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Theoretical basis for the study of the effect of base composition on DNA melting
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L. Young
Mathematical and Statistical Computing Laboratory,

National Institutes of Health, Bethesda, MD, 20892, USA

Recibido el 22 de enero de 2004; aceptado el 14 de junio de 2004

We extend the ideas used to describe the glass transition in strong glasses employing the stochastic matrix method, giving a theoretical
framework for the study of the configurational changes and the melting temperature of DNA. Our theoretical model enables a systematic
study of the melting transition and the melting temperature dependence on the sequence differences in vertical stacking. Taking into account
the fractional composition in a single strand, exact analytic results are given for the fraction of bonds intact and denatured at a particular
temperature. This method is applicable to long DNA as well as RNA.
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Se implementan las ideas utilizadas para describir la transición v́ıtrea en vidrios fuertes utilizando el método de la matrı́z estoćastica, dando
un marco téorico para el estudio de los cambios configuracionales y la temperatura de desnaturalización del ADN. Nuestro modelo teórico
nos permite hacer un estudio sistemático de la temperatura de desnaturalización y de la dependencia de esta temperatura con respecto a la
diferencia en la secuencia del ADN. Tomando en cuenta la composición en una cadena, se obtienen resultados analı́ticos para la fracción de
cadena intacta y de la fracción denaturada a una temperatura en particular. El método es aplicable a cadenas largas de ADN como de RNA.

Descriptores: ADN; temperaturas de desnaturaliación; método de la matrı́z estoćastica.

PACS: 87.10+e

1. Introduction

It is well known that local denaturation of DNA is involved
in the dynamics of DNA transcription, so it is interesting to
investigate the denaturation of the double helix as a prelim-
inary step to understanding it. Furthermore, the knowledge
of the sequence dependence of DNA melting is important
to understand the details of DNA replication, mutation, and
repair. Accurate prediction of DNA thermal denaturation is
also important for several biomolecular techniques including
the PCR [1], followed by hybridization [2], antigen target-
ing [3], and Southern blotting [4]. In these techniques, the
choice of a non optimal sequence or temperature can lead to
an amplification or detection of a wrong sequence [5].

One of the ways to learn about the structure of macro-
molecules in solution is to observe structural changes, too.
The ordered form of a nucleic acid is only marginally stable
against temperature increase, so that most samples show a
drastic alteration in structure within the convenient limits of
0◦-100◦C. Many physical properties are changed in the pro-
cess, and the nature of these changes, and characteristics of
the transformation provide fertile ground for physical stud-
ies [6].

The most common method of following the denatura-
tion of DNA is the profile of ultraviolet absorbance against
temperature, called the melting curve. An important quan-
tity is the characteristic transition temperature (Tm). Tm

is defined as the temperature at which half of the strands
are in the double-helical state, and the other half are in the

“random-coil” state. A DNA melting curve is generally a
two-dimensional plot displaying some properties of a DNA
solution against an external variable producing DNA unwind-
ing. The most common external variable is the temperature,
although the process can also be observed at extremes of
pH, which decreases in the dielectric constant of the aque-
ous medium, when exposed to amides, urea, and similar sol-
vents. The DNA property of optical absorbance can be moni-
tored at approximately 260 nm, while increasing the tempera-
ture and normalizing the absorbance change in an appropriate
way. Thus, a plot of the fraction of broken base-pairs (bps)
versus temperature is obtained. In the double helix, disrup-
tion of the ordered state, with its stacked-base pairs, leads
to less frequent contact between the bases and an increased
absorbance [7].

Since the pioneering work of Zimm [8], and the appear-
ance of the nearest-neighbor (NN) model ,which assumes that
the stability of a given bp depends on the identity and orienta-
tion of the neighboring base pair, several theoretical and ex-
perimental papers on DNA thermodynamics have appeared.
The experimental works provide the complete thermodynam-
ics library of all 10 Watson-Crick DNA nearest-neighbor in-
teractions. Good descriptions of a sampling of experimental
techniques used for this purpose, and the principal thermo-
dynamics libraries available in the literature, are described
in [9]. Even though the thermodynamic sets given in these
articles disagree on a number of issues, they show how these
thermodynamic data can be used to calculate the stability
of the structure from the knowledge of its base sequence.
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The particular differences are between DNA polymers and
oligonucleotides, and in the salt dependence of nucleic acid
denaturation. As a result of these works, it is well established
that

↑ Py·Pu
Pu·Py

↓

is more stable than

↑ Pu·Py
Py·Pu

↓ [16].

