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Apart from the total energy, the two-dimensional isotropic harmonic oscillator possesses three independent constants of motion which, with
the standard symplectic structure, generates a dynamical symmetry group isomorphic to SU(2). We show that, by suitably redefining the
symplectic structure, any of these three constants of motion can be used as a Hamiltonian, and that the remaining two, together with the
total energy, generate a dynamical symmetry group isomorphic to SU(1,1). We also show that the standard energy levels of the quantum
two-dimensional isotropic harmonic oscillator and their degeneracies are obtained making use of the appropriate representations of SU(1,1),
provided that the canonical commutation relations are modified according to the new symplectic structure. Whereas in classical mechanics
the different symplectic structures lead to equivalent formulations of the equations of motion, in quantum mechanics the modifications of the
commutation relations should be accompanied by modifications in the interpretation of the formalism in order to obtain results equivalent to
those found with the common relations.
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Aparte de la eneiig total, el oscilador artmico bidimensional istropo posee tres constantes de movimiento independientes las cuales, con

la estructura simgictica esindar, generan un grupo de siretliramica isomorfo a SU(2). Mostramos que, definiendo adecuadamente la
estructura sim@ctica, cualquiera de estas tres constantes de movimiento puede ser usada como hamiltoniana y que las dos restantes, juntc
con la ener@ total, generan un grupo de simatdiramica isormorfo a SU(1,1). Mostramos tabique los niveles de enéagusuales

del oscilador arranico bidimensional igtropo ciantico y sus degeneraciones se obtienen haciendo uso de las representaciones apropiadas
de SU(1,1), si las relaciones de conmubaccardnicas se modifican de acuerdo con la nueva estructuraé&itiga. Mientras que en la

medanica chsica las diferentes estructuras siegpicas llevan a formulaciones equivalentes de las ecuaciones de movimiento, ear&cmec
cuantica, la modificaéin de las relaciones de conmutatidebe estar acomipada de modificaciones en la interpretacidel formalismo

para obtener resultados equivalentes a los que se hallan con las relaciones usuales.

Descriptores:Grupos de simeia dilamica; estructuras simggticas; cuantizatn.

PACS: 45.20.Jj; 03.65.Fd

1. Introduction tion, not on the choice of the Hamiltonian or of the Pois-
son bracket, but any change in the definition of the Poisson
In the Hamiltonian formulation of classical mechanics, thebracket may change the value of the Poisson bracket of two
constants of motion of an autonomous system are generatogenstants of motion, which will always be a constant of mo-
of canonical transformations that leave the Hamiltonian function (see the examples below); therefore, a set of constants
tion invariant. The set of constants of motion is closed undepf motion that form a basis of a Lie algebra with some Pois-
the Poisson bracket and, in some cases, one can find a fini#@n bracket need not be a basis for a Lie algebra with another
number of constants of motion that form a basis of a Lie al-Poisson bracket or may be a basis for a different Lie algebra.

gebra. As it is well known, the two-dimensional isotropic har-
In the standard procedure, the Hamiltonian function andnonic oscillator (TIHO) possesses three constants of motion,
the relationship between the canonical momenta and the V& S, S5, that, with respect to the usual Poisson bracket,
locities are obtained Starting from the Lagrangian fUnCtion,form a basis of a Lie a|gebra isomorphic to SU(Z) (Eg'
which usually is taken as the kinetic energy minus the potenrefs. 3 to 6). The operators corresponding to these constants
tial energy. However, the equations of motion can be writteryf motion in the quantum-mechanical version of the TIHO
in Hamiltonian form in infinitely many ways, using any non- form a basis of a Lie algebra isomorphic to su(2) with the
trivial constant of motion as Hamiltonian, by defining appro- commutator, and this fact can be employed to find the energy
priately the Poisson bracket, which is not fixed by the choicgqeyels and their degeneracies [8].(also Refs. 7 and 8). In
of the Hamiltonian [1,2]. this paper we show that by taking any of the constants of mo-
The fact that a given function defined on the phase spacton 51, S2, S3, as Hamiltonian, the corresponding Poisson
is a constant of motion only depends on the equations of mdsracket can be chosen in such a way that the remaining two,
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together with the total energy, form a basis of a Lie algebra A function, f, is a constant of motion if f, H} = 0
isomorphic to su(1,1). We also show that, by imposing thgsee Eq. (2)]. As a consequence of Eq. (2) and of the an-
appropriate commutation relations, the operators correspondisymmetry of the Poisson bracket] is a constant of mo-
ing to these constants of motion form a basis of a Lie algebr&on. It turns out thatany nontrivial constant of motion can
isomorphic to su(1,1) and we derive the standard results fdoe used as Hamiltonian, with an appropriate choice for the
the spectrum of the total energy. functionso#¥; furthermore, for a given Hamiltonian, there
are infinitely many sets of functiong*” satisfying Egs. (6)
and (8), if the number of degrees of freedom is greater that 1
(see Refs. 1 and 9 and the examples below).

