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We formulate mathematically the process of pair production in electromagnetic fields for spinless particles. We compute the probability
thatn pairs are created in the semiclassical approximation, and herein we prove that the pair creation phenomenon is a stochastic Poisson
process. Finally, we prove rigorously and interpret suitably the Schwinger formula.
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Damos la formulacíon mateḿatica del proceso de creación de pares de partı́culas sin spin en campos electromagnéticos. Calculamos la
probabilidad de que se creenn pares en la aproximación semicĺasica, y probamos, en esta aproximación, que la creación de pares es un
proceso estoćastico de Poisson. Finalmente, damos una demostración rigurosa y una interpretación correcta de la fórmula de Schwinger.
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1. Introduction

The phenomenon of pair production in the presence of a clas-
sical electromagnetic background has been studied by some
authors. Many of them say that particle-antiparticle cre-
ation is due to a kind of relativistic tunneling effect. This is
stated, generally, when the electromagnetic potential is time-
independent and has the following form:(V (z), 0, 0, 0), i.e.,
the potential vector is zero, and therefore the field is purely
electric.

These authors study for spinless (spin) particles the nor-
mal modes of the Klein-Gordon (Dirac) equation, which is, in
this case, an ordinary differential equation in the variablez.
The equation depends on the two first components of the mo-
mentum, namelyp⊥ := (p1, p2). When the electric field
is spatially confined, these modes are asymptotically plane
waves, and we can compute the transmission and reflection
coefficients corresponding to thej-mode. Therefore, when
the energy of thej-mode, namelyEj , verifies the inequality

Ej − eV (z) >
√

c2p2
⊥ + m2c4

in a region ofR, and

eV (z)− Ej >
√

c2p2
⊥ + m2c4

in another region, (i.e., when the kinetic energy in a region
is greater than

√
c2p2

⊥ + m2c4, and the kinetic energy is less
than−

√
c2p2

⊥ + m2c4 in another region), we have Klein’s
paradox. It is also well-known that, when Klein’s paradox ex-
ists, the modulus of the transmission coefficient correspond-
ing to thej-mode is interpreted as the relative probability
that a pair is created in thej-state [8,10,17,23]. This is the
interpretation of the particle-antiparticle production using the
relativistic tunneling effect.

However, there are authors who interpret the relativistic
tunneling effect in another way. For example, in [26], the
authors study particle production in purely time-independent
magnetic fields. It is clear that, in this case, the energy of the
system is only kinetic. Consequently, Klein’s paradox is not
present and no pairs are created. However, in [26], the au-
thors always interpret the transmission coefficient as the rel-
ative probability that a pair is produced. They then conclude
that, in the presence of a purely time-independent magnetic
field, pairs are created from the vacuum state. On the other
hand, using Schwinger’s interpretation [10,18,19,25,26], the
exponential of minus twice the imaginary part of the effective
action gives the probability that the vacuum state remains un-
changed. However, since purely magnetic fields do not have
imaginary part [26], they reach the conclusion that no pairs
are created in this situation. Consequently, the authors claim
that a contradiction arises from the tunneling interpretation
and Schwinger’s interpretation. It is clear that, if we do not
correctly interpret the relativistic tunneling effect, some type
of contradiction appears.

In this paper, in order to avoid wrong interpretations, we
prefer to approach the pair production phenomenon using
Dirac’s point of view, that is, using the Quantum Field The-
ory of the electron provided by Fock [27]. For this reason, it
is appropriate to study first the case of particles with spin 1/2.
Due to the Dirac Sea hypothesis and the Pauli Exclusion Prin-
ciple, the vacuum state is the one in which all (Dirac would
say nearly all [4]) the negativekinetic energy states are ful-
filled. The state of a particle is that in which all the nega-
tive kinetic energy states are fulfilled and one positive kinetic
energy state is fulfilled. In the same way, the state of an an-
tiparticle is that in which the negative kinetic energy states
are fulfilled except one, etc. [5,13].
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From this interpretation we can deduce very interesting
consequences. For example, when the electromagnetic back-
ground is time-independent two different situations arise:

A) The scalar potential is zero,i.e., the field is purely mag-
netic. In this situation, the energy is kinetic only, and is
constant over time. Consequently, the eigenfunctions
of the energy operator are stationary states, and there
is no particle creation.