Besides, theoretical efforts have been made to calculate
stacking energiesab initio; for a review consult refer-
ence [10].

Recent research has emphasized the role of the large am-
plitude fluctuations that precede the transition and the intrin-
sically nonlinear mechanisms which are needed to describe
such fluctuations. This description was introduced because,
experimentally a purified DNA sample containing a unique
sequence and length is found to exhibit distinct multi step
melting [7].

The early theoretical treatment by Poland and Scheraga
(PS) is inspired in the ferromagnetic 1D Ising model [11].
To describe the melting curve,i.e., the fraction of bonded
or unbonded base-pairs as a function of the temperature in
the solution, the PS theory consists in obtaining the parti-
tion function of a DNA chain formed by pairs, characterized
by one of the two states, bounded or unbonded, related with
the original model as spins up or down. In the PS method
in order to take into account the cooperative nature of the
helix-coil transition, is introduced an adjustable parameters,
called the nucleation parameter with values between 0 and 1.
This model reproduces a crossover between the two differ-
ent regimes, but no thermo-dynamical transition. The rela-
tive tendencies of the system to occupy one of the two states,
were introduced explicitly in terms of free enthalpies, and
their temperature dependence. Although the choice of such
enthalpies is difficult, the method has proved being useful
in describing some aspects of DNA denaturation [11]. Re-
cently, in order to take into account finer aspects in the de-
naturation, as the entropic and torsional effects in DNA chain
during the transition, some authors have proposed additional
adjustable parameters to solve the description for some het-
erogeneous sequences [7]. Understanding of this remark-
able one-dimensional cooperative phenomenon in terms of
a Hamiltonian model with independent parameters, remained
an outstanding problem. Moreover for some DNAs the PS
description fails [22].

In the present paper, we propose a new theoretical model
to describe the denaturation process of DNA as a Markov pro-
cess, taking into account the probability of finding each near-
est stacked neighbor. This model extends the stochastic ma-
trix method (SMM) [12–14], used to describe the glass transi-
tion in strong glasses, to the study of configurational changes
in the denaturation process and to the prediction ofTm of
DNA for polynucleotides [15].

2. Model and Definitions

Our theoretical model has important differences from the
treatment by PS. First, the statistical treatment is based on
a first-order Markov process, an easier mathematical frame-
work than the PS algorithm. Finally, our model is based on
the fact that the thermodynamic values for the ten possible
dimers are known, and as a consequence, the external condi-
tions as pH, salt concentration solution, the role of the large
amplitude fluctuations and the intrinsically nonlinear mecha-
nisms are included.

In the stochastic matrix method, the process of observing
the configuration of bps in DNA can be described by a ma-
trix (M) acting on an initial vector v0 (which characterizes
the initial condition of the system), if the matrix components
are the probability of having a bp neighboring another one in
a specific configuration, and if the vector components repre-
sent the probabilities of having a bp in the configuration. The
probability of having some configuration of bps is modeled
by n successive applications of the matrix M on an initial
vector v0. After n applications, the final configuration of the
system can be written as a linear combination of the eigenvec-
tors associated with M,i.e., vn=

∑
m=1 amλn

Mem, whereem

is the eigenvector M with eigenvalueλn
M , andam is the pro-

jection of v0 ontoem.

A matrix with all the columns normalized to one, as M,
has the property that at least one eigenvalue is one, while the
real part of all the rest is less than one. This result allows
us to assert that only the eigenvectors with eigenvalues equal
to one, survive after successive applications of M onto v0.
If we assume that M has one eigenvectore1, with eigenvalue
equal to one, then in the limit of a largen, v∞converges toe1,
with a1 = 1, due to a conservation of probability. Therefore,
this means that the configuration attains a steady statistical
regime represented bye1. The explicit form of this eigenvec-
tor is obtained by solving the system of equations:

(M − 1)e1 = 0, (1)

which enables us to calculate the probability of any configu-
ration in the system.

