)
E.(1) = 5 3 (P + (0@ 1) vent

j p ® - b]L (2, 1).
+(PF(t) + Wi ()Q3()) Z F ) &0

wherew;(t) := A;(t)/h. Thisis the kinetic energy decompo-
sition in oscillators. We can now quantize these oscillators.

Therefore, the lowest kinetic energy state,, the vac-
uum state ig0;) = [[; 0,:), where

%b

Now, the different states that contain a definite number
of particles and antiparticles are eigenfunctions of the kinetic
energy operator, and have the following form;

" o (@) o', (6)m™ .
10j,6) = jl_g)exp[—;;;t)(Q?-yQ?)_ H NG o 0;), with nj,m; €N.
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We also have In this picture, the electric charge density operator is
R 51(Z,1) = e(1(Z, ) (Z, ) + 0 (Z, )01 (T, 1)), with
Bt [ eindie [ VEy:p@y dz,  P1ED = D@ OUIED + 5 E DU )
R3 R3
~ 2 ~ o T A]: i T M
where(7, ) = e(t (7, 1) (7, 1) + ¥* (7, )0, 1)), and:: Z m (agte(@.0) + gj@.0)
is the normal ordering operator.
Finally, the Schivdinger equation is a Ar /o ~ R ~
| o i@ t) = Y\ F (ape@ 0 — bl ).
ih0 | W) = (Ec(t) + Ep(t))|¥). Fez
3.1. Example where
A very interesting example is the case where - Az 3
y 9 P (%) = exp {z <27ka i_ft)] /L%,

A7, 1)=(V(i,1),0,0,0).

Let us suppose that the potential is switched on and off, and In the semiclassical limit, we have (see [15]):
assume that it is confined in a box of volumg. In this case )

~ ) K n
the operatorsiz,. . .bTE, are time independent. Moreover, we Po(t, —o0) = — ( Q E(t)) exp (_ o (t)) ’

have 64mc? 64mc?
E.= Z )‘E(&LA&E + BT_,;B—E)a where the energy of the electric field at tirhis now
keZ3 1
where Et) == 87r/ [VV(Z,1)|%dz.
U orhk 204
ko L ' 4. Schwinger’s formula for spinless particles
Furthermore In this section, we deduce and interpret the Schwinger’s for-
S 1 J . mula for spinless particles. In order to deduct this formula,
V(@) = Z 2)\; (ak + b—ﬁ) (@) we consider the potentigl(¢) = (0,0, x(t)), where
keZ3
R e N —¢ET if t<-T
0@ = > F (a8 ) (@, x)={ Bt if —T<t<T
Fezs ¢cET if t>T,
where
we have assumed thaty > 0 [2,9,14]. A formal deduction
(%) = exp (1277];;55) JL%. of this formula is obtained if we take [12,14]
L
~ ~ 2,2 2.4
The Schédinger equation i§:0,|V) = (E.+E,(t))|V). exp T (c?*p +m2ct) i 2mhks <eET
In interaction picture, the equation behaves as follows: heeEs
ihdy| W), = E, 1(t)|¥);, whereE, /(t) is the potential en- ~ Ni= - (6)
ergy in the interaction picture, which in this case is 0 it |27 BT

7

wherep, := (27h/L)(k1, k2) and Ny := Nj(+00, —00).
| Then, using formula (4), we have

‘<Oout‘0in>|2 = exp [_ Z log (1 + NE)

kez3

n+1
R P L
L kezs n=1

TLPE?a = (—1)"F! < 7rm204>
=exp |— exp [ —

8m3h n? " hceF
n=1

This agrees with Schwinger’s results [18,19,24,25].

Rev. Mex. 5. 50 (6) (2004) 553-561
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In this case, the generating functigfi) has the following form (see for details Ref. 14):

2TL3E?a 1 mm2ct
_ n+1 n
g(x) = exp {8773FL E o (=)™ + (2 —1)"] exp (—n P~ ) } .

Therefore, using this generating function, we obtain that
the average number of pairs produced per unit of volume anld After obtaining these bounds we must study the problem

per unit of time, is [11,14,23] [2,9,16]
2
E’a mm?2c .. I 1aa, o (2Wﬁk3 2 4
- _ _ 7 tp+—= | c“pj+c“ | ———+eEt | +m°c” | upz=0;
8o P < heeE ) ’ 0 Fon? - L g
and that the relative probability that a pair is created per unit €(-T1.1). (12)
of volume and per unit of time, is [14] If we make the following change
F?a & (1)t Tm?ct 2c
- . 8 =4/ —= Et
87r3ﬁn¥1 n exp( "heeE > ® Y heE (ps +eE),
the differential equation
This is in contrast with the interpretation of some au-
thors [10,19,24,25], who interpreted that U/,g’ + (iy2 _ A) uz =0, (13)
2. 90 i\n+tl 2.4
Fo 3 CD" (n”m ¢ ) ©)  With A = (—1/2eEch)(c*p? + m2cY), is obtained.
8m3h n hee It is a well-known fact that the Kummer function allows

n=1
the construction of an independent set of solutions which ver-
is the probability that a pair is created per unit of volume andfies, wheny < 0[1,16,22]:
per unit of time.

