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We present and discuss some features of the anti-de Sitter spacetime, that is jointly with de Sitter and Minkowski is only, the unique maxi
isotropic manifold. Among all possible lorentzian manifolds, we restrict our attention to the anti-de Sitter (AdS) spacetime, with metr
diag(1-1, —1). We start by presenting the conformal time metric on AdS and we then show how we can obtain thdirgerformal-

ism [1]. The Lie algebrao(1,2) is introduced and used to construct spin and ladder operators. After presenting the unitary representatio
the AdS(1,2) spacetime is suitably parametrized and a representation of SO(1,2) is obtained, from whichoitiaggchequation with
Poschl-Teller potential is immediately deduced. Finally, we discuss some relations between the relativistic harmonic oscillator and
Klein-Gordon equation, using the AdS(1,2) static frame. Possible applications of the presented formalism are provided.

Keywords: Schibdinger equation; &schl-Teller potential; Casimir; spin and ladder operators; Cartan form; unitary representations; anti-d
Sitter spacetime; hyperbolical coordinates; quantum mechanics.

Presentamos el espacio-tiempo de anti-de Sitter, el cual junto con los espacio-tiempos de Minkowsky y de Sittericasvéaiedad
isotropica maximal. Dentro de todas las variedades lorentzianas, restringimos nuest@nadmspacio-tiempo AdS con unaétrica
diagonal(1, —1, —1). Desps de presentar lagtrica tiempo-conforme en AdS, usamos otro enfoque para mostrar como es posible obten:
el formalismo de Sclidinger. Introducimos tamén elalgebra de Ligo(1,2) y construimos los operadores siginy de escaleralgdder)

a partir de los generadores de esligebra. Despes de mostrar la represeni@tiunitaria, parametrizamos adecuadamente el espacio-tiempo
AdS(1,2) y deducimos la construoa de una representaci de SO(1,2), de la cual obtenemos la ecracle Schidinger associada al
potencial de Bschl-Teller. Finalmente discutimos algunas relaciones entre un osciladmmiaomelativista y la ecuagh de Klein-Gordon,
usando el referencial égico AdS(1,2). Son presentadas posibles aplicaciones de este formalismo.

Descriptores: Ecuacon de Schidinger; potencial dedchl-Teller; operadores de Casimir, déspde escalera; representaciones unitarias;
espacio-tiempo de anti-de Sitter; naméca céantica.

PACS: 02.20.-a; 03.65.Fd; 04.20.-q

1. Introduction geometric arenas to describe conformal field theories [11].
The AdS n-spacetime symmetry group is SQfL.and its
Extra dimensions were introduced in theoretical physics a8'etric is given byds® = —d&§ + d&d¢* (i = 1,...,n),

an attempt to unify the four fundamental forces. Kaluza [2]Where{éo, &} are coordinates in AdS spacetime. The metric
and Klein [3] tried to join electromagnetism and gravitation €0 Still be written as

in a theory formulated in a 5-dimensional space. It is well 9 9 9 9 9

known tha); 4-dimensional physics is retrieveF()j if the fifth di- ds” = —dt” + R cosh™(t/R) dT (1)
mension is compactifi_ed ona manifold of small size, muchneredr? is the metric on the hypersphe$é—". The topol-
smaller than the classical radius of an electron. ogy of AdS spacetime is given B x S~ [6].

AdS and de Sitter (dS) spacetimes are widely used in con- In order to link the theory of hyperbolical spacetimes with
formal field theories and applications in superstrings and suthe quantum-mechanical formalism, we consider the (1,2)
pergravity theories [4-6]. It is known that, out of the Fried- anti-de Sitter universe, AdS(1,2) viewed as (1+2)-lorentzian
mann models that describe our universe, the Minkowski, d$nanifold. The importance of (1+2)-spacetime theories has
and AdS spacetimes are the only maximal isotropic ones, sincreased since Witten [4] proved that (1+2)-dimensional
they allow a maximal number of conservation laws and als@ravity is shown to be exactly soluble at the classical and
a maximal number of Killing vectors. dS and AdS space-quantum levels and has a straightforward renormalized per-
times [7—10], are respectively solutions of Einstein equationsurbation expansion. We use AdS instead of dS spacetime,
with cosmological constant = 43/ R?, whereR is the ra-  since dS Chern-Simmons theory [12] does not have a super-
dius of the AdS universef{ > 0), and curvature given by the symmetric extension [13]. We also intend to introduce and
Ricci tensorRk,,, = Ag,.. These manifolds are suitable as discuss some important results concerning the group SO(1,2),
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which has infinite-dimensional representations, and to link isincesin 7 = cos~*(¢/R). We can prove that in the AdS(1),
to quantum mechanics. If we assume that the Casimir opspacetime, Eq. (8) can be generalized as
erator has eigenvectors in ti¥"™ representation space, we ,
can'deduce the Sdabdinger equation with &chl-Teller po- ds? — .R (dr? — dr?), ©)
tential [14]. sin? 7