To construct the stochastic matrix describing the melting
behavior of DNA, we first need to define the units. These
units must be given by four combinations: A and T, T and A,
G and C, and C and G. The bps can be bonded or unbonded.
This can be represented as↑A·T↓, ↑T·A↓, ↑G·C↓, ↑C·G↓,
and↑A T↓, ↑T A↓, ↑G C↓, ↑C G↓, where the dot represents
the existence of the hydrogen bonds between the bps, and the
absence of the dot represents the unbonded bps [16]. These
eight units give 64 different combinations of base-pair stack-
ing, where each site of the matrix represents the probability
of finding a specific configuration of each duplex.
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The 64 different combinations can be displayed as an 8×8 matrix, namely:



↑ G·C
G·C ↓ ↑ C·G

G·C ↓ ↑ A ·T
G·C ↓ ↑ T·A

G·C ↓ ↑ G C
G·C ↓ ↑ C G

G·C ↓ ↑ A T
G·C ↓ ↑ T A

G·C ↓

↑ G·C
C·G ↓ ↑ C·G

C·G ↓ ↑ A ·T
C·G ↓ ↑ T·A

C·G ↓ ↑ G C
C·G ↓ ↑ C G

C·G ↓ ↑ A T
C·G ↓ ↑ T A

C·G ↓

↑ G·C
A ·T ↓ ↑ C·G

A ·T ↓ ↑ A ·T
A ·T ↓ ↑ T·A

A ·T ↓ ↑ G C
A ·T ↓ ↑ C G

A· T ↓ ↑ A T
A ·T ↓ ↑ T A

A ·T ↓

↑ G·C
T·A ↓ ↑ C·G

T·A ↓ ↑ A ·T
T·A ↓ ↑ T·A

T·A ↓ ↑ G C
T·A ↓ ↑ C G

T·A ↓ ↑ A T
T·A ↓ ↑ T A

T·A ↓

↑ G·C
G C

↓ ↑ C·G
G C

↓ ↑ A ·T
G C

↓ ↑ T·A
G C

↓ ↑ G C
G C

↓ ↑ C G
G C

↓ ↑ A T
G C

↓ ↑ T A
G C

↓

↑ G·C
C G

↓ ↑ C·G
C G

↓ ↑ A ·T
C G

↓ ↑ T·A
C G

↓ ↑ G C
C G

↓ ↑ C G
C G

↓ ↑ A T
C G

↓ ↑ T A
C G

↓

↑ G·C
A T

↓ ↑ C·G
A T

↓ ↑ A ·T
A T

↓ ↑ T·A
A T

↓ ↑ G C
A T

↓ ↑ C G
A T

↓ ↑ A T
A T

↓ ↑ T A
A T

↓

↑ G·C
T A

↓ ↑ C·G
T A

↓ ↑ A ·T
T A

↓ ↑ T·A
T A

↓ ↑ G C
T A

↓ ↑ C G
T A

↓ ↑ A T
T A

↓ ↑ T A
T A

↓




(2)

where

↑ G·C
G·C ↓

represents the probability of having a bonding↑G·C↓ neigh-
boring a bonding

↑ G · C ↓, ↑ G·C
G C

↓

represents the probability of having a bonding↑G·C↓ neigh-
boring an unbonded↑G C↓, etc. These stacking processes are
in three dimensions, and this information must be included in
the stacking energy, as should the information concerning the
properties of the solvent in which the transition is carried out.

Based on the NN model, each configuration is propor-
tional to two factors: the concentration of the bps, and its
Boltzmann factor. The first one depends on the sequence,
and the second one, on the possible configurations. This last
factor involves the Gibbs free energy of each configuration,
namely,exp[∆GMN/kBT ] (whereM andN stand for A, T,
G, C, andMN represents the stacked bps in a single strand in
the direction 5’−3’). If each configuration is proportional to
its stability constant, it means that if the probability of some
bp is found bond or unbonded at a given temperature, this bp
is unable to change its configuration at this temperature.