B) The scalar potential is not zero. In this case, there is
an electric field. The energy of the system is decom-
posed into kinetic and potential energy. Now, the states
that describe a definite number of particles and antipar-
ticles,i.e., the eigenfunctions of the kinetic energy op-
erator, arenot eigenfunctions of the total energy of
the system. Consequently, there is particle production.
Physically, when a state with a definite number of par-
ticles and antiparticles evolves, a part of its potential
energy becomes transformed into kinetic energy. This
can become mass, and pair production appears.

Another important case appears when the potential does
not depend on the spatial variables,i.e., there is only an elec-
tric field. Using a gauge transformation, it is easy to see that
the system is equivalent to another system that only has ki-
netic energy. In this case, the energy operator depends on
time and so do the eigenfunctions. For this reason, the state
with a definite number of particles and antiparticles is not sta-
tionary, thus there is particle creation. Physically, when the
kinetic energy of the system changes, part of it becomes mass
and pairs are produced.

For spinless particles we obtain similar results. Namely,
the kinetic energy operator is composed by an infinite num-
ber of harmonic oscillators with frequencies that depend on
time when the vector potential is time-dependent. For this
reason, we will find situations similar to the case of particles
with spin 1/2.

The way to compute any type of probability is clear
through this interpretation. In fact, it can be demonstrated
that, when the potential is spatially and temporally confined,
the probability that the vacuum state remains unchanged is
equal to the exponential of minus twice the imaginary part
of the effective action. Proof of this result for particles with
spin 1/2 is in [19]. In order to prove it, the authors use the Per-
turbation Theory in all the orders. Following this demonstra-
tion step, by step in the case of the Klein-Gordon field, we ob-
tain that the result is also valid for spinless particles. We thus
conclude that our interpretation coincides with Schwinger’s
interpretation of the exponential of minus twice the imagi-
nary part of the effective action. Schwinger and some au-
thors [10,19,24-26] also interpreted that twice the imaginary
part of the effective action is the probability that a pair is cre-
ated. In this paper, following [5,11,14,23] we can see that
this interpretation is not correct at all. Precisely, we see that
twice the imaginary part of the effective action is, within the
semiclassical limit, the average number of produced pairs.

The paper is organized as follows: In Sec. 2, we study the
production of spinless particles by uniform electric fields. We
use the Schr̈odinger picture afterwards the Heisenberg pic-
ture. Using the Bogolubov coefficients, we show the way
to compute probabilities in the two pictures. At the end of
the section we prove that, in the semiclassical approxima-
tion, pair production is a stochastic Poisson process, and we
compute the average number of pairs produced.

In Sec. 3, we study the spinless particle production by
potentials that are spatially and temporally confined. We pro-
vide the method to obtain the kinetic energy decomposition in
harmonic oscillators. Once we have obtained this decompo-
sition, we introduce the creation and annihilation operators,
that are time-dependent when the potential vector is so. From
these operators, we can construct the function corresponding
to the states with a definite number of particles and antiparti-
cles.

Finally, in Sec. 4, we give rigorous proof and a suitable
interpretation of the Schwinger formula.

2. Spinless particles in homogeneous fields

2.1. The Schr̈odinger Picture

In this section we consider the Klein-Gordon equation

−~2∂tψ(~x, t) = [i~c~∇− e~f(t)]2ψ(~x, t) + m2c4ψ(~x, t),

in a box of volumeL3, with a periodic boundary condition.
In the Schr̈odinger picture, the Klein-Gordon equation is

equivalent to a Hamiltonian system, composed of an infinite
number of harmonic oscillators with frequencies which de-
pend on time [10,12].

The energy and the electric charge of the system are as
follows:

ES(t) =
1
2

∑

~k∈Z3

(
P 2

~k
(t) + ω2

~k
(t)Q2

~k
(t)

)

+
(
P̄ 2

~k
(t) + ω2

~k
(t)Q̄2

~k
(t)

)

ρS(t) =
1
~

∑

~k∈Z3

(
Q̄~k(t)P~k(t)−Q~k(t)P̄~k(t)

)
,

where

ω~k(t) :=
1
~
ε~k(t) =

1
~

√√√√c2

∣∣∣∣∣
2π~~k

L
+

e

c
~f(t)

∣∣∣∣∣

2

+ m2c4

is the frequency.
In order to obtain the quantum theory we must quantize

these oscillators,i.e. we make the replacement

Q~k(t) → Q̂~k := Q~k; Q̄~k(t) → ˆ̄Q~k := Q̄~k

P~k(t) → P̂~k := −i~∂Q~k
; P̄~k(t) → ˆ̄P~k := −i~∂Q̄~k

,
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and the quantum equation, in the Schrödinger picture, be-
comes

i~∂t|Φ〉S =
1
2

∑

~k∈Z3

[ (
−~2∂2

Q~k
+ ω2

~k
(t)Q2

~k

)

+
(
−~2∂2

Q̄~k
+ ω2

~k
(t)Q̄2

~k

) ]
|Φ〉S −

∑

~k∈Z3

ε~k(t)|Φ〉S .

