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Self-similarity in a Kantowski-Sachs universe with a string cloud
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We study a cosmological model with very simple solutions characterized by string clouds. Assuming self-similar symmetry for a Kantowski-
Sachs spacetime we study the gravitational effects of the cosmic strings. It is also assumed that the primitive universe enters in a false
vacuum-dominated era, accelerating the expansion in a time period of the order®dfsec (a phase transition), satisfying all the energy
conditions. Finally, we examine the possibility that in the last stages of this evolution, the geometry of the universe could be flat.
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Estudiamos un modelo cosndglico con soluciones muy simples caracterizadas por nubes de cuerdas. Exigienda aum@similar para
el espacio-tiempo de Kantowski-Sachs estudiamos los efectos gravitacionales de las @senitzssc Se supone adasnque el universo
primitivo entra en una era dominada por el a@celerando la expaisi en un periodo de tiempo del orden HE*° sec (transidin de
fase), y satisfaciendo todas las condiciones de émefgnalmente, estudiamos la posibilidad que erilimos estadios de su evolaci el
universo puede ser plano.

Descriptores: Autosimilar; cuerdas; infladn; universo.

PACS: 04.20.-q; 98.80.Hw

1. Introduction peratureT, was reached and a phase transition made the
vacuum energy densityp(;) the dominant form of energy

The cosmological theory has studied cosmic strings as thgenSIty of the.umverse. A phase traq3|t|on could have oc-
source of the inhomogeneities in the plasma, which theﬁ“”ed these circumstances, as the universe cooled elow

gave rise to the formation of large-scale structures in the uni! which a multiplet of scalar fields (Higgs fields) developed

verse [1]. In the primitive universe (string-dominated era),a vacuum expectatllon v:;lué(qj&) :I n. This t]}’z(_aﬁOf phalfed

the strings could have produced fluctuations in the particldransition can result mdt € de_ve opmr(]ant ot di erentd n SI
density and one may speculate that since strings were formég vacuum structures, depending on t e structure and topol-
before the inflationary era, they were dispersed by the en?% of the gauge group. One possibility is that these vaccum

largement of the radius of the universe to a such small densit! tructures gave origin_ to strings in spacetim_e. The possibil-
that they would be virtually undetectable. When the string ty could also be considered that the early universe, by means

disappeared and particles became important, the quctuatior?g a phase transition, changed over from a state with a finite

grew in such a way that galaxies were finally formed and thé:psmo!oglcal c_onstam to a state with zergh, .tha_t 1S, fror_n
imilarity solutions of the second type to similarity solutions

anisotropy of spacetime introduced by them also disappeared
PYOLSP y PP of the first type [4]. According to this, one could justify the

The evolution of the universe is usually studied assumingpjationary scenario of the cosmic strings universe in a self-
that the only forces present are string tension and gravity [2]gim|ar spacetime. The appearence of strings in the primitive
Cosmic strings could have been produced duringa® sec  njverse has been a crucial topic in cosmological and rela-
period (GUTSs's time [3]) after the Big-Bang, but some mech-tjyistic models. They have been characterized in magnetic
anism should have prevented their existence during the sulge|qs [5], equations of state [6] and in diffusive transport flu-

sequent evolution. The disappearanceof strings may be exyg [7]. Recently, curvature inheritance symmetry in a Rie-
plained at an earlier time in the universe when a critical tem-
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mannian space with applications to string cloud and string3.  Self-similar solutions

fluids has been considered by some authors [8, 9]. We shall assume that the spherical distribution admits a one-
The purpose of this paper is to extend the work of Poncarametric group of homothetic motions. A homothetic vec-

de Ledn (J. Math. Phys31(1990) 371) to the cosmic strings  tor field on the manifold is one that satisfi€sg,., = 2ng,.,

fluid case. We study a model of cosmic strings characterpn g |ocal chart, where is a constant on the manifold and

ized by a Kantowski-Sachs (K-S) self-similar spacetime cou-£ denotes the Lie derivative operator. f £ 0, we have

pled with a cosmic strings energy-momentum tensor which i, proper homothetic vector field and it can always be scaled

equivalent to the one used by Letelier [10]. We study the selfsg a5 to have, = 1: if n = 0 ¢, is a Killing vector on the

similar solutions, the kinematic and dynamical variables, andnanifold [11-13]. Then, after a constant rescalingatisfies
the evolution of the self-similar universe with cosmic strings £¢9u, = 29, and has the forng = Y (r,)0; + I'(r,t)0