The Hamilton equations of motion of a mechanical system
with n degrees of freedom and forces derivable fromapoteng Dynamical symmetry groups of the two-
tial are usually written in the form dimensional isotropic harmonic oscillator

2. Hamilton’s equations

d¢' OH dp; OH . . .
g _ Di _ (1) In what follows we shall consider the two-dimensional

dt Opi dt oq' isotropic harmonic oscillator (TIHO), which corresponds to
(¢ =1,2,...,n), whereH is the Hamiltonian function and the equations of motion
(¢%,...,q", p1,...,pn) are the canonical coordinates on the o, p
phase space. Then, for any differentiable functigrjefined T = EE’ Y= Ey, Pr = —mwiz, Py =—mwiy, (9)

on the phase space, Egs. (1) imply that
, wherem is the mass of the particle ang, is the angular
ﬂ: 8f dg*  of dpi:if_aﬂ_ﬁ%:{f H}, (2) frequency of the oscillations. (Note that y, p,, andp,
dt 9¢' dt  Op; dt  0q' Op;  Ip; Og' are the only coordinates on the phase spacertbed nobe
canonical variables.) As can be readily verified making use
of Egs. (9), the functions

where{ , } is the Poisson bracket,
of dg Of g

{fag}: P 9 O PRl (3) 2—|— 2
6q 8p¢ api (9q SO = pIZ py +%mw§(x2+y2),
and there is a summation over repeated indices. The Poisson » pm
bracket (3) satisfies the Jacobi identity S = 4 mwday,
m
9 7h’ + 7h 9 + h7 9 = 07 2 p?
Hrgh iy +{{g.h} 1+ {{N, [}, g} S, = py2 s +%mwg(y2—x2),
and if (z1, 22, ..., 2%") is an arbitrary coordinate system on m
the phase space, the Poisson bracket can be expressed as S3 = wolzpy — Ypa), (10)
(f.q} = ﬁ dg ([ Oxt Ox” B ozt Ox” are constants of motion. These functions are related through
9= 9un 92v \ 0 Op;  Opi Og s oy o
= Hv 4
7 Oak 9 @) andJs is the usual Hamiltonian of the TIHO. (The functions
(,v,...=1,2,....2n) with S1, S2, S3 are normalized here in such a way tiat S,
So, andSs have dimension of energy, and that Eq. (11) holds
ot = {z* z"}. (5)  with all numerical coefficients equal to 1.)
) N ] o Even if we employ the usual Hamiltonia$;, the Poisson
Owing to the Jacobi identity, the functions” satisfy bracket is not fixed by the equations of motion (9). Substitut-
w VA A ing Egs. (9) into Egs. (8) witllf = S, and
Um@a‘ +0W80 n puaa”:Q ®) g Egs. (9) gs. (8) 0
O Ot O (z',2%, 2%, 2%) = (2,9, ps, py),
and one can verify that
we obtain
{f.gh=om 2L 00 @
’ Oxk Oxv Pz _ o mwly + o3Pz 014&,
m m
satisfies the Jacobi identity if Egs. (6) hold. The fact that P, De D,
the z# form a coordinate system implies thétt (o) # 0. Ey = —omwiz + anﬁ + UMEy’

