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We present and discuss some features of the anti-de Sitter spacetime, that is jointly with de Sitter and Minkowski is only, the unique maximal
isotropic manifold. Among all possible lorentzian manifolds, we restrict our attention to the anti-de Sitter (AdS) spacetime, with metric
diag(1,−1,−1). We start by presenting the conformal time metric on AdS and we then show how we can obtain the Schrödinger formal-
ism [1]. The Lie algebraso(1,2) is introduced and used to construct spin and ladder operators. After presenting the unitary representations,
the AdS(1,2) spacetime is suitably parametrized and a representation of SO(1,2) is obtained, from which the Schrödinger equation with
Pöschl-Teller potential is immediately deduced. Finally, we discuss some relations between the relativistic harmonic oscillator and the
Klein-Gordon equation, using the AdS(1,2) static frame. Possible applications of the presented formalism are provided.
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Sitter spacetime; hyperbolical coordinates; quantum mechanics.

Presentamos el espacio-tiempo de anti-de Sitter, el cual junto con los espacio-tiempos de Minkowsky y de Sitter, es laúnica variedad
isotrópica maximal. Dentro de todas las variedades lorentzianas, restringimos nuestra atención al espacio-tiempo AdS con una métrica
diagonal(1,−1,−1). Despúes de presentar la ḿetrica tiempo-conforme en AdS, usamos otro enfoque para mostrar como es posible obtener
el formalismo de Schrödinger. Introducimos también elálgebra de Lieso(1, 2) y construimos los operadores despiny de escalera (ladder)
a partir de los generadores de estaálgebra. Despúes de mostrar la representación unitaria, parametrizamos adecuadamente el espacio-tiempo
AdS(1,2) y deducimos la construcción de una representación de SO(1,2), de la cual obtenemos la ecuación de Schr̈odinger associada al
potencial de P̈oschl-Teller. Finalmente discutimos algunas relaciones entre un oscilador armónico relativista y la ecuación de Klein-Gordon,
usando el referencial estático AdS(1,2). Son presentadas posibles aplicaciones de este formalismo.

Descriptores: Ecuacíon de Schr̈odinger; potencial de P̈oschl-Teller; operadores de Casimir, de spı́n y de escalera; representaciones unitarias;
espacio-tiempo de anti-de Sitter; mecánica cúantica.
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1. Introduction

Extra dimensions were introduced in theoretical physics as
an attempt to unify the four fundamental forces. Kaluza [2]
and Klein [3] tried to join electromagnetism and gravitation
in a theory formulated in a 5-dimensional space. It is well
known that 4-dimensional physics is retrieved if the fifth di-
mension is compactified on a manifold of small size, much
smaller than the classical radius of an electron.

AdS and de Sitter (dS) spacetimes are widely used in con-
formal field theories and applications in superstrings and su-
pergravity theories [4–6]. It is known that, out of the Fried-
mann models that describe our universe, the Minkowski, dS
and AdS spacetimes are the only maximal isotropic ones, so
they allow a maximal number of conservation laws and also
a maximal number of Killing vectors. dS and AdS space-
times [7–10], are respectively solutions of Einstein equations
with cosmological constantΛ = ±3/R2, whereR is the ra-
dius of the AdS universe (R > 0), and curvature given by the
Ricci tensorRµν = Λgµν . These manifolds are suitable as

geometric arenas to describe conformal field theories [11].
The AdSn-spacetime symmetry group is SO(1,n) and its
metric is given byds2 = −dξ2

0 + dξidξi (i = 1, . . . , n),
where{ξ0, ξi} are coordinates in AdS spacetime. The metric
can still be written as

ds2 = −dt2 + R2 cosh2(t/R) dΓ2 (1)

wheredΓ2 is the metric on the hypersphereSn−1. The topol-
ogy of AdS spacetime is given byR× Sn−1 [6].

In order to link the theory of hyperbolical spacetimes with
the quantum-mechanical formalism, we consider the (1,2)
anti-de Sitter universe, AdS(1,2) viewed as (1+2)-lorentzian
manifold. The importance of (1+2)-spacetime theories has
increased since Witten [4] proved that (1+2)-dimensional
gravity is shown to be exactly soluble at the classical and
quantum levels and has a straightforward renormalized per-
turbation expansion. We use AdS instead of dS spacetime,
since dS Chern-Simmons theory [12] does not have a super-
symmetric extension [13]. We also intend to introduce and
discuss some important results concerning the group SO(1,2),
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which has infinite-dimensional representations, and to link it
to quantum mechanics. If we assume that the Casimir op-
erator has eigenvectors in theDj,m representation space, we
can deduce the Schrödinger equation with P̈oschl-Teller po-
tential [14].

This paper is organized as follows: in Sec. 2 we present
and discuss the AdS conformal time metric; and in Sec. 3, the
Schr̈odinger description of AdS(1,2) using the static frame
is presented. In Sec.4 three the Lie algebraso(1,2) is de-
fined and we introduce unitary representations with suitable
quantum numbers as eigenvalues of the Casimir and spin
operators. In Sec. 5 the spin and ladder operators are ob-
tained in hyperbolical coordinates, which best fits the ge-
ometry and the topology of AdS(1,2) spacetime, and the
Schr̈odinger equation is derived from the eigenvalue equa-
tion of the Casimir operator. It is shown that the eigenen-
ergies associated with this equation are all positive, and
the Schr̈odinger equation with P̈oschl-Teller potential is ob-
tained. And finally we comment possible extensions of the
theory presented.