7.

to a inflationary scenario. The kinematic and dynamical conyt jg easy to check that the homothetic equations reduce to

ditions of the large-scale universe are also considered. §X) =0,€Y) =0T = tandl(r), whereX = R/t

andY = Texp(Q/2)/t. Therefore, X = X({) and

Y =Y ({) are solutions if the self-similar variable is defined

as¢ = texp(— [dr/T'). Here we assum& = C;¢* and

It is assumed that the spacetime metric is described by a K-8 = Cy¢!, whereC,, C», k andl are real constants. This

type line element kind of solution has been previously applied to different rel-
ativistic scenarios [14, 15]. Substituting the equations of the

ds® = dt* — e dr? — R?*(d#* + sertfd¢?) (1)  symmetryin Eq. (7), we obtain the relatiéh+k+1+1 = 0,

where the only possible solutionis= 0y ! = —1. There-

where(2 andR are the metric functions which depend on the fore

temporal coordinate

2. Einstein’s field equations

We study the gravitational effects of a cosmic strings L(r)=r, (®)
cloud. The energy-momentum tensor is taken as [2, 10] ¢ = const= 3, (9)
T = puyu, — AX, X, (2) R=t/a (10)
wherep is the rest energy density for a string cloud with par- and
ticles atta_ched to i_t and is the sfcring c_lou_d te_nsion density. ds? = dt* — Bdr? — t/a(d6? + sen? 0dg?) (11)
If the particle density of the configuration is given lyy, then
we have where 5 and « are integration constants. In a model with
p=pp+ A (3)  such simple solutions, the homothetic parametersI” are

completely determined.
In a comobile frames* = ¢4 and X, = ¢?/%5}.. u, is the
four-velocity of particles and(, is a spacelike unitvector (in 4. Kinematic variables
the radial direction to the strings) orthogonahtg. The X*

. 97 " The kinematic variables (shear, expansion and deceleration)
four-vector satisfies the following identities

we wish to study in this model are

uut =1=-X, X" u,X"=0. 4) o ii (12)
V3t
The Einstein’s field equations corresponding to (1) 2
and (2) are as follows® = ¢ = 1): 0= (13)
8mp = (R, + RS+ 1)R2, 5) 2and
q= 1 (14)
87\ = (2R 4R + R% + 1)R ™2 (6) 2
Our primitive solutions provide a simple cosmological model
and for a primitive self-similar universe which expands in
20 R+ 20 4R+ Q?tR +4R 4 = 0. (7) ©=2+v/30. Some other authors have reported similar solu-

tions in this context [10, 16]. These solutions also give an-
The commas denote partial derivatives with respect to the casther important result: an expanding universe accelerating
ordinate indicated. There are four unknowts, €2, p, \) quickly to an inflationary erad> 0, g=1/2, t>0). The value
and only three equations. Therefore, in order to obtain anasf g=1/2 was reported by Arbab through of the study a vis-
lytic solutions, we impose an additional geometric conditioncous model with variable gravitational and cosmological con-
to the spacetime. stant [17].
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5. Dynamical variables positive energy and negative tensional denskty & —py,
From the field Eqs. (5-6), we obtain the physical variableg”v = A/87, wherely is the tension density and, the en-
(energy and tension density) ergy density of the false vacuum). When- t,, (¢, is the
transition phase time) the strings phase of the universe disap-
(14 a?) pears becausebecomes negativee., a universe dominated

P= Tont2 (15) by the cosmological constant. This false vacuum with energy
densitypy will have an associated strings energy-momentum
and (1+a?) tensor like
=g (16) Ty = pv(UU, + X, X,). (19)

Thea parameter represents a physically meaningful quantityThis can be interpreted as the energy-momentum tensor of
it measures the energy and tensional density of the universg string fluid in the false vacuum. The solutions of the
at a given time:. field equations (with the cosmological constanf19]) cor-
The model begins with an initial singularity= 0 and  responding to Egs.(1) and (19) are given by

subsequently undergoes an expansion with a relation between -
p and A which satisfies the equation of state of the cosmic e = AR (20)
strings, since\ = p (p, = 0). and ) .