The eigenvector with eigenvalue equal to one of ma-
trix (2) is a vector with eight components that gives us the
probability of finding, at a fixed temperature, the following
configurations in the system:↑G·C↓, ↑C·A↓, ↑A·T↓, ↑T·A↓,
↑G C↓, ↑C G↓, ↑A T↓, and↑T A↓. The sum

↑ G C ↓ + ↑ C G ↓ + ↑ A T ↓ + ↑ T A ↓
gives us the probability of denatured bps in the system. Set-
ting this sum equal to1/2, Tm is obtained for DNA.

In the next section, we shall give three examples that en-
able us to show how to use the matrix (2) to obtain theTm

behavior of the melting transition, and how to obtain the
for DNA. These examples are focused on the study of polynu-
cleotides.

3. Results and Comparison with Experiment

In the first two subsections, we shall discuss the application
of the method and the results for periodic chains. Simple
expressions, for melting curves and melting temperatures of
DNA, composed for periodic distributions of GC or AT pairs,
can be derived. It is useful to discuss such cases in detail be-
cause a number of general qualitative similarities and differ-
ences, which result from different distributions, already show
up in these cases. One can use these results to check the va-
lidity of the solutions obtained for more complicated distri-
butions. As we shall show, the more complicated cases can
always be reduced to a simple one, under specific conditions
in sequence concentrations. In the last subsection, we discuss
the case in which a random sequence of bps is imposed.

3.1. Poly(dM)·poly(dN)

In our first example, we study the denaturation transition for
poly(dM)·poly(dN). For simplicity, we will work here with
poly(dG)·poly(dC). The results obtained are also applicable
to poly(dA)·poly(dT) using the correct energies for the du-
plex involved in the Boltzmann factor. To obtain the behav-
ior of the transition, we first construct the stochastic matrix.
Then, we solve equation (1) for this particular case. To calcu-
late theTm, we proceed as follows. Obtaining the eigenvec-
tor with eigenvalue equal to one, we can find the probability
of natured and denatured bps. Using the definition ofTm,
we set the probability of denatured bps to 1/2, and finally we
solve the equation forTm to find the melting temperature.

Rev. Mex. F́ıs. 50 (6) (2004) 594–600
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For this particular case only the terms

↑ G
G

remain in matrix (2), and the fraction of this bps in the sys-
tem is equal to 1. Taking this considerations into account,
matrix (2) is reduced to 2×2 matrix,



↑ G·C

G·C ↓ ↑ G C
G·C ↓

↑ G C
G·C ↓ ↑ G C

G C
↓


 . (3)

Inserting the energetic contributions in matrix 3 we find,
(

ξ ξµ
ξµ 1

)
, (4)

whereξ ≡ exp[−∆GGG/kBT ], the free energy for the dimer

↑ G·C
G·C ↓,

andµ ≡ exp[∆Gh/kBT ], which involves the free energy for
the hydrogen bond between G and C. If the hydrogen bond
of a bp is broken in a duplex, we have∆GGG−∆mGh, and
the Boltzmann factor for this configuration is given byξµ. If
two hydrogen bonds of the bps involved are broken, its Gibss
free energy is zero.

After normalizing each column of matrix (4) we have:



1
1+µ

ξµ
1+ξµ

µ
1+µ

1
1+ξµ


 . (5)

The explicit form of the eigenvector with eigenvalue one
is obtained by solving Eq. (1) with M given by matrix 2. This
process yields the following vector:

( ↑ G · C ↓
↑ G C ↓

)
=




ξ(1+µ)
1+ξ+2µ

1+µξ
1+ξ+2µ


 . (6)

Vector (6) gives us the probability of finding↑G·C↓, and
↑G C↓ base-pairs in poly(dG)·poly(dC) at any temperature.
This is the well known solution to a Markov chain of two
states. Using vector (6), we can obtain the behavior of the
melting transition expressed in terms of the fraction of open
bpsθ, given by the second component of vector (6) divided
by the sum of the first and second components. Because the
conservation of probability, the sum of both terms is equal
to 1,θ is given just by

