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Theoretical basis for the study of the effect of base composition on DNA melting
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We extend the ideas used to describe the glass transition in strong glasses employing the stochastic matrix method, giving a theoretical
framework for the study of the configurational changes and the melting temperature of DNA. Our theoretical model enables a systematic
study of the melting transition and the melting temperature dependence on the sequence differences in vertical stacking. Taking into account
the fractional composition in a single strand, exact analytic results are given for the fraction of bonds intact and denatured at a particular
temperature. This method is applicable to long DNA as well as RNA.
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Se implementan las ideas utilizadas para describir la tré@msigirea en vidrios fuertes utilizando elatodo de la maiz estoéstica, dando

un marco térico para el estudio de los cambios configuracionales y la temperatura de desnataratiea@&iDN. Nuestro modelo éico

nos permite hacer un estudio sistgio de la temperatura de desnaturaliaagr de la dependencia de esta temperatura con respecto a la
diferencia en la secuencia del ADN. Tomando en cuenta la compn®ai una cadena, se obtienen resultadostamel para la fracéin de
cadena intacta y de la fraéei denaturada a una temperatura en particular.&bdo es aplicable a cadenas largas de ADN como de RNA.

Descriptores: ADN; temperaturas de desnaturali@tj método de la matz estoé@stica.

PACS: 87.10+e

1. Introduction “random-coil” state. A DNA melting curve is generally a
two-dimensional plot displaying some properties of a DNA
It is well known that local denaturation of DNA is involved solution against an external variable producing DNA unwind-
in the dynamics of DNA transcription, so it is interesting to ing. The most common external variable is the temperature,
investigate the denaturation of the double helix as a prelimalthough the process can also be observed at extremes of
inary step to understanding it. Furthermore, the knowledg@H, which decreases in the dielectric constant of the aque-
of the sequence dependence of DNA melting is importanbus medium, when exposed to amides, urea, and similar sol-
to understand the details of DNA replication, mutation, andvents. The DNA property of optical absorbance can be moni-
repair. Accurate prediction of DNA thermal denaturation istored at approximately 260 nm, while increasing the tempera-
also important for several biomolecular techniques includingure and normalizing the absorbance change in an appropriate
the PCR [1], followed by hybridization [2], antigen target- way. Thus, a plot of the fraction of broken base-pairs (bps)
ing [3], and Southern blotting [4]. In these techniques, theversus temperature is obtained. In the double helix, disrup-
choice of a non optimal sequence or temperature can lead t®n of the ordered state, with its stacked-base pairs, leads
an amplification or detection of a wrong sequence [5]. to less frequent contact between the bases and an increased

One of the ways to learn about the structure of macro@Psorbance [7].

molecules in solution is to observe structural changes, t00. Since the pioneering work of Zimm [8], and the appear-
The ordered form of a nucleic acid is only marginally stablegnce of the nearest-neighbor (NN) model ,which assumes that
against temperature increase, so that most samples showit stability of a given bp depends on the identity and orienta-
drastic alteration in structure within the convenient limits of tion of the neighboring base pair, several theoretical and ex-
0°-100°C. Many physical properties are changed in the properimental papers on DNA thermodynamics have appeared.
cess, and the nature of these changes, and characteristicsTefe experimental works provide the complete thermodynam-
the transformation provide fertile ground for physical stud-jcs library of all 10 Watson-Crick DNA nearest-neighbor in-
ies [6]. teractions. Good descriptions of a sampling of experimental
The most common method of following the denatura-techniques used for this purpose, and the principal thermo-
tion of DNA is the profile of ultraviolet absorbance againstdynamics libraries available in the literature, are described
temperature, called the melting curve. An important quanin [9]. Even though the thermodynamic sets given in these
tity is the characteristic transition temperatufg,j. 7., articles disagree on a number of issues, they show how these
is defined as the temperature at which half of the strandthermodynamic data can be used to calculate the stability
are in the double-helical state, and the other half are in thef the structure from the knowledge of its base sequence.
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The particular differences are between DNA polymers and2. Model and Definitions
oligonucleotides, and in the salt dependence of nucleic acid

denaturation. As a result of these works, itis well established . ) )
that Our theoretical model has important differences from the

treatment by PS. First, the statistical treatment is based on

1 Py-Pu l a first-order Markov process, an easier mathematical frame-

Pu-Py work than the PS algorithm. Finally, our model is based on

is more stable than the fact that the thermodynamic values for the ten possible_
dimers are known, and as a consequence, the external condi-