R% = _AR? + = — 1, (21)
6. Energy conditions S3 R

whereA and F' are arbitrary integration constants.

The standard energy conditions, corresponding to a K-S We can define a finite timg, in which the energy of the

spacetime with cosmic strings [2], can be stated as universe is given by, = A/8r. We assume that this tran-
N sition occurs everywhere at the same time. That is, with the
e Weak and strong energy conditions. field equations one must match the geometry of the spacetime

p> Awith A >0, p > 0 with A < 0. 17) beforet, with the geometry of spacetime aftey.

e Dominant energy conditions, which implies 8. Matching equations

Following Ponce de L&n [20] we couple the geometry of
p>0andp? > A% (18)  Space time before and after the tim;,g(defined in the previ-
- _ . . ous section) by considering a matching hypersurfaeet,,).
These conditions do not restrict the signfodnd do notim-  we shall study the matching equations (using the Darmois-

pose any restriction upon. They are satisfied for all phys- | ichnerowicz junction conditions) corresponding to Egs. (9),
ical variables of the energy-momentum tensor. This solu(10), (20), and (21).

tion is physically reasonable because it satisfies the weak, The continuity ofR ; int, leads to
strong and dominant energy conditions. It represents a uni-

verse which emerges at= 0 from a singularity with infi- At) —3(a® + 1)t, + 3Fa” = 0. (22)
nite energy density and tension satisfying the cosmic strings
equation of state. and the continuity of2 ; in ¢, to
3 3
2At, — 3a°F = 0. (23)

7. Equations in the false vacuum phase
Combining (22) and (23), we obtain
The inflationary theory of the universe states that, a few in-
stants after the Big-Bang, the cosmos would have been in a t, = i(oﬂ =+ 1)1/2, (24)
vacuum excited state or false vacuum, during which the uni- VA

verse would have expanded extremely fast. This theory of thgye see that the parametedetermines the time of the phase

universe also defines a very short phase with ultra-fast expagransitiont,. From the continuity of the metric functions at
sion only10~35 sec after the Big-Bang which expanded thet we obtaln

universe size in a huge proportion, becoming geometncally
flat [18]. This led the universe to its current, more stable, real _ 2 (a? 3/2
o = o +1)%=. (25)

vacuum condition. 3v/Aa3

We shall focus our attention on a cosmic strings uni-
verse which can enter an inflationary era, supported by thgmd
conditions mentioned above and fulfilling to the conditions A/B=a. (26)
R > 0,a > 0Oandt > 0. We shall assume a scenario in The above equations show the assumed phase transitions.
which the universe enters a false vacuum phase with constaiihus the only condition required for the correct matching of
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the expansion, shear and deceleration in the following way:

—-1/2
2 € 3 €
®V3A<1x?+2m3><1x2+x3> , (29)

—1/2
VA € 3 €

and

o ) . ) . ) . ) 2
1 2 3 4 5 6 7 8 9 31 n 3 i €
° 2 213

FIGURE 1. Behaviour oft, (multiplied by 107*° sec) ando
(multiplied by 10%* sec’!) as functions of parametes with

A =107 sec?. 3 2 3 €
1+ 2 3 3T 3
x X
both solutions is that” > 0 (this condition provides the oc- - . (31)
currence of inflation). The behaviour of the sheaand the 3 €
expansior at the timet,, of the phase transition depends on 3|1+ 72 + 223

the choice ofr. Using Eq. (24), we developeg in power
series (fora < 1) and we found the values fer that made  where
the inflation possible (1+a)3/?
€ 3
_ 1 2 1/2 _ a? Q4 a6 27 «
tp = ﬁ(o‘ +1)V = ﬁ(lJr?*@*@*' +)- @7)  andz = VAR. These equations ¢ 1) clearly show that the
universe, after the transition to a vacuum-dominated phase,

>1

However, fora > 1, we have will rapidly evolve to a purely cosmological state with an
expansion rat® ~ /3A, shearc ~ 0 and deceleration
t, = L(Oﬁ +1)1/2 = La. (28) ¢~ —1. The symmetry that follows the large-scale universe
VA VA is homogeneous, isotropic, acelerated and with a flat scalar

curvature R = 0).