θ =
1 + ξµ

1 + ξ + 2ξµ
. (7)

To obtain configurational changes predicted by Eq. (7),
we have to insert the experimental values of the stacking free
energies and the free energy of the hydrogen bonds. Be-
cause we assume that each duplex is in a state of thermody-
namic equilibrium,∆GGG, and∆Gh can be calculated from

the empirical relations∆GGG = ∆HGG − T∆SGG, and
∆Gh = ∆Hh − T∆Sh; where∆HGG and∆SGG stand for
the enthalpy and entropy due to stacking, and∆Gh and∆Sh,
for the enthalpy and entropy of the hydrogen bond between
G and C.

In Fig. 1, for poly(dG)·poly(dC), θ is plotted vs. tem-
perature. The experimental values used in Eq. 7
are ∆HGG =-8993kcal/mol, ∆SGG=-24.85e.u. [20],
∆Hh=-5.8kcal/mol and∆Sh=-16e.u. [17]. The experimen-
tal values for the stacking enthalpies and entropies through-
out this article are taken from Table II in Ref. 20 (For an
excellent description and discussion about the thermody-
namics libraries see Ref. 9). The experimental values for
hydrogen enthalpy and entropy in all our calculations are
also taken from Ref. 17. In Fig. 1, it is observed thatθ has
the same shape as the experimental curves as a function of
the temperature.

Now, if we want to calculateTm, we only have to setθ to
one half. This condition is reached whenξ = 1, that means
∆GGG = 0. Then,Tm = ∆HGG/∆SGG, is the expected
result.

3.2. Poly[(dM-dN)·(dM-dN)]

Now, as in the preceding example, by using matrix (2),
we describe the melting behavior and obtainTm for
poly[(dG-dC)·(dG-dC)]; the results are also applicable to
poly[(dA-dT)·(dA-dT)], poly[(dA-dT)·(dG-dC)], etc. For
this particular case, in matrix (2) only, the terms

↑ G
C

and ↑ C
G

remain, and the fraction of the pairs involved are equal to1/2.
Matrix (2) is reduced to a 4×4 matrix, namely:




↑ G·C
G·C ↓ ↑ C·G

G·C ↓ ↑ G C
G·C ↓ ↑ C G

G·C ↓

↑ G·C
C·G ↓ ↑ C·G

C·G ↓ ↑ G C
C·G ↓ ↑ C G

C·G ↓

↑ G·C
G C

↓ ↑ C·G
G C

↓ ↑ G C
G C

↓ ↑ C G
G C

↓

↑ G·C
C G

↓ ↑ C·G
C G

↓ ↑ G C
C G

↓ ↑ C G
C G

↓




. (8)

Introducing the fraction of appearance for each configu-
ration and their Boltzmann factor, we have

1
2




0 ε 0 εµ
η 0 ηµ 0
0 εµ 0 1
ηµ 0 1 0


 , (9)

whereη ≡ exp[−∆GGC/kBT ], ε ≡ exp[−∆GCG/kBT ],
andµ has the same meaning as in the preceding section.

After normalizing each column of matrix (9) and solving
Eq. (2) with M given by Eq. (9), a vector of four compo-
nents is found. The first and second components of this vec-
tor give us the probability of finding↑G·G↓ and↑C·G ↓, the
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probability of the closed duplex. The sum of the last two,
↑G C↓+↑C G↓, give us the probability of finding the totally
open bps, namely,

θ=
4+µ(2+η(3+µ))+ε(3+µ+2ηµ))

2(2+ε+η+µ(1+3η+ε(3+η))+µ2(ε+η+2εη))
. (10)

In Fig. 1, Eq. (10) is plotted. The shape obtained is that
observed experimentally, in fact, it is very close to that ob-
tained in the preceding section for poly(dG)·poly(dC). More
details about the experimental values used in Eq. (10) are
given in the figure caption.