. —1_ia
Now we show the way to obtain a rigorous demonstra- (y) = ABexp <7rA> exp (_m> <y2> 173
8 2

tion. Firstly, using semiclassical methods [12,16] itis easyto " * 4
prove that i
X exp (41;2) [1+ Ri(4,9%)] (14)
L?  (hceE)?
3 )
EEZ:BNE<4O7T (27h)3 W“E(tz—h)« (10) ) — 4B (WA> (m) (y2>i+;A
€ - = — ex — | X —_ —_
211k3 e Bty e Bty R P\ P 2
7%(hceE)? L3 < i 2> 2
No< =) 2 xexp | =y~ | [1+ R2(A,y7)], (15)
Z k= 8(2rh)3c3me? 4 | ]
kez?
2kl > e (T+/25F) with
32722 (e Bc)* L3 T a1 i rerE)
Ame(2wh)>  (mc3eET)T (mc?)s D (3+35A)T(F+354)
- N o T(+34) | T(3+34)
Remark 4.1. Similar bounds are obtained in [9] using an- “Tr(l_iA + ZF 35 i)
(1—34) T(§-34)

other method.
| Also, wheny > 0 verifies:

(y) = LEAD DY LAWE'S A —iy’ [1+ Rs(A,y%)] + AC —im\ (v e
i () = exp e (<) (5 exp ( —; 5(A,y exp ( — 5

X exp (”i) [1+ Ry(A,97)] } (16)
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= e () oo (Z) (2) T e () 14 Ryt ) 4 A () (£
v (y) =exp id%exp | — 5 exp (= 5(Ay ep (=) (5

xexp( Zy ) [1+ Re(A,1?)] } (17)

with I
_T(+iA) T i)
T (1-14) ' (3-14) and perform the replacemerfit dps — 2¢ET in order to ob-
In order to prove the Schwinger formula, the key is thetaln the formula (20). Clearly, this argument is meaningless.
following bound: On the same basis, we can prove that, wiier ~o, the
) A Axn relative probability that a pair is produced per unit of volume
|R;(A,y7)] < *KE exp ( 5 > j=1,..6, (18)  and per unit of time, is [16]
where K is a positive, dimensionless constant that is inde-
pendent ofd andy. We used [22] to obtain this bound. I Z 1 |ﬂ,;\2 _ E’a
Remark 4.2. For the derivative we obtain expressions simi- Too0 £~ 2TL3 |az|?  8m3h
lar to (14),...,(17). ke
Thus, when © (—1)”+1 nrm2ct
— - . (21
X Z n exp( hceE ) (21)

27h|ks| <T_ /Tmc7 —
eEL e

we havey(—T') < 0 andy(T) > 0. Therefore, for

2mhlks| _ W .
eEL — B’ 5. Conclusions

using the bound (18) and formulae (14)...(17) we obtain,

. m 2 92 2 4 . It is important to realize that, in order to understand the pair
N = exp [_ eEch (c pimie ﬂ +FET),  (19) production phenomenon in the presence of electromagnetic
with backgrounds, we must interpret the eigenfunctions of the ki-
. ~ 2p? +m2ct netic energy operator as the states that represent a definite
[E(,T)] < KW number of pairs. Therefore, from the SgHinger equation
3 of the quantized Klein-Gordon field (and, in the case of spin
X exp {ZleEch (c2pi + m%‘*)} , particles, the quantized Dirac field) we can compute the prob-

ability that pairs are created. ¢From this interpretation, it is
whereK is a dimensionless constant that is independent oéasy to verify that, when the field is spatially and temporally
T, p. andh (for details see Ref. 16). confined, the probability that the vacuum state remains un-

With formulae (10), (11) and (19) we can calculate the av-changed, is the exponential of minus twice the imaginary
erage number of pairs produced per unit of volume and unipart of the effective action defined by Schwinger. We have

of time whenT' — oo. We thus obtain also seen that, in the semiclassical approximation, twice the
_ N; E2a am2ct imaginary part of the effective action is the average number
Jim oTL3 — 8mp P <hceE> : (20)  of produced pairs. Finally, we have shown how to prove and
L—oo kezs interpret the Schwinger formula.
Remark 4.3. In Refs. 18 and 23 the authors calculate the
guantity
lim > lim [Nz = 1
Loo 2TL? £~ Too " = 2T(2mR) Acknowledgements
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