1 Pu-Py ! [16]. tions as pH, salt concentration solution, the role of the large

Py-Pu amplitude fluctuations and the intrinsically nonlinear mecha-

Besides, theoretical efforts have been made to calculatdsM= @r€ included.
stacking energiesab initio; for a review consult refer- In the stochastic matrix method, the process of observing
ence [10]. the configuration of bps in DNA can be described by a ma-

Recent research has emphasized the role of the large angix (M) acting on an initial vector y (which characterizes
plitude fluctuations that precede the transition and the intrinthe initial condition of the system), if the matrix components
sically nonlinear mechanisms which are needed to describgre the probability of having a bp neighboring another one in
such fluctuations. This description was introduced because, specific configuration, and if the vector components repre-
experimentally a purified DNA sample containing a uniquesent the probabilities of having a bp in the configuration. The
sequence and length is found to exhibit distinct multi stepprobability of having some configuration of bps is modeled
melting [7]. by n successive applications of the matrix M on an initial

The early theoretical treatment by Poland and Scheraggector v,. After n applications, the final configuration of the
(PS) is inspired in the ferromagnetic 1D Ising model [11]. system can be written as a linear combination of the eigenvec-
To describe the melting curve.e,, the fraction of bonded tors associated with M,e., V=Y, 1 GmAem, Wheree,,
or unbonded base-pairs as a function of the temperature ig the eigenvector M with eigenvalug;, anda,, is the pro-
the solution, the PS theory consists in obtaining the partijection of v, ontoe,,.
tion function of a DNA chain formed by pairs, characterized o )
by one of the two states, bounded or unbonded, related with A matrix with all the columns normalized to one, as M,
the original model as spins up or down. In the PS method'@s the property that at least one eigenvalue is one, while the

in order to take into account the cooperative nature of th&€@l part of all the rest is less than one. This result allows
helix-coil transition, is introduced an adjustable parametersUS t0 assert that only the eigenvectors with eigenvalues equal
called the nucleation parameter with values between 0 and 10 ON€, survive after successive applications of M onjo v
This model reproduces a crossover between the two differ| We @ssume that M has one eigenveatorwith eigenvalue
ent regimes, but no thermo-dynamical transition. The rela€dual to one, thenin the limit of a large v.. converges te;
tive tendencies of the system to occupy one of the two state&ith a1 = 1, due to a conservation of probability. Therefore,
were introduced explicitly in terms of free enthalpies, andth'S_ means that the conflguratlor_l _attalns a st_ea(_jy statistical
their temperature dependence. Although the choice of sucff9ime represented by. The explicit form of this eigenvec-
enthalpies is difficult, the method has proved being usefufOr iS obtained by solving the system of equations:
in describing some aspects of DNA denaturation [11]. Re-
cently, in order to take into account finer aspects in the de-
naturation, as the entropic and torsional effects in DNA chain
during the transition, some authors have proposed additional
adjustable parameters to solve the descrlptlon for some he&&hich enables us to calculate the probability of any configu-
erogeneous sequences [7]. Understanding of this remark- .. ~ . h tem
able one-dimensional cooperative phenomenon in terms ()rfatlon In the system.
a Hamiltonian model with independent parameters, remained To construct the stochastic matrix describing the melting
an outstanding problem. Moreover for some DNAs the PSehavior of DNA, we first need to define the units. These
description fails [22]. units must be given by four combinations: Aand T, T and A,

In the present paper, we propose a new theoretical mod& and C, and C and G. The bps can be bonded or unbonded.
to describe the denaturation process of DNA as a Markov profhis can be represented &8-T|, 1T-A|, 1G-C|, 1C-G|,
cess, taking into account the probability of finding each nearandTA T, 1T A|, TG C|, TC G|, where the dot represents
est stacked neighbor. This model extends the stochastic m#hie existence of the hydrogen bonds between the bps, and the
trix method (SMM) [12—-14], used to describe the glass transiabsence of the dot represents the unbonded bps [16]. These
tion in strong glasses, to the study of configurational changesight units give 64 different combinations of base-pair stack-
in the denaturation process and to the predictiofgfof  ing, where each site of the matrix represents the probability
DNA for polynucleotides [15]. of finding a specific configuration of each duplex.