Thus, in terms of an arbitrary system of coordinates, the

Hamilton equations are expressed in the form —mwir = —oBmwiz — oBmuwly + priza’y
dz# OH De
. __pv 2 _ 14 2 24 2 34 Px
—— =0 . 8 —mw = —0 MWy — 0 MNw — 0 — 12
dt oxv ® 0¥ 0 0¥ m’ (12)
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where we have taken into account the fact thet”) is an-  where we have taken into account Egs. (9) and the fact that
tisymmetric. These equations allow us to expresg, o', (o#) is antisymmetric. Using these equations we can ex-

o3, ando3? in terms ofo'2, o3, ando?* presso'3, 024, ando3* in terms ofo 2, o'4, ando?3
T
ot = —megﬂam - &(013 - 1), ol? = —m2w3—012 — p—z(a14 -1,
Py Py Py Py
z Yy p
0% = mPwi —o'? - &(024 -1, (13) o = mPw2Zot? - (0B - 1),
Pz Pz Pz Pz
x x T
o34 — m4w§—yal2 +m2wi = (013 — 1) o3 = —miud Y 12 _mzw[z)g(am ~1)
DPxDy Dy DPxDy Dy
T
—m2wd (o 1), +mAwd— (0% - 1). (17)
Pz Pz

However, o'2, ¢'3, and 02* cannot be chosen arbitrarily By inspection, one finds that a particular choiceddt’ that
since, apart from the conditiodet(c#) # 0, the func-  Satisfies Egs. (6) and (17) is such thdt = o = 1 are the
tions o must satisfy Egs. (6). Nevertheless, there are inNly nonvanishing independent componentsof, i.e,
finitely many nonsingular matrices ) satisfying Egs. (6)
. . , =1, Dzt =1 18

and (12) (the general solution of Eqgs. (6) and (12) involves {z.py} {ypa} (18)
three arbitrary functions of three variables [1]). The usuakhen, the Poisson brackets among the constants of méion
Poisson bracket is given by'? = 0, 0'? = 0 = 1 (hence,  g,, andS; are given by
ol = o2 = 534 = ().

The constants of motiofi;, S», S5, are known to gener- {Si,5;} = 2woeijug™ Sy (i,4,...=0,2,3), (19)
ate a Lie algebra isomorphic to su(2) with the usual Poisson , i o
bracket. In fact, when!3 = 1 ando24 = 1 are the only non- where(g"') is a diagonal matrix witly "= —1, g*2=¢* =1,

vanishing independent componentgef*), one finds that ande;;, is totally antisymmetric Wi,tm)??’ = 1. This means
that Sy, S, and S3 generate a Lie algebra isomorphic to

{5:,5;} = 2woeiju Sk (14)  Su(l,1). It may be remarked that, by contrast with the usual
' ' HamiltonianSy, S; is not positive definite.
(i,7,... = 1,2,3). Moreover,S;, S», S3 generate an ac- Making use of the two-component spinor notation (see,

tion of SU(2) on the phase space that leaves invariant botR-g, Refs. 6 and 11), we can see explicitly tiat Sz, and

the Hamiltonian and the Poisson bracket (sg, Refs. 3  S3 generate an action of SU(1,1) on the phase space. Indeed,
to 6, and 10). Surprisingly, for any choice of* repro-  letting

ducing the equations of motion witH = S, the Poisson 1 .
brackets among, S, S3 are given by expressions simi- ( wQ ) = ( Po + Py +me0(x +) ) (20)

lar to Eq. (14). Without specifying the function$”, using ¥ Pr = Py + imwo(z = y)

the definitions (10) and the relations (13), a straightforwardusing Egs. (18), we find that the only nonvanishing Poisson

computation yields brackets amongy', 2, and their conjugates are given by
5 o {1} = dimwy, {12,192} = —4imw,, where the bar de-
{8i, Sj} = 2woeijr (07 + 0™ = 1)Sy. (15)  notes complex conjugation. It is convenient to make use of

