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Apart from the total energy, the two-dimensional isotropic harmonic oscillator possesses three independent constants of motion which, with
the standard symplectic structure, generates a dynamical symmetry group isomorphic to SU(2). We show that, by suitably redefining the
symplectic structure, any of these three constants of motion can be used as a Hamiltonian, and that the remaining two, together with the
total energy, generate a dynamical symmetry group isomorphic to SU(1,1). We also show that the standard energy levels of the quantum
two-dimensional isotropic harmonic oscillator and their degeneracies are obtained making use of the appropriate representations of SU(1,1),
provided that the canonical commutation relations are modified according to the new symplectic structure. Whereas in classical mechanics
the different symplectic structures lead to equivalent formulations of the equations of motion, in quantum mechanics the modifications of the
commutation relations should be accompanied by modifications in the interpretation of the formalism in order to obtain results equivalent to
those found with the common relations.

Keywords:Dynamical symmetry groups; symplectic structures; quantization.

Aparte de la energı́a total, el oscilador arḿonico bidimensional iśotropo posee tres constantes de movimiento independientes las cuales, con
la estructura simpléctica est́andar, generan un grupo de simetrı́a dińamica isomorfo a SU(2). Mostramos que, definiendo adecuadamente la
estructura simpléctica, cualquiera de estas tres constantes de movimiento puede ser usada como hamiltoniana y que las dos restantes, junto
con la enerǵıa total, generan un grupo de simetrı́a dińamica isormorfo a SU(1,1). Mostramos también que los niveles de energı́a usuales
del oscilador arḿonico bidimensional iśotropo cúantico y sus degeneraciones se obtienen haciendo uso de las representaciones apropiadas
de SU(1,1), si las relaciones de conmutación cańonicas se modifican de acuerdo con la nueva estructura simpléctica. Mientras que en la
mećanica cĺasica las diferentes estructuras simplécticas llevan a formulaciones equivalentes de las ecuaciones de movimiento, en la mecánica
cuántica, la modificacíon de las relaciones de conmutación debe estar acompañada de modificaciones en la interpretación del formalismo
para obtener resultados equivalentes a los que se hallan con las relaciones usuales.

Descriptores:Grupos de simetrı́a dińamica; estructuras simplécticas; cuantización.

PACS: 45.20.Jj; 03.65.Fd

1. Introduction

In the Hamiltonian formulation of classical mechanics, the
constants of motion of an autonomous system are generators
of canonical transformations that leave the Hamiltonian func-
tion invariant. The set of constants of motion is closed under
the Poisson bracket and, in some cases, one can find a finite
number of constants of motion that form a basis of a Lie al-
gebra.

In the standard procedure, the Hamiltonian function and
the relationship between the canonical momenta and the ve-
locities are obtained starting from the Lagrangian function,
which usually is taken as the kinetic energy minus the poten-
tial energy. However, the equations of motion can be written
in Hamiltonian form in infinitely many ways, using any non-
trivial constant of motion as Hamiltonian, by defining appro-
priately the Poisson bracket, which is not fixed by the choice
of the Hamiltonian [1,2].

The fact that a given function defined on the phase space
is a constant of motion only depends on the equations of mo-

tion, not on the choice of the Hamiltonian or of the Pois-
son bracket, but any change in the definition of the Poisson
bracket may change the value of the Poisson bracket of two
constants of motion, which will always be a constant of mo-
tion (see the examples below); therefore, a set of constants
of motion that form a basis of a Lie algebra with some Pois-
son bracket need not be a basis for a Lie algebra with another
Poisson bracket or may be a basis for a different Lie algebra.

As it is well known, the two-dimensional isotropic har-
monic oscillator (TIHO) possesses three constants of motion,
S1, S2, S3, that, with respect to the usual Poisson bracket,
form a basis of a Lie algebra isomorphic to su(2) (see,e.g.,
Refs. 3 to 6). The operators corresponding to these constants
of motion in the quantum-mechanical version of the TIHO
form a basis of a Lie algebra isomorphic to su(2) with the
commutator, and this fact can be employed to find the energy
levels and their degeneracies [5] (cf. also Refs. 7 and 8). In
this paper we show that by taking any of the constants of mo-
tion S1, S2, S3, as Hamiltonian, the corresponding Poisson
bracket can be chosen in such a way that the remaining two,



SYMPLECTIC STRUCTURES AND DYNAMICAL SYMMETRY GROUPS 609

together with the total energy, form a basis of a Lie algebra
isomorphic to su(1,1). We also show that, by imposing the
appropriate commutation relations, the operators correspond-
ing to these constants of motion form a basis of a Lie algebra
isomorphic to su(1,1) and we derive the standard results for
the spectrum of the total energy.