Equations (27) and (28) show that @sncreases, de- The line-element. takes the form

creases and the transition tijgincreases. There is a better

chance for a phase transition associated with loss of shear. ds® o dt* — 2VA3 (dr? + r2(dQ)) (32)
Therefore the inflation is valid for small values a@f This
behaviour can be seen in Fig. 1.

The time required (in Guth’s inflationary scenario) for a
very low exponential growth is in the order 86—3° sec, for
an estimated cosmological constant- 107° sec2. Fig-
ure 1 justifies the compatibility of the possible valuesiof
andt, outlined by the inflationary theory. Figure 1 states
that for a phase transition time to occur, this must be ac10. Conclusions
companied by a lost of the shear and of an exponential ac-
celerated growth of the universe. This entire this procesd he homothetic symmetry of the K-S spacetime outlines a
required an estimated cosmological constant of the order dgFosmic strings universe with a simple structure (at the level
A ~ 107 sec2 to justify a transition phase time compatible Of the kinematic and dynamical variables). This symme-

with the time of Guth's inflationary scenario of the order of try clearly defines the evolution relatios = 2v/30 and
10-35 sec. q = 1/2 for a curvatureR = [2(a? + 1)]/t* during the

earliest geomeric conditions of the universe. The value of
q = 1/2is predicted by the modern cosmologic theory for a
0. Asymptotic behaviour and plane universe plane spacetime without the cosmological constant.
It was shown that a homothetic spacetime is compatible
We are interested in studying solutions which describe amvith Guth’s inflationary theory. The phase transition is de-
asymptotically de Sitter-like behaviour for a later period. Un-scribed as a change in the spacetime geometry. The universe
der some particular conditions (see Ref. 20), we can expresmdergoes a transition from the cosmic string-dominated

From Eq. (21), we can see that, as the universe expands, the
term (F/R — 1) becomes small compared with2? /3, and

the line-element (wit? = 3/Ar2, wherer, is an integra-

tion constant) shows an asymptotic behaviour towards a de
Sitter universe.
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(pre-inflationary) state described by Egs. (9) and (10) to thevations show that the cosmological constant should be less
vacuum-dominated (inflationary) state described by Egs. (20han10~3° sec 2. Such a discrepancy is one of the greatest
and (21). After this we have a universe that evolves toproblems of theoretical physics.
a particle-dominated era (post-inflationary), described by
Egs. (29) and 30. By virtue of this solutions the initial physi- ~ The cosmological effect o and the lost of the effects
cal conditions, like the preservation of the energy condition®f the sheair can imply the existence of a repulsive force
and the original energy-gravity balance, are compatible witithat initially boosted the inflation and could direct the current
a large scale asymptotically flat, homogeneous and isotropigcceleration, making a flat universe unavoidable. Our model
universe. justifies this statement with a value @f= 1/2, initially, that
Guth’s theory, under the refinements of Ponce devould change onthe large—scalejte: —1, defined by a cur-
Leon [20], warranties that the cosmic strings took a purelyvature of the space—tin# ~ 0. The contributions concern-
cosmologic effect on the primitive universe expanding ex-ing the value; ~ —1 and other possible values near this [21]
ponentially. The universe evolved with very weak shear efhave been a route of exploration and of cosmological interest
fects (see Fig. 1) and the false vacuum dominated era arll affirming the accelation of the present universe. Finally,
the cosmological constant arisedl ¢ 107° sec'2). Inthe the negative tension density would help to accelerate the uni-
GUT’s epoch the quantum effects would had generated aHerse and reconcile its expansion age with the ages of stars in
effective cosmological constant of abadif’® sec 2. Obser- ~ globular clusters.
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