(M - 1)81 = O7 (1)

Rev. Mex. 5. 50 (6) (2004) 594600



596 L. DAGDUG AND L. YOUNG

The 64 different combinations can be displayed as:a fatrix, namely:

G-C C-G AT T-A GC CG AT TA
Teel Tee! Tae! Tae! Tge! Tgel Tee! Taoce!
G-C C.G AT T-A GC CG AT TA
G-C C-G AT TA GC cG AT TA
Tatgd Tags b Tard TaTd Tagxd Tatd Tagt Tagl!
GC C-G AT T-A GC CG AT TA
Toal Tsa b Tqad T7ad T7ald T7al Tral Tral o
G-C C.G AT T-A GC CG AT TA
G-C C-G AT T-A GC CG AT TA
Tegt Tee !t Teegt Tee! Teg! Tegt Tee!l Teg!
G.-C C.G AT T-A GC CG AT TA
TatTdt Tar b Tagt Tagh TaTtd TaTt TaTt TaT!
G-C CG AT T-A GC CG AT TA
Frab Tra b Tradl Tral Trad Tral Tral Tral
where I
, G-C | behavior of the melting transition, and how to obtain the
G-C for DNA. These examples are focused on the study of polynu-
represents the probability of having a bondit@C| neigh- ~ cleotides.
boring a bonding
1G-C L1 gg l 3. Results and Comparison with Experiment

represents the probability of having a bondir@ C| neigh- In the first two subsections, we shall d?scgss the_: appli(_:ation
boring an unbondetiG C|, etc. These stacking processes areof the method and tr_le results for penodm chains. Simple
in three dimensions, and this information must be included iffXPressions, for melting curves and melting temperatures of
the stacking energy, as should the information concerning thBNA, composed for periodic distributions of GC or AT pairs,

properties of the solvent in which the transition is carried outc@n be derived. Itis useful to discuss such cases in detail be-
Based on the NN model, each configuration is proporSause a number of general qualitative similarities and differ-

tional to two factors: the concentration of the bps, and its€NCes; which result from different distributions, already show
Boltzmann factor. The first one depends on the sequenc&P In these cases. One can use these results to check the va-
and the second one, on the possible configurations. This laifity of the solutions obtained for more complicated distri-
factor involves the Gibbs free energy of each configurationPutions. As we shall show, the more complicated cases can
namely,exp[AG v /ksT] (WhereM andN stand for A, T, glways be reduced to a_S|mpIe one, under speqflc cond!tlons
G, C, andM N represents the stacked bps in a single strand iff? Séquence cqncentratlons. In the last subset_:tlc_)n, we discuss
the direction 5-3"). If each configuration is proportional to the case in which a random sequence of bps is imposed.
its stability constant, it means that if the probability of some
pp is found bond or ynbondgd at a given t.emperature, this bg ¢ Poly(dM)-poly(dN)
is unable to change its configuration at this temperature.
~ The eigenvector with eigenvalue equal to one of mayn oy first example, we study the denaturation transition for
trix (2) isa ve_ctor with e|ght components that gives us thepoly(dM)poly(dN). For simplicity, we will work here with
prob_ablhty_ of fl_ndlng, at a fixed temperature, the following poly(dG)poly(dC). The results obtained are also applicable
configurations in the systemG-C|, 1C-AL, TA-T], TT-Al, {5 poly(dA)poly(dT) using the correct energies for the du-
1GCl, 1CG[, 1A T/, and[T A|. The sum plex involved in the Boltzmann factor. To obtain the behav-
1GCl+1CGl+TAT|+1TA| ior of the transition, we first construct the stochastic matrix.
Then, we solve equation (1) for this particular case. To calcu-
gives us the probability of denatured bps in the system. Setate theT,,,, we proceed as follows. Obtaining the eigenvec-
ting this sum equal ta/2, T,,, is obtained for DNA. tor with eigenvalue equal to one, we can find the probability
In the next section, we shall give three examples that enef natured and denatured bps. Using the definitio’gf
able us to show how to use the matrix (2) to obtainThe  we set the probability of denatured bps to 1/2, and finally we
solve the equation fdf;,, to find the melting temperature.
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For this particular case only the terms the empirical relation?\Goc = AHgg — TASgq, and
G AG, = AH, — TASy; whereAHge andASq stand for
1 G the enthalpy and entropy due to stacking, &@;, andAS},