This paper is organized as follows: in Sec. 2 we present
and discuss the AdS conformal time metric; and in Sec. 3, thwheredI'? is the metric on the hypersphesg—!.
Schibdinger description of AdS(1,2) using the static frame
is presented. In Sec.4 three the Lie algetwél,2) is de-
fined and we introduce unitary representations with suitabl@. The reduced anti-de Sitter spacetime
guantum numbers as eigenvalues of the Casimir and spin
operators. In Sec. 5 the spin and ladder operators are oln this section we sketch an alternative approach through
tained in hyperbolical coordinates, which best fits the gewhich Schbdinger has described [1] AdS(1,2) spacetime.
ometry and the topology of AdS(1,2) spacetime, and theAgain the AdS manifold is provided with lorentzian metric
Schidinger equation is derived from the eigenvalue equaimplicitly given by ds?> = d¢? + d¢2 — d¢2, and it can be
tion of the Casimir operator. It is shown that the eigenen-described by Eq. (2). Using pseudospherical coordinates, the
ergies associated with this equation are all positive, andoordinateg,, &1, £, are parameterized as follows:
the Schédinger equation with &chl-Teller potential is ob-
tained. And finally we comment possible extensions of the ¢, = Rcos x cosh(t/R)
theory presented.

&> = Rsiny cosh(t/R)

2. The conformal time metric in AdS(1, 2) o = Rsinh(t/R), —oco<t<oo, 0<yx<2m (10)
AdS(1, 2) spacetime is formally defined by the equation  The above map is nowhere singular. The line element is given
GGG =R @
where&, &1, &, are arbitrary coordinates in AdBR). We ds* = —R? cosh? dx? + R%dt>. (11)
can parametrize these coordinates as trigonometric and hy-
perbolic functions of space:{ and time () as follows: We observe that the new tintevaries less rapidly thagy.
) In addition, instead of choosing as above, if the relation
§o = Rsinh(t/R) ©) siny = & /R is introduced, another map can be defined as
& = Rcosh(t/R)sinx 4 follows:
& = Rcosh(t/R) cosx (5) ¢ = Rsin
where R is the radius of the AdS(1,2) universe. It follows & = Rcos x cosh(t/R)

that the squared line elemef¥? can be written as
& = Rcos xsinh(t/R).
ds® = R? cosh?®(t/R) da® — dt*, (6)
Another set of pseudopolar angleg §) is defined on the 2-

Wh'ﬁhislsv\?eﬂa;:gwﬁrtﬁizgfoe&'élﬂ)/'er in AdS spacetime Canhyperboloid. The line element relative to this parameteriza-
P tion isds? = —R?dx? + R? cos? xdt?. This is the so-called

only realize a portion of space. This is because of the €Xtatic frameof the de Sitter metric [1]. In a more famil-

ponential inflation that occurs in the future. Therefore spac ar way, we introduce the coordinates ) parameterizing
expands so fast that light rays do not propagate all the way ds(1 é) as

around it. To make the causal structure of AdS spacetime
clear, one can introduce a new time coordinate, the so-called

conformal time ¢), as follows: p=Rsinx, n = ht, (12)
7 = 2arctan(€) (7)  which gives
where—oo < t < oo and0 < 7 < 7. As conformal time has 2 2/ p2y—1 7,2 2 /D2y 7.2
i ! ds*=—(1-p°/R dp® + (1 — p°/R*)dn*. 13
been introduced, Eg. (6) can be written as (L= p?/R) " dp™ + (1= p7/ B (13)
ds? = R? cosh®(t/R) (dz* — dr?) It is easily seen that whenR goes to infinity,
) ds?> — —dp® + dn?. The metric implicitly given by this re-
_ R (dx2 _ de> 8) lation is lorentzian, which shows the well-known result that
sin’ 7 AdS spacetime goes to Minkowski one in the limit— oo.
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4. The Lie group SO(1,2) We first find that
In this section we reproduce a construction [14] of the Lie JyJ_|ab) = [J.(J: + 1) — C]|ab)
group SO(1,2). This group is generated by three (angular mo-
mentum) operatorg+», Los, Ls; and their respective com- = [~a+b(b—1)][ab) (21)
mutation relations: and it follows that
[Ls1, Los] = iLaa, [—a+b(b—1)] > 0. (22)
Lz, L) = —iL
L1z Lng] s Analogously, using the operatdr J, , we obtain the relation
[L12, Laz] = iL13. (14)
[—a+b(b+1)] <0. (23)
If the coordinate representation is used, definlpg= — Lo,
Jy = L1z andJ, = —Li,, we have For all real values for we have no upper bound fi. When
a < —1/4, consideringa = j(j + 1), this clearly forces
Jr = —i(yd, + 20y) (j +1/2)? < 0. We choosg = —1/2 + ik, where, as shall