2. Hamilton’s equations

The Hamilton equations of motion of a mechanical system
with n degrees of freedom and forces derivable from a poten-
tial are usually written in the form

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, (1)

(i = 1, 2, . . . , n), whereH is the Hamiltonian function and
(q1, . . . , qn, p1, . . . , pn) are the canonical coordinates on the
phase space. Then, for any differentiable function,f , defined
on the phase space, Eqs. (1) imply that

df

dt
=

∂f

∂qi

dqi

dt
+

∂f

∂pi

dpi

dt
=

∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
={f, H}, (2)

where{ , } is the Poisson bracket,

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (3)

and there is a summation over repeated indices. The Poisson
bracket (3) satisfies the Jacobi identity

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0,

and if (x1, x2, . . . , x2n) is an arbitrary coordinate system on
the phase space, the Poisson bracket can be expressed as

{f, g} =
∂f

∂xµ

∂g

∂xν

(
∂xµ

∂qi

∂xν

∂pi
− ∂xµ

∂pi

∂xν

∂qi

)

= σµν ∂f

∂xµ

∂g

∂xν
, (4)

(µ, ν, . . . = 1, 2, . . . , 2n) with

σµν ≡ {xµ, xν}. (5)

Owing to the Jacobi identity, the functionsσµν satisfy

σρλ ∂σµν

∂xρ
+ σρµ ∂σνλ

∂xρ
+ σρν ∂σλµ

∂xρ
= 0, (6)

and one can verify that

{f, g} = σµν ∂f

∂xµ

∂g

∂xν
(7)

satisfies the Jacobi identity if Eqs. (6) hold. The fact that
thexµ form a coordinate system implies thatdet(σµν) 6= 0.
Thus, in terms of an arbitrary system of coordinates, the
Hamilton equations are expressed in the form

dxµ

dt
= σµν ∂H

∂xν
. (8)

A function, f , is a constant of motion if{f, H} = 0
[see Eq. (2)]. As a consequence of Eq. (2) and of the an-
tisymmetry of the Poisson bracket,H is a constant of mo-
tion. It turns out thatany nontrivial constant of motion can
be used as Hamiltonian, with an appropriate choice for the
functionsσµν ; furthermore, for a given Hamiltonian, there
are infinitely many sets of functionsσµν satisfying Eqs. (6)
and (8), if the number of degrees of freedom is greater that 1
(see Refs. 1 and 9 and the examples below).

3. Dynamical symmetry groups of the two-
dimensional isotropic harmonic oscillator

In what follows we shall consider the two-dimensional
isotropic harmonic oscillator (TIHO), which corresponds to
the equations of motion

ẋ =
px

m
, ẏ =

py

m
, ṗx = −mω2

0x, ṗy = −mω2
0y, (9)

wherem is the mass of the particle andω0 is the angular
frequency of the oscillations. (Note thatx, y, px, andpy

are the only coordinates on the phase space thatneed notbe
canonical variables.) As can be readily verified making use
of Eqs. (9), the functions

S0 ≡ p2
x + p2

y

2m
+

1
2
mω2

0(x2 + y2),

S1 ≡ pxpy

m
+ mω2

0xy,

S2 ≡ p2
y − p2

x

2m
+

1
2
mω2

0(y2 − x2),

S3 ≡ ω0(xpy − ypx), (10)

are constants of motion. These functions are related through

S2
1 + S2

2 + S2
3 = S2

0 (11)

andS0 is the usual Hamiltonian of the TIHO. (The functions
S1, S2, S3 are normalized here in such a way thatS0, S1,
S2, andS3 have dimension of energy, and that Eq. (11) holds
with all numerical coefficients equal to 1.)

