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We study a cosmological model with very simple solutions characterized by string clouds. Assuming self-similar symmetry for a Kantowski-
Sachs spacetime we study the gravitational effects of the cosmic strings. It is also assumed that the primitive universe enters in a false
vacuum-dominated era, accelerating the expansion in a time period of the order of10−35 sec (a phase transition), satisfying all the energy
conditions. Finally, we examine the possibility that in the last stages of this evolution, the geometry of the universe could be flat.
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Estudiamos un modelo cosmológico con soluciones muy simples caracterizadas por nubes de cuerdas. Exigiendo simetrı́a auto-similar para
el espacio-tiempo de Kantowski-Sachs estudiamos los efectos gravitacionales de las cuerdas cósmicas. Se supone además que el universo
primitivo entra en una era dominada por el vacı́o, acelerando la expansión en un periodo de tiempo del orden de10−35 sec (transicíon de
fase), y satisfaciendo todas las condiciones de energı́a. Finalmente, estudiamos la posibilidad que en losúltimos estadios de su evolución el
universo puede ser plano.

Descriptores: Autosimilar; cuerdas; inflación; universo.
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1. Introduction

The cosmological theory has studied cosmic strings as the
source of the inhomogeneities in the plasma, which then
gave rise to the formation of large-scale structures in the uni-
verse [1]. In the primitive universe (string-dominated era),
the strings could have produced fluctuations in the particle
density and one may speculate that since strings were formed
before the inflationary era, they were dispersed by the en-
largement of the radius of the universe to a such small density
that they would be virtually undetectable. When the strings
disappeared and particles became important, the fluctuations
grew in such a way that galaxies were finally formed and the
anisotropy of spacetime introduced by them also disappeared.

The evolution of the universe is usually studied assuming
that the only forces present are string tension and gravity [2].
Cosmic strings could have been produced during a10−35 sec
period (GUTs’s time [3]) after the Big-Bang, but some mech-
anism should have prevented their existence during the sub-
sequent evolution. The disappearanceof strings may be ex-
plained at an earlier time in the universe when a critical tem-

peratureTc was reached and a phase transition made the
vacuum energy density (ρV ) the dominant form of energy
density of the universe. A phase transition could have oc-
curred these circumstances, as the universe cooled belowTc,
in which a multiplet of scalar fields (Higgs fields) developed
a vacuum expectation value,〈φ〉 = η. This type of phase
transition can result in the development of different kinds
of vacuum structures, depending on the structure and topol-
ogy of the gauge group. One possibility is that these vaccum
structures gave origin to strings in spacetime. The possibil-
ity could also be considered that the early universe, by means
of a phase transition, changed over from a state with a finite
cosmological constantΛ to a state with zeroΛ, that is, from
similarity solutions of the second type to similarity solutions
of the first type [4]. According to this, one could justify the
inflationary scenario of the cosmic strings universe in a self-
similar spacetime. The appearence of strings in the primitive
universe has been a crucial topic in cosmological and rela-
tivistic models. They have been characterized in magnetic
fields [5], equations of state [6] and in diffusive transport flu-
ids [7]. Recently, curvature inheritance symmetry in a Rie-
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mannian space with applications to string cloud and string
fluids has been considered by some authors [8,9].

The purpose of this paper is to extend the work of Ponce
de Léon (J. Math. Phys.31(1990) 371) to the cosmic strings
fluid case. We study a model of cosmic strings character-
ized by a Kantowski-Sachs (K-S) self-similar spacetime cou-
pled with a cosmic strings energy-momentum tensor which is
equivalent to the one used by Letelier [10]. We study the self-
similar solutions, the kinematic and dynamical variables, and
the evolution of the self-similar universe with cosmic strings
to a inflationary scenario. The kinematic and dynamical con-
ditions of the large-scale universe are also considered.

2. Einstein’s field equations

It is assumed that the spacetime metric is described by a K-S
type line element

ds2 = dt2 − eΩdr2 −R2(dθ2 + sen2θdφ2) (1)

whereΩ andR are the metric functions which depend on the
temporal coordinatet.