for the enthalpy and entropy of the hydrogen bond between

remain in matrix (2), and the fraction of this bps in the sys-G and C _
tem is equal to 1. Taking this considerations into account, In Fig. 1, for poly(dG)poly(dC), ¢ is plotted vs. tem-

matrix (2) is reduced to 22 matrix, perature. The experimental values used in Eq. 7
are AHgg =-8993kcal/mol, ASgg=-24.85e.u. [20],
0 G-C [ GC l A Hp=-5.8kcal/mol andA S, =-16e.u. [17]. The experimen-
G-C G-C ) (3) tal values for the stacking enthalpies and entropies through-
T GC L1 GC 1 out this article are taken from Table Il in Ref. 20 (For an
G-C GC

excellent description and discussion about the thermody-
Inserting the energetic contributions in matrix 3 we find, Namics libraries see Ref. 9). The experimental values for
hydrogen enthalpy and entropy in all our calculations are
( £ &p ) ) also taken from Ref. 17. In Fig. 1, it is observed thdias
w1 )7 the same shape as the experimental curves as a function of

_ : the temperature.
where = exp[-~AGaa/kpT], the free energy for the dimer Now, if we want to calculatd,, we only have to set to

G.C one half. This condition is reached when= 1, that means
Tech AGge = 0. Then,T,, = AHga/ASqe, is the expected
result.

andu = exp[AG)y,/kpT], which involves the free energy for

the hydrogen bond between G and C. If the hydrogen bong@ 2. Poly[(dM-dN)-(dM-dN)]

of a bp is broken in a duplex, we ha¥e& ¢ — AmGy,, and

the Boltzmann factor for this configuration is given §&y. If Now, as in the preceding example, by using matrix (2),

two hydrogen bonds of the bps involved are broken, its Gibsgve describe the melting behavior and obtalh, for

free energy is zero. poly[(dG-dC)(dG-dC)]; the results are also applicable to
After normalizing each column of matrix (4) we have:  poly[(dA-dT)-(dA-dT)], poly[(dA-dT)-(dG-dC)], etc. For

this particular case, in matrix (2) only, the terms

( s )
1 W
. (5) G C
. 1 1 and T
1/+u 1+€n C G

The explicit form of the eigenvector with eigenvalue oneremain, and the fraction of the pairs involved are equa)
is obtained by solving Eq. (1) with M given by matrix 2. This Matrix (2) is reduced to a 44 matrix, namely:
process yields the following vector:

G-C C-G GC CG
1G.C| ] l'ect Tect Tect Tact
_ . (6) G-C CG GC CcG
1GCl me lcet Tce !t Tecat Tcat @
. . . G-C C-G GC CG
Vector (6) gives us the probability of findirgs-C|, and Teocl Tge !t Tgel Tge!
TG_ C_l base-pairs in poly(deon(dC) at any temperature. G.C C.G GC CG
This is the well known solution to a Markov chain of two Teet Teg !t Teg!t Teg!

states. Using vector (6), we can obtain the behavior of the _ _ _
melting transition expressed in terms of the fraction of open _Introducmg the fraction of appearance for each configu-
bpsé, given by the second component of vector (6) dividedration and their Boltzmann factor, we have

by the sum of the first and second components. Because the 0 ¢ 0 epu
conservation of probability, the sum of both terms is equal 1 n 0 nu 0
to 1,6 is given just by 3l 0 w0 1| 9)
1+&u new 0 1 0
ol E+26 %
K wheren = exp[-AGgc/ksT], € = exp[-AGca/ksT],

To obtain configurational changes predicted by Eq. (7)andy has the same meaning as in the preceding section.
we have to insert the experimental values of the stacking free After normalizing each column of matrix (9) and solving
energies and the free energy of the hydrogen bonds. Be=q. (2) with M given by Eq. (9), a vector of four compo-
cause we assume that each duplex is in a state of thermodgents is found. The first and second components of this vec-
namic equilibrium AG ¢, andAG;, can be calculated from tor give us the probability of findingG-G| and1C-G |, the
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probability of the closed duplex. The sum of the last two, The shape of the curve predicted by the theory is the ex-
1G C|+1C G|, give us the probability of finding the totally pected. It is important to remark that with any combination

open bps, namely, of foe and fg o the denatured curves predicted by Eq. (A.1),
are in between those obtained for poly(d&a)y(dC), and
2(2+e+n+p(1+3n+e(3+n))+p2 (e+n+2en)) In Fig. 2,T,, is plotted vs. the fraction of duplex. This