Even if we employ the usual Hamiltonian,S0, the Poisson
bracket is not fixed by the equations of motion (9). Substitut-
ing Eqs. (9) into Eqs. (8) withH = S0 and

(x1, x2, x3, x4) = (x, y, px, py),

we obtain

px

m
= σ12mω2

0y + σ13 px

m
+ σ14 py

m
,

py

m
= −σ12mω2

0x + σ23 px

m
+ σ24 py

m
,

−mω2
0x = −σ13mω2

0x− σ23mω2
0y + σ34 py

m
,

−mω2
0y = −σ14mω2

0x− σ24mω2
0y − σ34 px

m
, (12)
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where we have taken into account the fact that(σµν) is an-
tisymmetric. These equations allow us to express,e.g., σ14,
σ23, andσ34 in terms ofσ12, σ13, andσ24

σ14 = −m2ω2
0

y

py
σ12 − px

py
(σ13 − 1),

σ23 = m2ω2
0

x

px
σ12 − py

px
(σ24 − 1), (13)

σ34 = m4ω4
0

xy

pxpy
σ12 + m2ω2

0

x

py
(σ13 − 1)

−m2ω2
0

y

px
(σ24 − 1).

However, σ12, σ13, and σ24 cannot be chosen arbitrarily
since, apart from the conditiondet(σµν) 6= 0, the func-
tions σµν must satisfy Eqs. (6). Nevertheless, there are in-
finitely many nonsingular matrices(σµν) satisfying Eqs. (6)
and (12) (the general solution of Eqs. (6) and (12) involves
three arbitrary functions of three variables [1]). The usual
Poisson bracket is given byσ12 = 0, σ13 = σ24 = 1 (hence,
σ14 = σ23 = σ34 = 0).

The constants of motionS1, S2, S3, are known to gener-
ate a Lie algebra isomorphic to su(2) with the usual Poisson
bracket. In fact, whenσ13 = 1 andσ24 = 1 are the only non-
vanishing independent components of(σµν), one finds that

{Si, Sj} = 2ω0εijkSk, (14)

(i, j, . . . = 1, 2, 3). Moreover,S1, S2, S3 generate an ac-
tion of SU(2) on the phase space that leaves invariant both
the Hamiltonian and the Poisson bracket (see,e.g., Refs. 3
to 6, and 10). Surprisingly, for any choice ofσµν repro-
ducing the equations of motion withH = S0, the Poisson
brackets amongS1, S2, S3 are given by expressions simi-
lar to Eq. (14). Without specifying the functionsσµν , using
the definitions (10) and the relations (13), a straightforward
computation yields

{Si, Sj} = 2ω0εijk(σ13 + σ24 − 1)Sk. (15)

This equation shows that if(σµν) satisfies the conditions (6)
and (12), thenσ13 + σ24 must be a constant of motion and
that, in order forS1, S2, S3, to generate a Lie algebra iso-
morphic to su(2), the Poisson bracket must be chosen in such
a way thatσ13 + σ24 is a real number different from 1.

As pointed out above, any constant of motion, such asS1,
S2, andS3, can be used as Hamiltonian. For instance, taking
H = S1 and(x1, x2, x3, x4) = (x, y, px, py), Eqs. (8) read

px

m
= σ12mω2

0x + σ13 py

m
+ σ14 px

m
,

py

m
= −σ12mω2

0y + σ23 py

m
+ σ24 px

m
,

−mω2
0x = −σ13mω2

0y − σ23mω2
0x + σ34 px

m
,

−mω2
0y = −σ14mω2

0y − σ24mω2
0x− σ34 py

m
, (16)

where we have taken into account Eqs. (9) and the fact that
(σµν) is antisymmetric. Using these equations we can ex-
pressσ13, σ24, andσ34 in terms ofσ12, σ14, andσ23

σ13 = −m2ω2
0

x

py
σ12 − px

py
(σ14 − 1),

σ24 = m2ω2
0

y

px
σ12 − py

px
(σ23 − 1),

σ34 = −m4ω4
0

xy

pxpy
σ12 −m2ω2

0

y

py
(σ14 − 1)

+ m2ω2
0

x

px
(σ23 − 1). (17)

By inspection, one finds that a particular choice forσµν that
satisfies Eqs. (6) and (17) is such thatσ14 = σ23 = 1 are the
only nonvanishing independent components ofσµν , i.e.,

{x, py} = 1, {y, px} = 1 (18)

then, the Poisson brackets among the constants of motionS0,
S2, andS3 are given by

{Si, Sj} = 2ω0εijkgklSl (i, j, . . . = 0, 2, 3), (19)

where(gkl) is a diagonal matrix withg00=−1, g22=g33 = 1,
andεijk is totally antisymmetric withε023 = 1. This means
that S0, S2, and S3 generate a Lie algebra isomorphic to
su(1,1). It may be remarked that, by contrast with the usual
HamiltonianS0, S1 is not positive definite.