The eigenfunctions of the energy and electric charge op-
erators must now be found. First, we must introduce the cre-
ation and annihilation operators for particles and antiparticles
in the Schr̈odinger picture, at timet [12].

âS,~k(t) =
1

2
√

ε~k(t)

[ (
iP̂~k + ω~k(t)Q̂~k

)

+ i
(
i ˆ̄P~k + ω~k(t) ˆ̄Q~k

) ]

b̂†
S,−~k

(t) =
1

2
√

ε~k(t)

[(
− iP̂~k + ω~k(t)Q̂~k

)

+ i
(
− i ˆ̄P~k + ω~k(t) ˆ̄Q~k

)]
.

Then, using these operators, we obtain

ÊS(t) =
∑

~k∈Z3

ε~k(t)
(
â†~k(t)â~k(t) + b̂†−~k

(t)b̂−~k(t)
)

;

ρ̂S(t) =
∑

~k∈Z3

(
â†~k(t)â~k(t)− b̂†−~k

(t)b̂−~k(t)
)

.

Now, we construct the vacuum state at timet. If we con-
sider

|0~k,t〉S =

√
ω~k(t)
π~

exp
(
−ω~k(t)

2~
(Q2

~k
+ Q̄2

~k
)
)

,

then the vacuum state at timet, |0t〉, is

|0t〉S =
∏

~k∈Z3

|0~k,t〉S ,

sinceÊS(t)|0t〉S = 0 andρ̂S(t)|0t〉S = 0.
Therefore, starting at the vacuum state and using the cre-

ation operators we can construct the Fock space.

2.2. The Heisenberg Picture, “in” and “out” formalism,
and Bogolubov coefficients

In order to obtain the Heisenberg picture, we must first define
ÊH(t) = T (0, t)ÊS(t)T (t, 0), whereT (t, 0) is the quantum
evolution operator,i.e., it verifies

{
i~Ṫ (t, 0) = ÊS(t)T (t, 0)
T (0, 0) = Id.

(1)

Let |ψt〉S be an eigenfunction of the operatorÊS(t) with
eigenvalueλ(t), then|ψt〉H := T (0, t)|ψt〉S is an eigenfunc-
tion of the operatorÊH(t) with eigenvalueλ(t). That is,

T (0, t) maps the eigenfuctions of the energy operator in the
Schr̈odinger picture to the eigenfuctions of the energy opera-
tor in the Heisenberg picture.

In this picture, the creation and annihilation operators
are [27]:

âH,~k(t) = T (0, t)âS,~k(t)T (t, 0), . . . , b̂†
H,−~k

(t)

= T (0, t)b̂†
S,−~k

(t)T (t, 0).

Then, the “in” and “out” creation and annihilation opera-
tors are

â( in
out),~k

:= lim
t→∓∞

âH,~k(t), . . . , b̂†( in
out),~k

:= lim
t→∓∞

b̂†
H,~k

(t),

and the “in” and “out” vacuum state is

|0~k,( in
out)
〉 := lim

t→∓∞
|0~k,t〉H ,

|0( in
out)
〉 :=

∏

~k

|0~k,( in
out)
〉 = lim

t→∓∞
|0t〉H .

In order to obtain the relationship between the creation
and annihilation operators in the Heisenberg picture at differ-
ent times, we define the Bogolubov coefficients in the follow-
ing form [11]:

(
âH,~k(t2)
b̂†
H,~k

(t2)

)
=

(
α∗~k(t2, t1) β~k(t2, t1)
β∗~k(t2, t1) α~k(t2, t1)

)(
âH,~k(t1)
b̂†
H,~k

(t1)

)

Remark 2.1. The Bogolubov coefficients verify
|α~k(t2, t1)|2 − |β~k(t2, t1)|2 = 1.