We study the gravitational effects of a cosmic strings
cloud. The energy-momentum tensor is taken as [2,10]

Tµν = ρuµuν − λXµXν , (2)

whereρ is the rest energy density for a string cloud with par-
ticles attached to it andλ is the string cloud tension density.
If the particle density of the configuration is given byρp, then
we have

ρ = ρp + λ. (3)

In a comobile frameuµ = δµ
0 andXµ = eΩ/2δ1

µ. uµ is the
four-velocity of particles andXµ is a spacelike unit vector (in
the radial direction to the strings) orthogonal touµ. TheXµ

four-vector satisfies the following identities

uµuµ = 1 = −XµXµ, uµXµ = 0. (4)

The Einstein’s field equations corresponding to (1)
and (2) are as follows (G = c = 1):

8πρ = (Ω,tR,t + R2
,t + 1)R−2, (5)

8πλ = (2R,ttR + R2
,t + 1)R−2 (6)

and

2Ω,tR,t + 2Ω,ttR + Ω2
,tR + 4R,tt = 0. (7)

The commas denote partial derivatives with respect to the co-
ordinate indicated. There are four unknowns (R, Ω, ρ, λ)
and only three equations. Therefore, in order to obtain ana-
lytic solutions, we impose an additional geometric condition
to the spacetime.

3. Self-similar solutions
We shall assume that the spherical distribution admits a one-
parametric group of homothetic motions. A homothetic vec-
tor field on the manifold is one that satisfies£ξgµν = 2ngµν

on a local chart, wheren is a constant on the manifold and
£ denotes the Lie derivative operator. Ifn 6= 0, we have
a proper homothetic vector field and it can always be scaled
so as to haven = 1; if n = 0 ξ, is a Killing vector on the
manifold [11–13]. Then, after a constant rescaling,ξ satisfies
£ξgµν = 2gµν and has the formξ = Υ(r, t)∂t + Γ(r, t)∂r.
It is easy to check that the homothetic equations reduce to
ξ(X) = 0, ξ(Y ) = 0, Υ = t andΓ(r), whereX = R/t
and Y = Γ exp (Ω/2)/t. Therefore,X = X(ζ) and
Y = Y (ζ) are solutions if the self-similar variable is defined
asζ ≡ texp(− ∫

dr/Γ). Here we assumeX = C1ζ
k and

Y = C2ζ
l, whereC1, C2, k and l are real constants. This

kind of solution has been previously applied to different rel-
ativistic scenarios [14, 15]. Substituting the equations of the
symmetry in Eq. (7), we obtain the relationk2+k+l+1 = 0,
where the only possible solution isk = 0 y l = −1. There-
fore

Γ(r) = r, (8)

eΩ = const≡ β, (9)

R = t/α (10)

and

ds2 = dt2 − βdr2 − t/α(dθ2 + sen2 θdφ2) (11)

whereβ and α are integration constants. In a model with
such simple solutions, the homothetic parametersΥ y Γ are
completely determined.

4. Kinematic variables
The kinematic variables (shear, expansion and deceleration)
we wish to study in this model are

σ = ± 1√
3t

, (12)

Θ =
2
t

(13)

and

q =
1
2
. (14)

Our primitive solutions provide a simple cosmological model
for a primitive self-similar universe which expands in
Θ=2

√
3σ. Some other authors have reported similar solu-

tions in this context [10, 16]. These solutions also give an-
other important result: an expanding universe accelerating
quickly to an inflationary era (Θ> 0, q=1/2, t>0). The value
of q=1/2 was reported by Arbab through of the study a vis-
cous model with variable gravitational and cosmological con-
stant [17].
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5. Dynamical variables
From the field Eqs. (5-6), we obtain the physical variables
(energy and tension density)

ρ =
(1 + α2)

8πt2
(15)

and

λ =
(1 + α2)

8πt2
. (16)

Theα parameter represents a physically meaningful quantity:
it measures the energy and tensional density of the universe
at a given timet.

The model begins with an initial singularityt = 0 and
subsequently undergoes an expansion with a relation between
ρ andλ which satisfies the equation of state of the cosmic
strings, sinceλ = ρ (ρp = 0).

6. Energy conditions

The standard energy conditions, corresponding to a K-S
spacetime with cosmic strings [2], can be stated as

• Weak and strong energy conditions.

ρ ≥ λ with λ ≥ 0, ρ ≥ 0 with λ < 0. (17)

• Dominant energy conditions, which implies

ρ ≥ 0 andρ2 ≥ λ2. (18)

These conditions do not restrict the sign ofλ and do not im-
pose any restriction uponα. They are satisfied for all phys-
ical variables of the energy-momentum tensor. This solu-
tion is physically reasonable because it satisfies the weak,
strong and dominant energy conditions. It represents a uni-
verse which emerges att = 0 from a singularity with infi-
nite energy density and tension satisfying the cosmic strings
equation of state.