) be proved in the next sectioh,is the positive square root of
Jy = i(20: + 20;) the energy associated with a Satiinger equation.
J, = —i(x0y + y0y). (15)
5. Representation of SO(1,2) in AdS(1,2)
spacetime and the Schiddinger equation

with Pdschl-Teller potential

It follows immediately from the commutation rules, Eq. (14),
that

Jo Iy = —id,, T, =iy, |J.,J.| =1J,. (16 . . . .
RER ‘ [y Jo] = [ I=idy. (1) In this section, a representation of SO(1,2) in AdS(1,2) space-

Itis recalling that SO(1,2) is a non-compact Lie group. time is obtained. We can use the parametrization given by
Eq. (10) (definingx = t/R, wheret is the time coordinate

4.1. The Casimir operator associated to SO(1,2) andR is the radius of AdS(1,2))

The Casimir operator is given b = 6% .J;.J;, wheref' is z = Rcoshacos ¢,

the inverse of the Cartan form [15] and by implicitly defining

. y = Rcosh asin ¢,
the structure constantg, by [J,, J,] = ¢;,J-, we obtain

Gij = Ci’kcé?l' We find0123 = —1, 0132 = —1 and0231 =1, z = fisjnho[7 (24)
where all the otherg’;;;, are null. Using these results, we
have 0<¢ <210 < a<ocoandR > 0. By the above pa-

rameterization, Eqg. (15) and Eq. (18) are used to prove the
C=-J - +J2=J.(J.+1)—J_Jy (17)  following expressions:
where the ladder operators [14] Jy = (—itanha Oy F 0,) exp(+i¢)

Ji = Jp +idy, (18) Sz = —i0y. (25)

Under similarity maps, the coordinate representation of the
eigenvalue equation

4.2. Unitary representations Cljm) = j(j 4+ 1)|jm). (26)

were introduced.

As in [14], we choose the states associated to the unitary rep- . L B 12
resentations fo€’ and.J, as their eigenstates: can be found. A particular similarity mdp = cosh™/~ « is

chosen [14]. Under this map we obtain
Clab) = alab), J.|ab) = blab), a,beR. (19 1
|ab) = alab) |ab) = blab) (19) 00 -~ tautia + 0, 27

It is clear from Eq. (18) thaff_ = J! (here the operator
denotes hermitian conjugation) and it implies that/_ is a
positive definite operator. Considering real eigenstaiesf

Ji — exp(ig)[F0q + tanh o(£1/2 —i0,)].  (28)

Then
the operatot/ J_, (J4+J_)|c) = c|c), we have correspond-
ing positive eigenvalues, since C=—JyJ_+J.(J.—1)
(e| Ty TL]e) = ele|e) = ¢ > 0. (20) =92 —cosh & (07 + 1/4) — 1/4. (29)
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If the suppositior{ag|jm) = Aj;m(a)exp(ime) is made,
from Eq. (26) the Sclidinger equation with the @chl-
Teller potential (SEPTP) is written [16]:

gauge theory of gravity in (1+2) dimensions to higher ones.
The first attempt was to enlarge the Poiricgroup of sym-
metries, supposing an AdS group symmetry [19], which con-
tains the Poinc@&rgroup. Also, the AdS/CFT correspondence
asserts that a maximal supersymmetric Yang-Mills theory in
4-dimensional Minkowski-spacetime is equivalent to a type
11B closed superstring theory [20]. The 10-dimensional arena
gpr type 1IB superstring theory is described by the product
E; = —(j +1/2)? = k? > 0 (This potential is generally mar.ufoIdS.5 x_AdSl, an impressive consequence that justifies
given byV (a) = —Vy(cosh a)~2). the investigations into AdS spacetime.

The solutions of SEPTP are closely related to the Ads e have interpreted the SO(1,2) group in the light of
static frame. The static frame, described in section two, i¢*dS(1,2), obtaining the spin/() and ladder {..) operators

fundamental in order to establish a connection between thgS'"9 the AdS(1,2) sPa_cetlme pargmetnz_atpn. It induces a
classical equations of motion of the harmonic oscillator and'"k be_tween the Sgkmdlnger equation (with @s_chI-TeIIer

the Eq. (30), since the solution of the Klein-Gordon equatiorPCtential) and the Dirac theory of spin-1/2 fermions. An ana-

of harmonic oscillator coincides with the solution of Eq. (30) Ytical expression for the Dirac spinor in AdS(1,2) spacetime

(with potential multiplied by2m) [17]. This equivalence is 1S obtained in [21]. Some recent applications relating AdS

stated in Ref. 17 where it can be shown that there always exigPacetimes anddschl-Teller relativistic systems are formu-

an AdS static frame which reproduces the classical equatior@tecj using an anz_ilogous for_mallsn_w [17], a”?' possible super-
of the non-relativistic harmonic oscillator. symmetric extensions [17] will be discussed in a forthcoming

paper.

—[02 + cosh™? a(m? — 1/4)]Ajm(a)

=—(j +1/2)*4Ajm(e) (30)

The right side term of the above equation is the eigenenerg
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