To calculateTm, it is necessary to imposeθ = 1/2,
Eq. (10) is equal to1/2 when,

2− ε− η + µ− εηµ = 0. (11)

Equation (11) depends on the hydrogen bond parameters as
well as the stacking ones. In this case, the role of the stacking
energies is as fundamental as that of the hydrogen bonding
energies, and the competition between their∆Sś and their
∆Hś governs the melting behavior.

The theoretical value forTm obtained using Eq. (11),
and the experimental data of Delcourt [20], and New-
mark [17], is 115◦C. The experimental melting tempera-
ture for this sequence is 111.83◦C [18], while Delcourt ob-
tained 107.99◦ [20]. (The Delcourt values were obtained by
Tm =

∑
fMN∆GMN ). Our result is closer to the experi-

mental one. Presumably, our theoretical value could be bet-
ter if the thermodynamical parameters used for the hydrogen
bond were obtained for the same solvent as the stacking ones.

3.3. Poly[d(M,N)·d(M,N)]

To solve the problem of poly[d(M,N)·d(M,N)], as in
the preceding subsection, for simplicity we will work
with poly[(dG,dC)·(dG,dC)], and all the results ob-
tained are applicable to poly[(dA,dT)·(dA,dT)], as well as
poly[(dG,dC)·(dA,dT)], etc. In this particular case, matrix (2)
is reduced to a 4×4 matrix, Eq. (8). Introducing the fraction
of each duplex and their Boltzmann factor the 4×4 matrix is
given by,




fGG ξ fCG ε fGG ξµ fCG εµ
fGC η fGG ξ fGC ηµ fGG ξµ
fGG ξµ fCG εµ fGG fCG

fGC ηµ fGG ξµ fGC fGG


 , (12)

whereξ, ε, η, andµ have the same meaning as in the preced-
ing sections. Following the same procedure as in the two pre-
ceding sections, after normalizing Eq. (12), one can obtainθ.
Even though the steps to obtainθ for this particular case are
straight forward, the explicit equation contains a large num-
ber of factors. For this reason the full expression is shown in
Appendix, in Eq. (A.1).

In Fig. 1,θ, given by Eq. (A.1), is plotted forfGG = 0.3,
fCG = 0.3, andfGC = 0.4. The details of the experimen-
tal values, used in this plot, are given in the figure caption.

The shape of the curve predicted by the theory is the ex-
pected. It is important to remark that with any combination
of fCG andfGC the denatured curves predicted by Eq. (A.1),
are in between those obtained for poly(dG)·poly(dC), and
poly[(dG-dC)·(dG-dC)].

In Fig. 2,Tm is plotted vs. the fraction of duplex. This
fraction refers to the fraction in a single strand, and the dif-
ference sequence in a vertical stacking. This plot takes

FIGURE 1. Plot of θ for three different cases, poly(dG)·poly(dC)
given by Eq. (5), [(dG-dC)·(dG-dC)] given by Eq. (10), and
poly[(dG,dC)·(dG,dC)] given by Eq. (A.1), withfGG = 0.3,
fCG = 0.3, andfGC = 0.4. The two first cases are particular
cases of the last one whenfGC = fCG = 0, and whenfGG = 0,
respectively. The experimental thermodynamic hydrogen bond val-
ues were taken from Ref. 17. The experimental thermodynamic
nearest-neighbor values were taken from Ref. 7.

FIGURE 2. Plot for poly(dG,dC)·poly(dG,dC) of Tm vs.
all possible combinations offGG, fCG, and fGC . Because
fGG + fGC + fCG = 1, we only have two independent parame-
ters; to plotTm in two dimension, we set constantfGC , whose
value is indicated in each case. Even though [G+C] remains con-
stant in all the cases, the plot shows the strong dependence o the se-
quences. The two extreme values are given by poly(dG)·poly(dC)
(fGG = 1), the least stable of all the conformations, and
by poly[(dG-dC)·(dG-dC)] (fCG = fGC = 1/2, andfCG = 0 ),
the most stable sequence. The thermodynamics experimental val-
ues were taken from Refs. 7 and 17.
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into account not only the total fraction of G and C, [G+C],
but also the variation of each duplex in the sequence. Even
though the total fraction of G and C remains constant for
each point plotted in Fig. 2, the melting temperature is se-
quence dependent. We predict with our model, an important
variation for the single point obtained by the linear Marmur-
Doty relation [21], and the entire range of possible melting
temperatures around 16◦C. The extreme values are given by
poly(dG)·poly(dC), and by poly[(dG-dC)·(dG·dC)].