7. Equations in the false vacuum phase

The inflationary theory of the universe states that, a few in-
stants after the Big-Bang, the cosmos would have been in a
vacuum excited state or false vacuum, during which the uni-
verse would have expanded extremely fast. This theory of the
universe also defines a very short phase with ultra-fast expan-
sion only10−35 sec after the Big-Bang which expanded the
universe size in a huge proportion, becoming geometrically
flat [18]. This led the universe to its current, more stable, real
vacuum condition.

We shall focus our attention on a cosmic strings uni-
verse which can enter an inflationary era, supported by the
conditions mentioned above and fulfilling to the conditions
R > 0, α > 0 andt > 0. We shall assume a scenario in
which the universe enters a false vacuum phase with constant

positive energy and negative tensional density (λV = −ρV ,
ρV = Λ/8π, whereλV is the tension density andρV the en-
ergy density of the false vacuum). Whent → tp, (tp is the
transition phase time) the strings phase of the universe disap-
pears becauseλ becomes negative,i.e., a universe dominated
by the cosmological constant. This false vacuum with energy
densityρV will have an associated strings energy-momentum
tensor like

Tµν = ρV (UµUν + XµXν). (19)

This can be interpreted as the energy-momentum tensor of
a string fluid in the false vacuum. The solutions of the
field equations (with the cosmological constantΛ [19]) cor-
responding to Eqs.(1) and (19) are given by

eΩ = A2R2
,t (20)

and
R2

,t =
1
3
ΛR2 +

F

R
− 1, (21)

whereA andF are arbitrary integration constants.
We can define a finite timetp in which the energy of the

universe is given byρV = Λ/8π. We assume that this tran-
sition occurs everywhere at the same time. That is, with the
field equations one must match the geometry of the spacetime
beforetp with the geometry of spacetime aftertp.

8. Matching equations

Following Ponce de Léon [20] we couple the geometry of
space time before and after the timetp (defined in the previ-
ous section) by considering a matching hypersurface(t− tp).
We shall study the matching equations (using the Darmois-
Lichnerowicz junction conditions) corresponding to Eqs. (9),
(10), (20), and (21).

The continuity ofR,t in tp leads to

Λt3p − 3(α2 + 1)tp + 3Fα3 = 0. (22)

and the continuity ofΩ,t in tp to

2Λt3p − 3α3F = 0. (23)

Combining (22) and (23), we obtain

tp =
1√
Λ

(α2 + 1)1/2. (24)

We see that the parameterα determines the time of the phase
transitiontp. From the continuity of the metric functions at
tp, we obtain

F =
2

3
√

Λα3
(α2 + 1)3/2. (25)

and
A/β = α. (26)

The above equations show the assumed phase transitions.
Thus the only condition required for the correct matching of
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FIGURE 1. Behaviour of tp (multiplied by 10−35 sec) andσ

(multiplied by 1034 sec−1) as functions of parameterα with
Λ = 1070 sec−2.

both solutions is thatF > 0 (this condition provides the oc-
currence of inflation). The behaviour of the shearσ and the
expansionΘ at the timetp of the phase transition depends on
the choice ofα. Using Eq. (24), we developedtp in power
series (forα ¿ 1) and we found the values forα that made
the inflation possible

tp =
1√
Λ

(α2+1)1/2 =
1√
Λ

(1+
α2

2
−α4

8
+

α6

48
+. . .). (27)

However, forα À 1, we have

tp =
1√
Λ

(α2 + 1)1/2 =
1√
Λ

α. (28)

Equations (27) and (28) show that asα increasesσ, de-
creases and the transition timetp increases. There is a better
chance for a phase transition associated with loss of shear.
Therefore the inflation is valid for small values ofα. This
behaviour can be seen in Fig. 1.

The time required (in Guth’s inflationary scenario) for a
very low exponential growth is in the order of10−35 sec, for
an estimated cosmological constantΛ ∼ 1070 sec−2. Fig-
ure 1 justifies the compatibility of the possible values ofΛ
and tp outlined by the inflationary theory. Figure 1 states
that for a phase transition time to occur, this must be ac-
companied by a lost of the shear and of an exponential ac-
celerated growth of the universe. This entire this process
required an estimated cosmological constant of the order of
Λ ∼ 1070 sec−2 to justify a transition phase time compatible
with the time of Guth’s inflationary scenario of the order of
10−35 sec.