Making use of the two-component spinor notation (see,
e.g., Refs. 6 and 11), we can see explicitly thatS0, S2, and
S3 generate an action of SU(1,1) on the phase space. Indeed,
letting

(
ψ1

ψ2

)
≡

(
px + py + imω0(x + y)
px − py + imω0(x− y)

)
(20)

using Eqs. (18), we find that the only nonvanishing Poisson
brackets amongψ1, ψ2, and their conjugates are given by
{ψ1, ψ1} = 4imω0, {ψ2, ψ2} = −4imω0, where the bar de-
notes complex conjugation. It is convenient to make use of
themateof ψA, which is defined by [6,11]

ψ̂A = −iηABψB , (21)

where

(ηAB) =
( −1 0

0 1

)
. (22)

The spinor indicesA,B, . . ., take the values 1, 2 and are
raised or lowered according toψA=ψBεBA, ψA=εABψB ,
with

(εAB) =
(

0 1
−1 0

)
= (εAB). (23)

Hence,ψ̂1 = iψ2, ψ̂2 = iψ1. According to the foregoing
definitions

{ψA, ψB} = 0, {ψ̂A, ψ̂B} = 0,

{ψA, ψ̂B} = −4mω0ε
AB (24)
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and
S1 =

i
4m

εABψ̂AψB . (25)

The group SU(1,1) is formed by the unimodular2 × 2
complex matrices,(UA

B), such that

UB
AUD

CηBD = ηAC . (26)

If the components of a spinorψA transform according to
ψA 7→ ψ′A = UA

BψB , then using Eqs. (21) and (26)

ψ̂′A = −iηABUBCψC = iηABUB
CψC

= −iηBCUA
BψC = UA

Bψ̂B ,

which means that̂ψA transforms in the same way asψA.
Since

εABUA
CUB

D = εCD,

if and only if det(UA
B) = 1, from Eqs. (24) and (25) it

follows that the Poisson bracket and the Hamiltonian are in-
variant under the SU(1,1) transformationsψA 7→ UA

BψB .
The group SU(1,1) is a double covering group of

SO0(2,1), the connected component of the identity in
SO(2,1), in the same way as SU(2) is a double covering group
of SO(3). The fact that a SU(1,1) matrix(UA

B) and its
negative give two different transformationsψA 7→ ψ′A im-
plies that we are dealing with an action of SU(1,1) and not of
SO(2,1).

The constants of motionS0, S2, andS3 can be expressed
in a form analogous to Eq. (25), namely

Si =
1

4m
σiABψ̂AψB , (i = 0, 2, 3) (27)

with

(σ0AB) =
(

0 −i
−i 0

)
, (σ2AB) =

(
i 0
0 i

)
,

(σ3AB) =
(

1 0
0 −1

)
. (28)

(The matricesσi ≡ (σi
A

B) form a basis for the Lie algebra
of SU(1,1) [6]).

Any differentiable function defined on the phase space,
G, is the generator of a one-parameter group of canonical
transformations whose orbits are the solutions of

dxµ

ds
= {xµ, G} = σµν ∂G

∂xν
.

[cf. Eq. (8)]. Then, using the componentsψA as complex
coordinates on the phase space, according to Eqs. (24) and
(27), the one-parameter group of canonical transformations
generated bySi (i = 0, 2, 3) is given by

dψA

ds
= {ψA, Si} =

1
4m

σiBC{ψA, ψ̂BψC}

=
1

4m
σiBC(−4mω0ε

AB)ψC = ω0σi
A

CψC ,

hence,

(
ψ1(s)
ψ2(s)

)
= exp(sω0σi)

(
ψ1(0)
ψ2(0)

)
.

Sinceσi belongs to the Lie algebra of SU(1,1),exp(sω0σi)
belongs to SU(1,1).

While the usual symplectic structure is invariant under ro-
tations, the symplectic structure defined by Eqs. (18) is not;
in other words, the rotations in thexy-plane are not canoni-
cal transformations with respect to this symplectic structure.
Equations (18) mean thatpy is the infinitesimal generator of
translations along thex-axis whilepx is the infinitesimal gen-
erator of translations along they-axis.