In Fig. 1, Eq. (10) is plotted. The shape obtained is thalfraction refers to the fraction in a single strand, and the dif-

observed experimentally, in fact, it is very close to that Ob_ference sequence in a vertical stacking. This plot takes
tained in the preceding section for poly(d@)ly(dC). More

details about the experimental values used in Eq. (10) are
given in the figure caption. - cee polyd(G)d(C) el

To calculateT;,, it is necessary to impose¢ = 1/2, Lo oo »_v;.;;'f’é;’,?”' |
Eq. (10) is equal td /2 when, ' T SoeT03M5e™04. 156703 ‘,‘.;:/',/

2—e—n+p—enu=0. (11) J/.;,j?”
004 — ,/ —

Equation (11) depends on the hydrogen bond parameters a 4:;;’3"
well as the stacking ones. In this case, the role of the stacking | &
energies is as fundamental as that of the hydrogen bonding .- ,f il
energies, and the competition between th®efs$ and their i
AH $ governs the melting behavior. I //

The theoretical value fof;,, obtained using Eq. (11), Yol ! |
and the experimental data of Delcourt [20], and New- ** 300 T e 300

mark [17], is 118C. The experimental melting tempera- Figure 1. Plot of @ for three different cases, poly(d@ply(dC)
ture for this sequence is 11183 [18], while Delcourt ob-  given by Eq. (5), [(dG-dG{dG-dC)] given by Eg. (10), and
tained 107.99[20]. (The Delcourt values were obtained by poly[(dG,dC)(dG,dC)] given by Eg. (A.1), withfecc = 0.3,

Ty = > funAGu ). Our result is closer to the experi- fce = 0.3, and fec = 0.4. The two first cases are particular
mental one. Presumably, our theoretical value could be betases of the last one wheac = foe = 0, and whenfee = 0,

ter if the thermodynamical parameters used for the hydrogefespectively. The experimental thermodynamic hydrogen bond val-
bond were obtained for the same solvent as the stacking ongeS Were taken from Ref. 17. The experimental thermodynamic

nearest-neighbor values were taken from Ref. 7.

3.3. Poly[d(M,N)-d(M,N)]

390

To solve the problem of poly[d(M,Nd(M,N)], as in i . [d(g_c).d(ﬁ_c)] 1
the preceding subsection, for simplicity we will work ; e ]
with  poly[(dG,dC)(dG,dC)], and all the results ob- 385 -
tained are applicable to poly[(dA,dTYA,dT)], as well as i 08 0 08 ea @
poly[(dG,dC)(dA,dT)], etc. In this particular case, matrix (2) g -

©

o
o
.

L . Jol 0’ P ]

is reduced to a #4 matrix, Eq. (8). Introducing the fraction = 7,301 /" o - o 02 A
of each duplex and their Boltzmann factor theddmatrix is o o O T 1
given by, s e J@:.r ~o e g 1e ]
o - .

Jec§ fece  feckp  focep I ]

faen fac&  foenp focép (12) (poly[d(G) a@)) ]

fecp  feaen fea fea ’ 370l ‘ ! . \ : \ ‘ ]

Jeenpn  fecép fac fee 0 02 chi 06 08

where¢, €, 7, andu have the same meaning as in the precedFIGURE 2. Plot for poly(dG,dCjpoly(dG,dC) of T;, vs.
ing sections. Following the same procedure as in the two pred!l possible combinations ofce, foe, and fec. Because
ceding sections, after normalizing Eq. (12), one can olgtain /c¢ + fec + fec =1, we only have two independent parame-
Even though the steps to obtairfor this particular case are ©'S: ©© PlotTy in two dimension, we set constayfisc, whose

value is indicated in each case. Even though [G+C] remains con-

straight forward, the explicit equation contains a large nun.]'stant in all the cases, the plot shows the strong dependence o the se-

ber of factors. For this reason the full expression is shown INuences. The two extreme values are given by poly(at)(dC)