9. Asymptotic behaviour and plane universe

We are interested in studying solutions which describe an
asymptotically de Sitter-like behaviour for a later period. Un-
der some particular conditions (see Ref. 20), we can express

the expansion, shear and deceleration in the following way:

Θ =
√

3Λ

(
1− 2

x2
+

ε

2x3

)(
1− 3

x2
+

ε

x3

)−1/2

, (29)

σ =

√
Λ

x2

(
1− ε

2x

)(
1− 3

x2
+

ε

x3

)−1/2

(30)

and

q =

(
1− ε

2x3

)
− 3

(
1− 2

x2
+

ε

2x3

)2

3

(
1 +

3
x2

+
ε

2x3

)2

−

(
1 +

3
x2
− 2ε

x3

)(
1− 3

x2
+

ε

x3

)

3

(
1 +

3
x2

+
ε

2x3

)2 (31)

where

ε ≡ (1 + α)3/2

α3
> 1

andx ≡ √
ΛR. These equations (ε > 1) clearly show that the

universe, after the transition to a vacuum-dominated phase,
will rapidly evolve to a purely cosmological state with an
expansion rateΘ ≈ √

3Λ, shearσ ≈ 0 and deceleration
q ≈ −1. The symmetry that follows the large-scale universe
is homogeneous, isotropic, acelerated and with a flat scalar
curvature (R ≈ 0).

The line-element, takes the form

ds2 ' dt2 − e2
√

Λ/3t(dr2 + r2
o(dΩ)) (32)

From Eq. (21), we can see that, as the universe expands, the
term(F/R − 1) becomes small compared withΛR2/3, and
the line-element (withA2 = 3/Λr2

o, wherero is an integra-
tion constant) shows an asymptotic behaviour towards a de
Sitter universe.

10. Conclusions

The homothetic symmetry of the K-S spacetime outlines a
cosmic strings universe with a simple structure (at the level
of the kinematic and dynamical variables). This symme-
try clearly defines the evolution relationsΘ = 2

√
3σ and

q = 1/2 for a curvatureR = [2(α2 + 1)]/t2 during the
earliest geomeric conditions of the universe. The value of
q = 1/2 is predicted by the modern cosmologic theory for a
plane spacetime without the cosmological constant.

It was shown that a homothetic spacetime is compatible
with Guth’s inflationary theory. The phase transition is de-
scribed as a change in the spacetime geometry. The universe
undergoes a transition from the cosmic string-dominated
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(pre-inflationary) state described by Eqs. (9) and (10) to the
vacuum-dominated (inflationary) state described by Eqs. (20)
and (21). After this we have a universe that evolves to
a particle-dominated era (post-inflationary), described by
Eqs. (29) and 30. By virtue of this solutions the initial physi-
cal conditions, like the preservation of the energy conditions
and the original energy-gravity balance, are compatible with
a large scale asymptotically flat, homogeneous and isotropic
universe.

Guth’s theory, under the refinements of Ponce de
León [20], warranties that the cosmic strings took a purely
cosmologic effect on the primitive universe expanding ex-
ponentially. The universe evolved with very weak shear ef-
fects (see Fig. 1) and the false vacuum dominated era and
the cosmological constant arised (Λ ∼ 1070 sec−2). In the
GUT’s epoch the quantum effects would had generated an
effective cosmological constant of about1070 sec−2. Obser-

vations show that the cosmological constant should be less
than10−35 sec−2. Such a discrepancy is one of the greatest
problems of theoretical physics.

The cosmological effect ofλ and the lost of the effects
of the shearσ can imply the existence of a repulsive force
that initially boosted the inflation and could direct the current
acceleration, making a flat universe unavoidable. Our model
justifies this statement with a value ofq = 1/2, initially, that
would change on the large–scale toq ≈ −1, defined by a cur-
vature of the space–timeR ≈ 0. The contributions concern-
ing the valueq ≈ −1 and other possible values near this [21]
have been a route of exploration and of cosmological interest
in affirming the accelation of the present universe. Finally,
the negative tension density would help to accelerate the uni-
verse and reconcile its expansion age with the ages of stars in
globular clusters.
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