It is easy to check that [11,14]

|0~k,t2
〉H = c~k

∞∑
n=0

(
−β~k(t2, t1)

α∗~k(t2, t1)

)n

|n~k,t1
〉H ;

|0~k,t1
〉H = c̄~k

∞∑
n=0

(
β~k(t2, t1)
α~k(t2, t1)

)n

|n~k,t1
〉H ,

where|c~k|2 = |c̄~k|2 = |α~k(t2, t1)|−2, and|n~k,t〉H is the vec-

tor that, at timet, containsn particles in the~k-state andn
antiparticles in the−~k-state, i.e.

|n~k,t〉H =
(â†

H,~k
(t))n(b̂†

H,~k
(t))n

n!
|0~k,t〉H .

2.3. Probability Formulae

Let Pn,~k(t2, t1) be the probability thatn pairs are created in

the~k-state, after the evolution of the vacuum state fromt1
to t2. Then, in the Schr̈odinger and Heisenberg picture, the
formulae that give this probability are:

Pn,~k(t2, t1) = |S〈n~k,t2
|T (t2, t1)|0t1〉S |2

= |H〈n~k,t2
|0t1〉H |2, (2)
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and for the average number of produced pairs in the~k-state
at timet2 created from the vacuum state at timet1, namely
N~k(t2, t1), the formulae are

N~k(t2, t1)

= S〈0t1 |T (t1, t2)â
†
S,~k

(t2)âS,~k(t2)T (t2, t1)|0t1〉S

= H〈0t1 |â†H,~k
(t2)âH,~k(t2)|0t1〉H . (3)

Now, using the Bogolubov coefficients we have [23]

Pn,~k(t2, t1) = |α~k(t2, t1)|−2

∣∣∣∣
β~k(t2, t1)
α~k(t2, t1)

∣∣∣∣
2n

= P0,~k(t2, t1)

(
P1,~k(t2, t1)

P0,~k(t2, t1)

)n

N~k(t2, t1) = |β~k(t2, t1)|2 =
P1,~k(t2, t1)

P 2
0,~k

(t2, t1)
,

and, using the “in” and “out” formalism, we obtain [9]

P0,~k(+∞,−∞) = |〈0out,~k|0in,~k〉|2;

N~k(+∞,−∞) = 〈0in|â†
out,~k

âout,~k|0in〉.
Therefore, the formula that gives the probability that the

vacuum state remains unchanged between timest1 andt2 is
[9,11,23]:

P0(t2, t1) =
∏

~k∈Z3

P0,~k(t2, t1) =
∏

~k∈Z3

|α~k∈Z3(t2, t1)|−2

=
∏

~k∈Z3

1
1 + N~k(t2, t1)

(4)

= exp



−

∑

~k∈Z3

log[1 + N~k(t2, t1)]



 .

In general, if we define (for details see Refs. 14 and 23)

g(x) =
∏

~k∈Z3

(
1− x

P1,~k(t2, t1)

P0,~k(t2, t1)

)−1

,

then, the probability thatn pairs are created at timet2,
namelyPn(t2, t1), is

Pn(t2, t1) =
1
n!

Dng(0)
g(1)

.

Finally, in accordance with Feynman [7], the relative
probability that a pair is produced, namelyPR,1(t2, t1), is

PR,1(t2, t1) :=
P1(t2, t1)
P0(t2, t1)

=
∑

~k∈Z3

P1,~k(t2, t1)

P0,~k(t2, t1)

=
∑

~k∈Z3

N~k(t2, t1)
1 + N~k(t2, t1)

.

2.4. Semiclassical Results

We shall now show the results obtained using the W.K.B.
method [3,6,8,12,16,21].
Theorem 2.1. In the semiclassical approach, if we assume
that ~f ∈ C∞0 (−∞,∞), the probability thatn pairs are pro-
duced at timet is [12]

Pn(t,−∞) =
1
n!

( α

64mc2
E(t)

)n

exp
(
− α

64mc2
E(t)

)
,

where,α is the fine structure constant and

E(t) : =
L3

8πc2

∣∣∣ ~̇f(t)
∣∣∣
2

is the energy of the electric field at timet. Moreover, the av-
erage number of produced pairs at timet is

N(t,−∞):=
∑

~k∈Z3

N~k(t,−∞)=
∞∑

n=0

nPn(t,−∞)=
α

64mc2
E(t).