2. The conformal time metric in AdS(1, 2)

AdS(1, 2) spacetime is formally defined by the equation

−ξ2
0 + ξ2

1 + ξ2
2 = R2 (2)

whereξ0, ξ1, ξ2 are arbitrary coordinates in AdS(1, 2). We
can parametrize these coordinates as trigonometric and hy-
perbolic functions of space (x) and time (t) as follows:

ξ0 = R sinh(t/R) (3)

ξ1 = R cosh(t/R) sin x (4)

ξ2 = R cosh(t/R) cos x (5)

whereR is the radius of the AdS(1,2) universe. It follows
that the squared line elementds2 can be written as

ds2 = R2 cosh2(t/R) dx2 − dt2, (6)

which is a particular case of eq.(1).
It is well known that an observer in AdS spacetime can

only realize a portion of space. This is because of the ex-
ponential inflation that occurs in the future. Therefore space
expands so fast that light rays do not propagate all the way
around it. To make the causal structure of AdS spacetime
clear, one can introduce a new time coordinate, the so-called
conformal time (τ ), as follows:

τ = 2arctan(et) (7)

where−∞ < t < ∞ and0 < τ < π. As conformal time has
been introduced, Eq. (6) can be written as

ds2 = R2 cosh2(t/R) (dx2 − dτ2)

=
R2

sin2 τ
(dx2 − dτ2) (8)

sincesin τ = cos−1(t/R). We can prove that in the AdS(1,n)
spacetime, Eq. (8) can be generalized as

ds2 =
R2

sin2 τ
(dΓ2 − dτ2), (9)

wheredΓ2 is the metric on the hypersphereSn−1.

3. The reduced anti-de Sitter spacetime

In this section we sketch an alternative approach through
which Schr̈odinger has described [1] AdS(1,2) spacetime.
Again the AdS manifold is provided with lorentzian metric
implicitly given by ds2 = dξ2

1 + dξ2
2 − dξ2

0 , and it can be
described by Eq. (2). Using pseudospherical coordinates, the
coordinatesξ0, ξ1, ξ2 are parameterized as follows:

ξ1 = R cos χ cosh(t/R)

ξ2 = R sin χ cosh(t/R)

ξ0 = R sinh(t/R), −∞ < t < ∞, 0 ≤ χ < 2π. (10)

The above map is nowhere singular. The line element is given
by

ds2 = −R2 cosh2 dχ2 + R2dt2. (11)

We observe that the new timet varies less rapidly thanξ0.
In addition, instead of choosingχ as above, if the relation
sin χ = ξ1/R is introduced, another map can be defined as
follows:

ξ1 = R sin χ

ξ2 = R cosχ cosh(t/R)

ξ0 = R cosχ sinh(t/R).

Another set of pseudopolar angles (χ, t) is defined on the 2-
hyperboloid. The line element relative to this parameteriza-
tion isds2 = −R2dχ2 + R2 cos2 χdt2. This is the so-called
static frameof the de Sitter metric [1]. In a more famil-
iar way, we introduce the coordinates (ρ, η) parameterizing
AdS(1,2) as

ρ = R sin χ, η = Rt, (12)

which gives

ds2 = −(1− ρ2/R2)−1dρ2 + (1− ρ2/R2)dη2. (13)

It is easily seen that whenR goes to infinity,
ds2 → −dρ2 + dη2. The metric implicitly given by this re-
lation is lorentzian, which shows the well-known result that
AdS spacetime goes to Minkowski one in the limitR →∞.
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4. The Lie group SO(1,2)

In this section we reproduce a construction [14] of the Lie
group SO(1,2). This group is generated by three (angular mo-
mentum) operatorsL12, L23, L31 and their respective com-
mutation relations:

[L31, L23] = iL12,

[L12, L13] = −iL23,

[L12, L23] = iL13. (14)

If the coordinate representation is used, definingJx = −L23,
Jy = L13 andJz = −L12, we have

Jx = −i(y∂z + z∂y)

Jy = i(x∂z + z∂x)

Jz = −i(x∂y + y∂x). (15)

It follows immediately from the commutation rules, Eq. (14),
that

[Jx, Jy] = −iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy. (16)

It is recalling that SO(1,2) is a non-compact Lie group.

4.1. The Casimir operator associated to SO(1,2)

The Casimir operator is given byC = θijJiJj , whereθij is
the inverse of the Cartan form [15] and by implicitly defining
the structure constantscr

pq by [Jp, Jq] = cr
pqJr, we obtain

θij = cl
ikck

jl. We findC123 = −i, C132 = −i andC231 = i,
where all the othersCijk are null. Using these results, we
have

C = −J2
x − J2

y + J2
z = Jz(Jz + 1)− J−J+ (17)

where the ladder operators [14]

J± = Jx ± iJy, (18)

were introduced.