If, instead of assuming (18), we take any other nonsingu-
lar matrix(σµν) satisfying Eqs. (6) and (16) we obtain

{Si, Sj} = 2ω0εijkgkl(σ14+ σ23 − 1)Sl (29)

(i,j, . . . = 0,2,3), [cf. Eqs. (15) and (19)]. Thus, whenS1 is
the Hamiltonian,σ14 + σ23 is a constant of motion and, if
σ14 + σ23 is a number different from 1,{S0, S2, S3} gener-
ates a Lie algebra isomorphic to su(1,1).

It can be readily seen that takingS2 or S3 as the Hamil-
tonian leads to results similar to those obtained withS1.

4. The Heisenberg equations of motion for the
TIHO and the energy eigenvalues

Now we shall consider the variablesx, y, px, andpy appear-
ing in Eqs. (9) as operators in the Heisenberg picture with the
commutation relations

[x, py] = i~, [y, px] = i~, (30)

which follow from Eqs. (18), applying the usual rule of re-
placing Poisson brackets by commutators divided byi~, and
all the other commutators among the operatorsx, y, px,
and py not given by Eqs. (30) equal to zero. Then it can
be readily verified that the Heisenberg equations of motion

df

dt
=

1
i~

[f, H],

reproduce Eqs. (9) withH = S1 andS1 defined by Eqs. (10).
SinceS3, defined by Eqs. (10), involves products of non-

commuting operators we replace the expression forS3 given
there by

S3 =
ω0

2
(xpy + pyx− ypx − pxy).

Then, making use of Eqs. (30), one finds that the last expres-
sion can be rewritten as

S3 = ω0(xpy − ypx). (31)
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A straightforward computation shows thatS1 commutes
with S0, S2, andS3, which are, therefore, constants of mo-
tion and

[S0, S2] = 2i~ω0S3, [S2, S3] = −2i~ω0S0,

[S3, S0] = 2i~ω0S2, (32)

[cf. Eqs. (19)]. Hence{S0, S2, S3} generate a Lie algebra
isomorphic to su(1,1). Taking into account Eqs. (30) one
finds that, instead of Eq. (11), now we have

S2
1 + S2

2 + S2
3 = S2

0 + ~2ω2
0 . (33)

(It may be noticed that, assuming that the usual commutation
relations hold, one obtainsS2

1 + S2
2 + S2

3 = S2
0 − ~2ω2

0 [5].)
From Eqs. (32) it follows that

C ≡ S2
0 − S2

2 − S2
3 (34)

commutes withS0, S2, andS3 and that

[S0, S±] = ±2~ω0S±, [S+, S−] = −4~ω0S0, (35)

whereS± ≡ S2 ± iS3 (see also Refs. 10, 12). Hence, there
exist common eigenvectors ofC andS0, |j µ〉, such that

C|j µ〉 = j(j + 1)(2~ω0)2|j µ〉,
S0|j µ〉 = µ2~ω0|j µ〉, (36)

where the constant factors(2~ω0)2 and2~ω0 are introduced
for later convenience. Then,

S±|j µ〉 = c±(j, µ)|j, µ± 1〉, (37)

wherec±(j, µ) are some constants. Since

C = S2
0 + 2~ω0S0 − S−S+

= S2
0 − 2~ω0S0 − S+S−,

assuming that the vectors|j µ〉 are normalized and thatx, y,
px, py (and, hence,S0, S1, S2, S3) are Hermitian operators,
we have

|c+(j, µ)|2 = 〈j µ|S−S+|j µ〉
= 〈j µ|(S2

0 + 2~ω0S0 − C)|j µ〉
= (2~ω0)2[µ(µ + 1)− j(j + 1)]

and, similarly,

|c−(j, µ)|2 = (2~ω0)2[µ(µ− 1)− j(j + 1)].

Thus,
µ(µ± 1) ≥ j(j + 1) (38)

and we can choose the eigenvectors|j µ〉 in such a way that

S±|j µ〉 = 2~ω0

√
µ(µ± 1)− j(j + 1) |j, µ± 1〉. (39)

Furthermore, sinceS0 is the sum of squares of Hermitian op-
erators,

µ ≥ 0 (40)

[see Eqs. (36)]. Hence, for a fixed value ofj, there exists a
value ofµ, µmin, such thatµmin(µmin − 1) = j(j + 1), i.e.,

µmin = −j or j + 1. (41)

However, the foregoing relations do not fix the values ofµ
andj.