Consequently, in the semiclassical approximation, pair pro-
duction is an stochastic Poisson process with expected value
(α/64mc2)E(t).
Remark 2.2. For particles with spin1

2 we have [13]

Pn(t,−∞) =
1
n!

(
3α

32mc2
E(t)

)n

exp
(
− 3α

32mc2
E(t)

)
.

Using the results in [3], we can prove the following [16]:
Theorem 2.2.Assuming that the electric field isCN (R\{T})
andCN−1 in T ; and that the field is switched on and off, the
average number of produced pairs after the field is switched
off, in the semiclassical approximation, is

N(+∞,−∞) ∼ ~2NαL3||DN+1 ~f ||2∞
(mc2)2N+1c2

. (5)

For N = 0 this average number is

α

64mc2

1
8π
| ~E(T+)− ~E(T−)|2,

where ~E(T ) := (1/c) ~̇f(T ) is the electric field at timeT .
In particular, whenN = 0, if we assume~E(T+)=~0 or
~E(T−)=~0, we have

N(+∞,−∞) =
α

64mc2
E(T )

in the semiclassical approximation.
Remark 2.3. Using the results obtained in ([6], [21]), and
assuming that the electric field is analytic inR with gen-
tle properties, thenN(+∞,−∞) is exponentially small in
~ (see for example Refs. 20 and 24).
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3. Spinless particles in non-homogeneous
fields

In this case, the Klein-Gordon equation is ([10], [15])

(i~∂t − eV (~x, t))2ψ(~x, t) = (i~c~∇− e ~A(~x, t))2ψ(~x, t)

+m2c4ψ(~x, t).

The Lagrangian density at timet is:

L(~x, t) = |i~∂tψ(~x, t)− eV (~x, t)ψ(~x, t)|2

−|i~c~∇ψ(~x, t)− e ~A(~x, t)ψ(~x, t)|2 −m2c4|ψ(~x, t)|2.

Let φ(~x, t) = −i~(i~∂t − eV (~x, t))ψ(~x, t) be the mo-
mentum. Then, the energy density is

E(~x, t) = φ∗(~x, t)ψ̇(~x, t) + ψ̇∗(~x, t)φ(~x, t)− L(~x, t)

= Ec(~x, t) + Ep(~x, t),

where

Ec(~x, t) =
1
~2
|φ(~x, t)|2 + |i~c~∇ψ(~x, t)− e ~A(~x, t)ψ(~x, t)|2

+m2c4|ψ(~x, t)|2

is the kinetic energy density, andEp(~x, t)=V (~x, t)ρ(~x, t) is
the potential energy density. We have introduced the electric
charge density

ρ(~x, t) = − i

~
e [φ(~x, t)ψ∗(~x, t)− ψ(~x, t)φ∗(~x, t)] .

Please note that if we perform the changeψ̄ = (i/~)φ,
then the Klein-Gordon equation is [10]

i~∂t

(
ψ(~x, t)
ψ̄(~x, t)

)
=

(
eV (~x, t) 1

(i~c~∇− e ~A(~x, t))2 + m2c4 eV (~x, t)

) (
ψ(~x, t)
ψ̄(~x, t)

)
.

In order to simplify, let us assume that the operator
(i~c~∇− e ~A(~x, t))2 + m2c4 has a discrete spectrum, and let
ξj(~x, t) be the eigenfuction with eigenvalueλ(t). We write

ψ(~x, t) =
∑

j

Aj(t)ξj(~x, t)

and

φ(~x, t) =
∑

j

Bj(t)ξj(~x, t).

Then, we have

Ec(t) :=
∫

R3
Ec(~x, t)d~x =

∑

j

|Bj(t)|2
~2

+ λ2(t)|Aj(t)|2.

Now, if we make the canonical change:

Bj(t) =
~√
2

(
Pj(t) + iP̄j(t)

)
;

Aj(t) =
1
~
√

2

(
Qj(t) + iQ̄j(t)

)
,

we obtain

Ec(t) =
1
2

∑

j

(
P 2

j (t) + ω2
j (t)Q2

j (t)
)

+
(
P̄ 2

j (t) + ω2
j (t)Q̄2

j (t)
)
,

whereωj(t) := λj(t)/~. This is the kinetic energy decompo-
sition in oscillators. We can now quantize these oscillators.