_ _ o - themateof 4)#, which is defined by [6,11]
This equation shows that (i) satisfies the conditions (6)

and (12), therr'® + o2* must be a constant of motion and A = —in? By, (21)
that, in order forSy, Ss, S3, to generate a Lie algebra iso-
morphic to su(2), the Poisson bracket must be chosen in suathere

away thatr'3 + 024 is a real number different from 1. (B = ( _(1) (1) ) . (22)
As pointed out above, any constant of motion, suchas o
S5, andsS3, can be used as Hamiltonian. For instance, takinglhe spinor indicesd, B, . .., takg the vgjl:;es 1,2 andB are
H = Sy and(z!, 22, 23, 2%) = (z,y,ps, py), EQs. (8) read raised or lowered according 0" =1pc”", Ya=cap”,
with
@ © 1
Po omwiz + o3Py Jl4p—, (eap) = ( 0 ) = (e4B). (23)
m m m -1 0
by _ —o2muwdy + o3Py | j24Pr Hence,)! = 112, )2 = il. According to the foregoing
m m m definitions
2 13,2 23, 2 34 Pz
—MWT = —0 “Mwyly — o "mwyx + o~ —, ~y o~
’ ’ ’ m {hePy=0,  {$19P) =0,
4 ~
—muwiy = —o'tmuly — o*mwis — ¥, (16) (A, 9B) = —dmugeAB (24)
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and ; R hence,
Sy = %5AB1/)A¢B~ (25) #(s) £1(0)
The group SU(1,1) is formed by the unimodula 2 ( V2(s) ) = exp(swooi) < ¥?(0) ) '

complex matrices;U“ g), such that
o Sinceo; belongs to the Lie algebra of SU(1,Exp(swoo;)
Up?UpCnPP =nc. (26)  belongs to SU(1,1).
While the usual symplectic structure is invariant under ro-
tations, the symplectic structure defined by Eqgs. (18) is not;
in other words, the rotations in the-plane are not canoni-

If the components of a spinap transform according to
A — P4 = UA gy, then using Egs. (21) and (26)

~

JA - ABTT—— @ _ : ABTT G cal transformations with respect to this symplectic structure.
P = —in"PUpcy® = in""UpYc Equations (18) mean that, is the infinitesimal generator of
= —inBCUA g = U2 goP, translations along the-axis whilep, is the infinitesimal gen-
R erator of translations along theaxis.
which means that)* transforms in the same way as®. If, instead of assuming (18), we take any other nonsingu-
Since lar matrix (c+) satisfying Eqs. (6) and (16) we obtain
eapUcUPp = ecp,
if and only if det(U4) = 1, from Egs. (24) and (25) it {Si,8;} = 2wosijig® (oM +0* = 1)S,  (29)
follows that the Poisson bracket and the Hamiltonian are in- )
variant under the SU(1,1) transformationd — U4 g1 P. (ij, ...=0,2,3), Ef. Egs. (15) and (19)]. Thus, whesy is

The group SU(L,1) is a double covering group ofthe Hamilt_onian,a14 + 0_23 is a constant of motion and, if
SQy(2,1), the connected component of the identity ino  + o> is anumber different from 3{So, Sz, S3} gener-
SO(2,1), in the same way as SU(2) is a double covering grouptes @ Lie algebra isomorphic to su(1,1).
of SO(3). The fact that a SU(1,1) matrix/“ ) and its It can be readily seen that takirtfy or S5 as the Hamil-
negative give two different transformatiogis' — ¢4 im-  tonian leads to results similar to those obtained with
plies that we are dealing with an action of SU(1,1) and not of