Appendy, In Eq', (A.1). . (fee = 1), the least stable of all the conformations, and
InFig. 1,6, given by Eq. (A.1), is plotted fofac = 0.3, by poly[(dG-dC)(dG-dC)] (fee = fac = 1/2, and fee = 0),

fee = 0.3, and fo = 0.4. The details of the experimen- the most stable sequence. The thermodynamics experimental val-

tal values, used in this plot, are given in the figure caption.ues were taken from Refs. 7 and 17.
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into account not only the total fraction of G and C, [G+C], combinations of fractions are in between. The maximum dif-
but also the variation of each duplex in the sequence. Eveference inT,, for chains with the same fraction of [G+C] is
though the total fraction of G and C remains constant foraround 18C. Thus, instead of having a single point as in the
each point plotted in Fig. 2, the melting temperature is seMarmur-Doty relation, for this particular case we obtain a set
guence dependent. We predict with our model, an importantf points with7;,, values between the extremes. Our theory
variation for the single point obtained by the linear Marmur-can be used to predict any combination [G+C] and [A+T].
Doty relation [21], and the entire range of possible melting  Finally, it is important to say that this method can be used
temperatures around 16. The extreme values are given by to describe the unfolding behavior for peptides and proteins.
poly(dG)poly(dC), and by poly[(dG-dC}dG-dC)].

It is important to remark that one of the interesting fea- o ] )
tures observed in Fig. 2, is the case when the valug;ef Appendix: poly[d(G,C)-d(G.C)I's ¢

andfcq are switched: and,,, changes. Forexample, th,  |n this appendix we shall show an expression for

predicted for a DNA sequence with thefractiﬁ@c = 0.1, poly[d(G,C)d(G,C)]'sh. For this particular case,
foa = 0.8 (fag = 0.1) is 106.84°C, while for the fraction

fac = 0.8, foa = 0.1 (fae = 0.1) 109.21°C is obtained. 6= N/D. (A1)
This feature is observed because

where
7 C:G | isstrongerthan 1 G'-C l. N = (a® — bo+ 515 — a(Ss + 52)
_ Finally, setting in Eq. (A.1)fcc = foc andfee = 1, x (S3(fea + Si) — faaSs)
andy e 0 Eq. (10) s obtamed 0T +(elbe +a(Si + 52— 0)S5)

+ p*(ag — abe — beSy — a35:)S4)), (13)
4. Conclusions

To summarize, we used the stochastic matrix method to study D = (a® = be+ 8192 — a(S1 + S2)))

the melting of DNA, and its melting temperature dependence x (S5(foa + Sa) — faaSa) — ¢S1S2(fac — S3)
on the fractional composition in a single strand. The elements

of the stochastic matrix are the probabilities that any base- —aS18:(fec — fea + S3)

pair has of a bonded or an unbonded neighbor. If one assumes

that the stochastic matrix has an eigenvector with eigenvalue belfoeSi = faaSr + 5253) + foa$152)
equal to one, the possible configurations of the system are + aspi(foa St + S2(S5 — faa)))

fixed by this eigenvector. In fact, this vector is the probabil-

ity of finding any bonded or unbonded base. Once we have + (c(be +a(S1 + 52 — a)) S

this probability, we are able to obtain an analytic expression + Sup®(as — abe — be(1 — S1) — asS,)
for the fraction of broken base-pairs as a function of tempera- s
ture. Besides, setting t/2 the expression for this probabil- — p(az — be)(aSz — 1) (14)

ity, gives us an analytical expression to calculate the melting g a+b)
temperature. This theoretical method is free of adjustable pa- e
rameters, and to carry out the comparison with experimental Sy = (1 + u

=1+ p)(

(a+c)

data, only the DNA nearest-neighbor thermodynamics set, as )
)

)
)
well as the hydrogen bond parameter are needed. The ShapesS3 pla+0d) + fec + fac

predicted by our theoretical expression for temperature de- g, — wa+c)+ faq + fea (15)
pendence of the denatured base-pairs are the expected ones

for a DNA chain. TheT,,, obtained theoretically are in good and

agreement with the experimental values. Thg extreme

values are obtained whefa, = 1 and whenf.. = 0, and a= faaé,

foe = fee = 1/2. Thefirst is for poly(dG)poly(dC) and is

the lowest value. The second extreme gives the strongest pos-
sible chain, poly[(dG-dC§dG-dC)]. The rest of the possible c= feqe.

b= fGC’r]a
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