Therefore, the lowest kinetic energy state,i.e., the vac-
uum state is|0t〉 =

∏
j |0j,t〉, where

|0j,t〉 =

√
ωj(t)
π~

exp
[
−ωj(t)

2~
(
Q2

j + Q̄2
j

)]
.

In this case, the creation and annihilation operators are

âj(t) =
1

2
√

λj(t)

[ (
iP̂j + ωj(t)Q̂j

)

+ i
(
i ˆ̄Pj + ωj(t) ˆ̄Qj

) ]

b̂†−j(t) =
1

2
√

λj(t)

[ (
−iP̂j + ωj(t)Q̂~k

)

+ i
(
−i ˆ̄Pj + ωj(t) ˆ̄Qj

) ]
.

Using these operators, we have

Êc(t) =
∑

j

λj(t)
(
a†j(t)aj(t) + b†−j(t)b−j(t)

)
;

ρ̂(t) =
∑

j

(
a†j(t)aj(t)− b†−j(t)b−j(t)

)
.

ψ̂(~x, t) =
∑

j

1√
2λj(t)

(
âj(t) + b̂†−j(t)

)
ξj(~x, t),

ˆ̄ψ(~x, t) =
∑

j

√
λj(t)

2

(
âj(t)− b̂†j(t)

)
ξj(~x, t).

Now, the different states that contain a definite number
of particles and antiparticles are eigenfunctions of the kinetic
energy operator, and have the following form:

∏

j

(â†j(t))
nj

√
nj !

(b̂†−j(t))
mj

√
mj !

|0t〉, with nj ,mj ∈ N.
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We also have

Êp(t) :=
∫

R3
Ep(~x, t)d~x =

∫

R3
V (~x, t) : ρ̂(~x, t) : d~x,

whereρ̂(~x, t) = e(ψ̂(~x, t) ˆ̄ψ∗(~x, t) + ψ̂∗(~x, t) ˆ̄ψ(~x, t)), and::
is the normal ordering operator.

Finally, the Schr̈odinger equation is

i~∂t|Ψ〉 = (Êc(t) + Êp(t))|Ψ〉.

3.1. Example

A very interesting example is the case where

Aµ(~x, t)=(V (~x, t), 0, 0, 0).

Let us suppose that the potential is switched on and off, and
assume that it is confined in a box of volumeL3. In this case
the operatorŝa~k,. . .b̂†~k, are time independent. Moreover, we
have

Êc =
∑

~k∈Z3

λ~k(â†~kâ~k + b̂†−~k
b̂−~k),

where

λ~k =

√√√√c2

∣∣∣∣∣
2π~~k

L

∣∣∣∣∣

2

+ m2c4.

Furthermore

ψ̂(~x) =
∑

~k∈Z3

1√
2λ~k

(
â~k + b̂†−~k

)
ξ~k(~x);

ˆ̄ψ(~x) =
∑

~k∈Z3

√
λ~k

2

(
â~k − b̂†−~k

)
ξ~k(~x),

where

ξ~k(~x) = exp
(

i
2π

L
~k.~x

)
/L

3
2 .

The Schr̈odinger equation isi~∂t|Ψ〉 = (Êc+Êp(t))|Ψ〉.
In interaction picture, the equation behaves as follows:
i~∂t|Ψ〉I = Êp,I(t)|Ψ〉I , whereÊp,I(t) is the potential en-
ergy in the interaction picture, which in this case is

Êp,I(t) =
∫

V (~x, t) : ρ̂I(~x, t) : d~x.

In this picture, the electric charge density operator is
ρ̂I(~x, t) = e(ψ̂I(~x, t) ˆ̄ψ∗I (~x, t) + ψ̂∗I (~x, t) ˆ̄ψI(~x, t)), with

ψ̂I(~x, t) =
∑

~k∈Z3

1√
2λ~k

(
â~kξ~k(~x, t) + b̂†~kξ∗~k(~x, t)

)
;

ˆ̄ψI(~x, t) =
∑

~k∈Z3

√
λ~k

2

(
â~kξ~k(~x, t)− b̂†~kξ∗~k(~x, t)

)
,

where

ξ~k(~x, t) = exp
[
i

(
2π

L
~k.~x− λ~k

~
t

)]
/L

3
2 .

In the semiclassical limit, we have (see [15]):

Pn(t,−∞) =
1
n!

( α

64mc2
E(t)

)n

exp
(
− α

64mc2
E(t)

)
,

where the energy of the electric field at timet is now

E(t) :=
1
8π

∫

R3
|∇V (~x, t)|2d~x.