SO(2,1). _ . _
The constants of motiofiy, S=, andSs; can be expressed 4. The Heisenberg equations of motion for the
in a form analogous to Eq. (25), namely TIHO and the energy eigenvalues
S; = LaiABﬁAwﬁ (i =0,2,3) (27)  Now we shall consider the variablesy, p,, andp, appear-
4m ing in Egs. (9) as operators in the Heisenberg picture with the
with commutation relations
0 i L0 =ik =ik 30
(0oap) = ’ . (02aB) = 2, [z,py] =ik, [y,p.] = ih, (30)
—-i 0 0 i
1 0 which follow from Eqgs. (18), applying the usual rule of re-
(03aB) = ( 0 1 > . (28)  placing Poisson brackets by commutators dividediyand

all the other commutators among the operatersy, p.,
(The matricesr; = (0;*5) form a basis for the Lie algebra andp, not given by Egs. (30) equal to zero. Then it can

of SU(1,1) [6]). be readily verified that the Heisenberg equations of motion
Any differentiable function defined on the phase space,
G, is the generator of a one-parameter group of canonical df — l[f ]
transformations whose orbits are the solutions of . i
dzt {2 G = a“”a—G reproduce Egs. (9) withl = S; andS; defined by Egs. (10).
ds ’ oxv’ SinceSs;, defined by Egs. (10), involves products of non-
commuting operators we replace the expressiorbfogiven

[cf. EQ. (8)]. Then, using the components' as complex there by
coordinates on the phase space, according to Egs. (24) and

27), the one-parameter group of canonical transformations wo
(27) P group S3 = —(xpy + PyT — YPz — Da2y)-

generated bys; (i = 0,2, 3) is given by 2
dap A 1 A “BC Then, making use of Egs. (30), one finds that the last expres-
3 = WS =g oise{y, vReT) sion can be rewritten as

= —oipc(—4mwee®P)pC = wooi v, S3 = wo(Tpy — YPz)- (31)

4m
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A straightforward computation shows thsif commutes  Furthermore, sincé is the sum of squares of Hermitian op-
with Sy, Ss2, and.Ss, which are, therefore, constants of mo- erators,
tion and uw>0 (40)

[So, Sa] = 2ifiwoSs S5, ] = —2ifwoSo [see Egs. (36)]. Hence, for a fixed value pfthere exists a
’ ’ ’ ’ value oft, ftmin, SUCh thalimin (ttmin — 1) = j(j + 1), i.e.,
[S3, So] = 21wy S, (32)
Hmin = 7] or ] + 1. (41)
[cf. Egs. (19)]. Hencd Sy, S2,S3} generate a Lie algebra ) ) )
isomorphic to su(1,1). Taking into account Egs. (30) ong"owever, the foregoing relations do not fix the valueg.of

finds that, instead of Eq. (11), now we have andj. . .
Owing to Egs. (33), (34), and (36); ) is also an eigen-
S? 4+ 83+ 53 = S5 + hwj. (33)  vector of 57
(It may be noticed that, assuming that the usual commutation ST ) =[G + 5)2hwo]?[j ). (42)
relations hold, one obtains? + S2 + S2 = S? — h?w? [5]. i ) )
From Egs. (32) it followsnt%]lzat 20T «o 31 Since S; and S, commute, there exists a basis formed by
' common eigenvectors ¢f, andS,, which would also be au-
C=52-52_52 (34) tomatically eigenvectors of?; hence, we can assume that
|7 1) is an eigenvector of; with

commutes withSy, Sz, andS3 and that . o .
Silg m) = (7 + 3)2he0g p)- (43)

(This is related to the fact that the eigenvalue(dfis un-
whereS, = S, + iS5 (see also Refs. 10, 12). Hence, therechanged if we replacg+ 1/2 by —(j + 1/2), see Eq. (36).)

[So, St] = +2hwo S, [S4,5-] = —4hwoSo, (35)

exist common eigenvectors 6fandSy, |j 1), such that Introducing the operators
Cljn) = j(G +1)(2hwo)?lj ) PPy 1 oo o
Jp g0 0)"1J 1), K, = o +§mw0(y — %) +iwo(xzps — ypy) (44)
Soljp) = p2huwolj p), (36) ; _ _
andK_ = K, making use of Egs. (30) one finds that
where the constant facto(8hw)? and2hw, are introduced
for later convenience. Then, [So, K+] =0,  [S1,Ki] = +2hwoK,
. L K. K ] = 4hwoS,, 45
Seljp) = exGomliop+ 1), (37) [Fop K] = dho: (45)

which implies that Ki|jp) o« |j = 1,u) and that

wherec. (5, 1) are some constants. Since (K1 /20, K /20, S1 /20 }, With Ky — Ky + 1Ky, obey