It is important to remark that one of the interesting fea-
tures observed in Fig. 2, is the case when the values offGC

andfCG are switched: andTm changes. For example, theTm

predicted for a DNA sequence with the fractionfGC = 0.1,
fCG = 0.8 (fGG = 0.1) is 106.84◦C, while for the fraction
fGC = 0.8, fCG = 0.1 (fGG = 0.1) 109.21◦C is obtained.
This feature is observed because

↑ G·C
C·G ↓ is stronger than ↑ C·G

G·C ↓ .

Finally, setting in Eq. (A.1)fCG = fGC andfCG = 1,
this expression reduces to Eq. (7). SettingfCG = fGC = 1/2
andfCG = 0, Eq. (10) is obtained.

4. Conclusions

To summarize, we used the stochastic matrix method to study
the melting of DNA, and its melting temperature dependence
on the fractional composition in a single strand. The elements
of the stochastic matrix are the probabilities that any base-
pair has of a bonded or an unbonded neighbor. If one assumes
that the stochastic matrix has an eigenvector with eigenvalue
equal to one, the possible configurations of the system are
fixed by this eigenvector. In fact, this vector is the probabil-
ity of finding any bonded or unbonded base. Once we have
this probability, we are able to obtain an analytic expression
for the fraction of broken base-pairs as a function of tempera-
ture. Besides, setting to1/2 the expression for this probabil-
ity, gives us an analytical expression to calculate the melting
temperature. This theoretical method is free of adjustable pa-
rameters, and to carry out the comparison with experimental
data, only the DNA nearest-neighbor thermodynamics set, as
well as the hydrogen bond parameter are needed. The shapes
predicted by our theoretical expression for temperature de-
pendence of the denatured base-pairs are the expected ones
for a DNA chain. TheTm obtained theoretically are in good
agreement with the experimental values. TheTm extreme
values are obtained whenfCG = 1 and whenfCG = 0, and
fCG = fGC = 1/2. The first is for poly(dG)·poly(dC) and is
the lowest value. The second extreme gives the strongest pos-
sible chain, poly[(dG-dC)·(dG-dC)]. The rest of the possible

combinations of fractions are in between. The maximum dif-
ference inTm for chains with the same fraction of [G+C] is
around 16◦C. Thus, instead of having a single point as in the
Marmur-Doty relation, for this particular case we obtain a set
of points withTm values between the extremes. Our theory
can be used to predict any combination [G+C] and [A+T].

Finally, it is important to say that this method can be used
to describe the unfolding behavior for peptides and proteins.

Appendix: poly[d(G,C)·d(G,C)]’s θ

In this appendix we shall show an expression for
poly[d(G,C)·d(G,C)]’sθ. For this particular case,

θ = N/D. (A.1)

where

N = (a2 − bc + S1S2 − a(S1 + S2))

× (S3(fCG + S4)− fGGS4)

+ (c(bc + a(S1 + s2 − a)S3)

+ µ2(a3 − abc− bcS1 − a2S2)S4)), (13)

D = (a2 − bc + S1S2 − a(S1 + S2)))

× (S3(fCG + S4)− fGGS4)− cS1S2(fGG − S3)

− aS1S2(fCG − fGG + S3)

− b(c(fCGS1 − fGGS2 + S2S3) + fCGS1S2)

+ a2µ(fCGS1 + S2(S3 − fGG)))

+ (c(bc + a(S1 + S2 − a))S3

+ S4µ
2(a3 − abc− bc(1− S1)− a2S2)

− µ3(a2 − bc)(aS2 − cS1) (14)

S1 = (1 + µ)(a + b)

S2 = (1 + µ)(a + c)

S3 = µ(a + b) + fGG + fGC

S4 = µ(a + c) + fGG + fCG (15)

and

a = fGGξ,

b = fGCη,

c = fCGε.
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