4. Schwinger’s formula for spinless particles

In this section, we deduce and interpret the Schwinger’s for-
mula for spinless particles. In order to deduct this formula,
we consider the potential~f(t) = (0, 0, χ(t)), where

χ(t) =




−cET if t < −T
cEt if − T ≤ t ≤ T
cET if t > T,

we have assumed thateE > 0 [2,9,14]. A formal deduction
of this formula is obtained if we take [12,14]

N~k=





exp

[
−π

(
c2p2

⊥+m2c4
)

~ceE

]
if

∣∣∣∣∣
2π~k3

L

∣∣∣∣∣≤eET

0 if

∣∣∣∣∣
2π~k3

L

∣∣∣∣∣ >eET,

(6)

wherep⊥ := (2π~/L)(k1, k2) andN~k := N~k(+∞,−∞).
Then, using formula (4), we have

|〈0out|0in〉|2 = exp


−

∑

~k∈Z3

log
(
1 + N~k

)

 = exp


−

∑

~k∈Z3

∞∑
n=1

(−1)n+1

n
Nn

~k




= exp

[
−2TL3E2α

8π3~

∞∑
n=1

(−1)n+1

n2
exp

(
−n

πm2c4

~ceE

)]
.

This agrees with Schwinger’s results [18,19,24,25].
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In this case, the generating functiong(x) has the following form (see for details Ref. 14):

g(x) = exp

{
2TL3E2α

8π3~

∞∑
n=1

1
n2

[
(−1)n+1 + (x− 1)n

]
exp

(
−n

πm2c4

~ceE

)}
.

Therefore, using this generating function, we obtain that
the average number of pairs produced per unit of volume and
per unit of time, is [11,14,23]

E2α

8π3~
exp

(
−πm2c4

~ceE

)
, (7)

and that the relative probability that a pair is created per unit
of volume and per unit of time, is [14]

E2α

8π3~

∞∑
n=1

(−1)n+1

n
exp

(
−n

πm2c4

~ceE

)
. (8)

This is in contrast with the interpretation of some au-
thors [10,19,24,25], who interpreted that

E2α

8π3~

∞∑
n=1

(−1)n+1

n2
exp

(
−n

πm2c4

~ceE

)
(9)

is the probability that a pair is created per unit of volume and
per unit of time.

Now we show the way to obtain a rigorous demonstra-
tion. Firstly, using semiclassical methods [12,16] it is easy to
prove that

∑

~k∈Z3

2π~k3
L ∈[eEt1,eEt2]

N~k ≤ 40π3 L3

(2π~)3
(~ceE)2

(mc2)2c3
ceE(t2−t1). (10)

∑

~k∈Z3

2π~|k3|
L ≥eE

(
T+
√

mcT
eE

)

N~k ≤
π2(~ceE)2L3

8(2π~)3c3mc2

+
32π2~2(eEc)3L3

c3mc2(2π~)3
T

(mc3eET )
1
4 (mc2)

1
2
. (11)

Remark 4.1. Similar bounds are obtained in [9] using an-
other method.

After obtaining these bounds we must study the problem
[2,9,16]

ü~k+
1
~2

[
c2p2

⊥+c2

(
2π~k3

L
+eEt

)2

+m2c4

]
u~k=0;

t ∈ (−T, T ). (12)

If we make the following change

y =

√
2c

~eE
(p3 + eEt),

the differential equation

u′′~k +
(

1
4
y2 −A

)
u~k = 0, (13)

with A = (−1/2eEc~)(c2p2
⊥ + m2c4), is obtained.

It is a well-known fact that the Kummer function allows
the construction of an independent set of solutions which ver-
ifies, wheny < 0 [1,16,22]:

ϕ+
~k

(y) = ĀB exp
(

πA

4

)
exp

(
− iπ

8

)(
y2

2

)− 1
4− i

2 A

× exp
(

i

4
y2

)
[1 + R1(A, y2)] (14)

ϕ−~k (y) = −ĀB exp
(

πA

4

)
exp

(
iπ

8

)(
y2

2

)− 1
4+ i

2 A

× exp
(
− i

4
y2

)
[1 + R2(A, y2)], (15)

with

Ā =
Γ

(
1
2

)
Γ

(
3
2

)

Γ
(

1
4 + i

2A
)
Γ

(
3
4 + i

2A
) ;

B =
Γ

(
1
4 + i

2A
)

Γ
(

1
4 − i

2A
) + i

Γ
(

3
4 + i

2A
)

Γ
(

3
4 − i

2A
) .