Owing to Eqs. (33), (34), and (36),|j µ〉 is also an eigen-
vector ofS2

1

S2
1 |j µ〉 = [(j + 1

2 )2~ω0]2|j µ〉. (42)

SinceS1 and S0 commute, there exists a basis formed by
common eigenvectors ofS1 andS0, which would also be au-
tomatically eigenvectors ofS2

1 ; hence, we can assume that
|j µ〉 is an eigenvector ofS1 with

S1|j µ〉 = (j + 1
2 )2~ω0|j µ〉. (43)

(This is related to the fact that the eigenvalue ofC is un-
changed if we replacej + 1/2 by−(j + 1/2), see Eq. (36).)

Introducing the operators

K+ ≡
p2

x − p2
y

2m
+

1
2
mω2

0(y2 − x2) + iω0(xpx − ypy) (44)

andK− ≡ K†
+, making use of Eqs. (30) one finds that

[S0, K±] = 0, [S1,K±] = ±2~ω0K±,

[K+,K−] = 4~ω0S1, (45)

which implies that K±|j µ〉 ∝ |j ± 1, µ〉 and that
{K1/2ω0,K2/2ω0, S1/2ω0}, with K± = K1 ± iK2, obey
the commutation relations of the standard basis of su(2) (i.e.,
[Ji, Jj ] = i~εijkJk). (The operatorK+ is essentially the
productψ1ψ2 of the components of the spinor defined in
Eq. (20).) Furthermore,

K2
1 + K2

2 + S2
1 = S2

0 − ~2ω2
0 (46)

hence [see Eqs. (36)]

(K2
1 + K2

2 + S2
1)|j µ〉 = (µ− 1

2 )(µ + 1
2 )(2~ω0)2|j µ〉.

Thus, applying the standard results about the representa-
tions of su(2), it follows that for a fixed value ofµ, j can
take2(µ− 1/2) + 1 = 2µ values, in integral steps, such that
−(µ− 1/2) ≤ j + 1

2 ≤ µ− 1/2 or, equivalently,

−µ ≤ j ≤ µ− 1, (47)

and thatµ − 1/2 can take the values0, 1/2, 1, 3/2, . . .. Tak-
ing into account the second equation in (36), these results
reproduce the spectrum of the total energy of the TIHO ob-
tained by means of the standard approach [5]. Note that,
according to Eqs. (36) and (37), the operatorsS± raise or
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lower the eigenvalue of the total energy operator by2~ω0

just as the operatorsT± defined in Sec. 34 of Ref. 10 for the
one-dimensional harmonic oscillator. In the terminology of
Ref. 10,S+, S−, together with their commutator generate a
symmetry group SU(1,1) for the TIHO with the commuta-
tion relations (30), while in the case of the one-dimensional
harmonic oscillator,T+, T−, and their commutator do not
generate a symmetry group but a dynamical group SU(1,1).
Similarly, {K1,K2, S1} generate a dynamical group SU(2)
for the TIHO when the commutation relations (30) are im-
posed.

5. Concluding remarks

In the context of classical mechanics,S1, S2, S3, or any other
nontrivial constant of the motion can be used as Hamilto-
nian, leading to a consistent formulation. However, in the
quantum-mechanical version, things are not so clear espe-
cially regarding the physical implications that commutation
relations like (30) can have in connection with the simultane-
ous measurability of the observables.

In the example considered here, we have shown that, by
suitably modifying the commutation relations, the compact
symmetry group SU(2) of the TIHO is substituted by the non-
compact symmetry group SU(1,1) when the usual commuta-
tion relations are replaced by (30). Nevertheless, the spec-

trum of the total energy operator is left unchanged by this
replacement.

In classical mechanics, the alternative symplectic struc-
tures lead, by construction, to equivalent formulations of the
equations of motion. However, a relevant fact is that, as in the
case considered in Sec. 3, rigid translations or rotations in
configuration space may not correspond to canonical trans-
formations with respect to the alternative structures, which
might be seen as a drawback or, at least, as a reason to prefer
the symplectic structure obtained in the usual way. Never-
theless, when the configuration space is curved and does not
possess symmetries, it might be more convenient to employ
one of the many alternative symplectic structures.

As pointed out above, in quantum mechanics, the mod-
ification of the commutation relations leads to deeper ques-
tions. It seems that, simultaneously with the modification of
the commutation relations, one would have to suitably mod-
ify the interpretation of the formalism since the predictions
of the theory should not depend on which constant of motion
we want to employ to express the evolution equations.
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