C = 82+ 2hwoSy — S_S- the commqtation relations of the standard basis o_f sue) (
[Ji, J;] = ihesjiJi). (The operatorK, is essentially the
= 5§ — 2hwoSy — S+5-_, product'+? of the components of the spinor defined in

) ) Eq. (20).) Furthermore,
assuming that the vectofsu) are normalized and that, y,

Pz, py (@nd, henceSy, Sy, S, Ss) are Hermitian operators, K? + K3+ 5% = 82 — h2w? (46)

we have
hence [see Egs. (36)]

(KT + K3+ 8Pl 1) = (0= 5) (1 + 5)(2hw0)?]j ).

) o Thus, applying the standard results about the representa-
= (2hwo)”[pu(p +1) — j(5 +1)] tions of su(2), it follows that for a fixed value gf, j can
take2(u — 1/2) + 1 = 2u values, in integral steps, such that
—(p—1/2) <j+ % < p—1/2o0r, equivalently,

ler (3, > = (G plS—Sy|jp)
= (j p|(S§ + 2hwoSy — C)|5 1)

and, similarly,

e~ (G m)* = (2heo)*[palp = 1) = (G + 1)]. u<ji<p-1, (47)
Thus, o and thatu — 1/2 can take the valueg 1/2,1,3/2, .. .. Tak-
plp£1) 27 +1) (38) ing into account the second equation in (36), these results

and we can choose the eigenvectgrg) in such away that ~ reproduce the spectrum of the total energy of the TIHO ob-
tained by means of the standard approach [5]. Note that,

Siljp) = 2hwo/u(p£1) —j(G+1)|j,p+1). (39) according to Egs. (36) and (37), the operat8is raise or
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lower the eigenvalue of the total energy operator2hy, trum of the total energy operator is left unchanged by this
just as the operatofE;. defined in Sec. 34 of Ref. 10 for the replacement.

one-dimensional harmonic oscillator. In the terminology of  In classical mechanics, the alternative symplectic struc-
Ref. 10,5, S_, together with their commutator generate atures lead, by construction, to equivalent formulations of the
symmetry group SU(1,1) for the TIHO with the commuta- equations of motion. However, a relevant fact is that, as in the
tion relations (30), while in the case of the one-dimensionaktase considered in Sec. 3, rigid translations or rotations in
harmonic oscillatorT",, 7", and their commutator do not configuration space may not correspond to canonical trans-
generate a symmetry group but a dynamical group SU(1,1formations with respect to the alternative structures, which
Similarly, { K1, K», S1} generate a dynamical group SU(2) might be seen as a drawback or, at least, as a reason to prefel
for the TIHO when the commutation relations (30) are im-the symplectic structure obtained in the usual way. Never-

posed. theless, when the configuration space is curved and does not
possess symmetries, it might be more convenient to employ
5. Concluding remarks one of the many alternative symplectic structures.

As pointed out above, in quantum mechanics, the mod-
In the context of classical mechanicés, Sz, S3, or any other  ification of the commutation relations leads to deeper ques-
nontrivial constant of the motion can be used as Hamiltotions. It seems that, simultaneously with the modification of
nian, leading to a consistent formulation. However, in thethe commutation relations, one would have to suitably mod-
guantum-mechanical version, things are not so clear espéfy the interpretation of the formalism since the predictions
cially regarding the physical implications that commutationof the theory should not depend on which constant of motion
relations like (30) can have in connection with the simultane-we want to employ to express the evolution equations.
ous measurability of the observables.

In the example considered here, we have shown that, by

suitably modifying the commutation relations, the compactAcknowledgment
symmetry group SU(2) of the TIHO is substituted by the non-
compact symmetry group SU(1,1) when the usual commuta¥he authors acknowledge Dr. M. Montesinos for useful dis-
tion relations are replaced by (30). Nevertheless, the specussions.
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