Also, wheny > 0 verifies:

ϕ+
~k

(y) = exp
(

πA

4

) {
2Ā exp

(
iπ

8

) (
y2

2

)− 1
4+ i

2 A

exp
(−iy2

4

)
[1 + R3(A, y2)] + ĀC exp

(−iπ

8

) (
y2

2

)− 1
4− i

2 A

× exp
(

iy2

4

) [
1 + R4(A, y2)

]
}

(16)
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ϕ−~k (y) = exp
(

πA

4

) {
2iĀ∗ exp

(−iπ

8

)(
y2

2

)− 1
4− i

2 A

exp
(

iy2

4

)
[1 + R5(A, y2)] + ĀC exp

(
iπ

8

) (
y2

2

)− 1
4+ i

2 A

× exp
(−iy2

4

) [
1 + R6(A, y2)

]
}

, (17)

with

C =
Γ

(
1
4 + i

2A
)

Γ
(

1
4 − i

2A
) − i

Γ
(

3
4 + i

2A
)

Γ
(

3
4 − i

2A
) .

In order to prove the Schwinger formula, the key is the
following bound:

|Rj(A, y2)| ≤ −K
A

y2
exp

(
−Aπ

2

)
j = 1, ..6, (18)

whereK is a positive, dimensionless constant that is inde-
pendent ofA andy. We used [22] to obtain this bound.
Remark 4.2. For the derivative we obtain expressions simi-
lar to (14),. . . ,(17).

Thus, when

2π~|k3|
eEL

≤ T −
√

Tmc

eE
,

we havey(−T ) < 0 andy(T ) > 0. Therefore, for

2π~|k3|
eEL

≤ T −
√

Tmc

eE
,

using the bound (18) and formulae (14). . . (17) we obtain,

N~k = exp
[
− π

eEc~
(
c2p2

⊥ + m2c4
)]

+ F (~p, T ), (19)

with

|F (~p, T )| ≤ K̃
c2p2

⊥ + m2c4

mc3TeE

× exp
[
− 3π

4eEc~
(
c2p2

⊥ + m2c4
)]

,

whereK̃ is a dimensionless constant that is independent of
T , p⊥ and~ (for details see Ref. 16).

With formulae (10), (11) and (19) we can calculate the av-
erage number of pairs produced per unit of volume and unit
of time whenT →∞. We thus obtain

lim
T→∞
L→∞

∑

~k∈Z3

N~k

2TL3
=

E2α

8π3~
exp

(
−πm2c4

~ceE

)
. (20)

Remark 4.3. In Refs. 18 and 23 the authors calculate the
quantity

lim
L→∞

1
2TL3

∑

~k∈Z3

lim
T→∞

|N~k|2 =
1

2T (2π~)3

×
∫

R3

exp
(
−π(c2p2

⊥ + m2c4)
~ceE

)
d~p,

and perform the replacement
∫
R dp3 → 2eET in order to ob-

tain the formula (20). Clearly, this argument is meaningless.

On the same basis, we can prove that, whenT →∞, the
relative probability that a pair is produced per unit of volume
and per unit of time, is [16]

lim
T→∞
L→∞

∑

~k∈Z3

1
2TL3

|β~k|2
|α~k|2

=
E2α

8π3~

×
∞∑

n=1

(−1)n+1

n
exp

(
−nπm2c4

~ceE

)
. (21)

5. Conclusions

It is important to realize that, in order to understand the pair
production phenomenon in the presence of electromagnetic
backgrounds, we must interpret the eigenfunctions of the ki-
netic energy operator as the states that represent a definite
number of pairs. Therefore, from the Schrödinger equation
of the quantized Klein-Gordon field (and, in the case of spin
particles, the quantized Dirac field) we can compute the prob-
ability that pairs are created. ¿From this interpretation, it is
easy to verify that, when the field is spatially and temporally
confined, the probability that the vacuum state remains un-
changed, is the exponential of minus twice the imaginary
part of the effective action defined by Schwinger. We have
also seen that, in the semiclassical approximation, twice the
imaginary part of the effective action is the average number
of produced pairs. Finally, we have shown how to prove and
interpret the Schwinger formula.
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