4.2. Unitary representations

As in [14], we choose the states associated to the unitary rep-
resentations forC andJz as their eigenstates:

C|ab〉 = a|ab〉, Jz|ab〉 = b|ab〉, a, b ∈ R. (19)

It is clear from Eq. (18) thatJ− = J†+ (here the operator†

denotes hermitian conjugation) and it implies thatJ+J− is a
positive definite operator. Considering real eigenstates|c〉 of
the operatorJ+J−, (J+J−)|c〉 = c|c〉, we have correspond-
ing positive eigenvalues, since

〈c|J+J†+|c〉 = c〈c|c〉 ⇒ c > 0. (20)

We first find that

J+J−|ab〉 = [Jz(Jz + 1)− C]|ab〉
= [−a + b(b− 1)]|ab〉 (21)

and it follows that

[−a + b(b− 1)] ≥ 0. (22)

Analogously, using the operatorJ−J+, we obtain the relation

[−a + b(b + 1)] ≤ 0. (23)

For all real values fora we have no upper bound for|b|. When
a < −1/4, consideringa = j(j + 1), this clearly forces
(j + 1/2)2 < 0. We choosej = −1/2 + ik, where, as shall
be proved in the next section,k is the positive square root of
the energy associated with a Schrödinger equation.

5. Representation of SO(1,2) in AdS(1,2)
spacetime and the Schr̈odinger equation
with Pöschl-Teller potential

In this section, a representation of SO(1,2) in AdS(1,2) space-
time is obtained. We can use the parametrization given by
Eq. (10) (definingα = t/R, wheret is the time coordinate
andR is the radius of AdS(1,2))

x = R coshα cos φ,

y = R coshα sin φ,

z = R sinhα, (24)

0 < φ ≤ 2π, 0 ≤ α < ∞ andR ≥ 0. By the above pa-
rameterization, Eq. (15) and Eq. (18) are used to prove the
following expressions:

J± = (−i tanh α ∂φ ∓ ∂α) exp(±iφ)

Jz = −i∂φ. (25)

Under similarity maps, the coordinate representation of the
eigenvalue equation

C|jm〉 = j(j + 1)|jm〉. (26)

can be found. A particular similarity mapU = cosh1/2 α is
chosen [14]. Under this map we obtain

∂α 7→ −1
2

tanh α + ∂α, (27)

J± 7→ exp(±iφ)[∓∂α + tanh α(±1/2− i∂φ)]. (28)

Then

C = −J+J− + Jz(Jz − 1)

= ∂2
α − cosh−2 α (∂2

φ + 1/4)− 1/4. (29)
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If the supposition〈αφ|jm〉 = Ajm(α) exp(imφ) is made,
from Eq. (26) the Schr̈odinger equation with the P̈oschl-
Teller potential (SEPTP) is written [16]:

−[∂2
α + cosh−2 α(m2 − 1/4)]Ajm(α)

= −(j + 1/2)2Ajm(α) (30)

The right side term of the above equation is the eigenenergy
Ej = −(j + 1/2)2 = k2 > 0 (This potential is generally
given byV (α) = −V0(coshα)−2).

The solutions of SEPTP are closely related to the AdS
static frame. The static frame, described in section two, is
fundamental in order to establish a connection between the
classical equations of motion of the harmonic oscillator and
the Eq. (30), since the solution of the Klein-Gordon equation
of harmonic oscillator coincides with the solution of Eq. (30)
(with potential multiplied by2m) [17]. This equivalence is
stated in Ref. 17 where it can be shown that there always exist
an AdS static frame which reproduces the classical equations
of the non-relativistic harmonic oscillator.

6. Concluding Remarks

After Witten proved [4] that general relativity is a renormal-
izable quantum system in (1+2) dimensions, it is possible to
point out a few interesting motivations to investigate the AdS
spacetime. Many attempts have been made to generalize the

gauge theory of gravity in (1+2) dimensions to higher ones.
The first attempt was to enlarge the Poincaré group of sym-
metries, supposing an AdS group symmetry [19], which con-
tains the Poincaré group. Also, the AdS/CFT correspondence
asserts that a maximal supersymmetric Yang-Mills theory in
4-dimensional Minkowski-spacetime is equivalent to a type
IIB closed superstring theory [20]. The 10-dimensional arena
for type IIB superstring theory is described by the product
manifoldS5×AdS, an impressive consequence that justifies
the investigations into AdS spacetime.

We have interpreted the SO(1,2) group in the light of
AdS(1,2), obtaining the spin (Jz) and ladder (J±) operators
using the AdS(1,2) spacetime parametrization. It induces a
link between the Schrödinger equation (with P̈oschl-Teller
potential) and the Dirac theory of spin-1/2 fermions. An ana-
lytical expression for the Dirac spinor in AdS(1,2) spacetime
is obtained in [21]. Some recent applications relating AdS
spacetimes and Pöschl-Teller relativistic systems are formu-
lated using an analogous formalism [17], and possible super-
symmetric extensions [17] will be discussed in a forthcoming
paper.
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