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In this work, a statistical analysis of the distribution of daily fluctuations of the IPC, the Mexican Stock Market Index is presented. A
sample of the IPC covering the 13-year period 04/19/1990 - 08/21/2003 was analyzed and the cumulative probability distribution of its daily
logarithmic variations studied. Results show that the cumulative distribution function for extreme variations, can be described by a Pareto-
Levý model with shape parametersα = 3.634± 0.272 andα = 3.540± 0.278 for its positive and negative tails, respectively. This result is
consistent with previous studies, where it has been found that2.5 < α < 4 for other financial markets worldwide.
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Presentamos un análisis estad́ıstico de la distribucíon de fluctuaciones diarias delı́ndice de la Bolsa Mexicana de Valores, el llamado IPC
(Índice de Precios y Cotizaciones). Estudiamos la función de distribucíon acumulativa de las diferencias logarı́tmicas diarias calculadas a
partir de una muestra del IPC que cubre un periodo de 13 años, que empieza el 19/04/1990 y finaliza el 21/08/2003. Hallamos que esta
función de distribucíon acumulativa puede describirse para los valores extremos de estas diferencias mediante una distribución de Pareto-
Levý (ley potencia) con exponentesα = 3.634±0.272 y α = 3.540±0.278 en sus colas positiva y negativa respectivamente. Este resultado
es consistente con estudios previos que muestran que2.5 < α < 4 para los mercados financieros de diferentes partes del mundo.

Descriptores: Econof́ısica; bolsa de valores; ley potencia; distribución estable; ŕegimen de Lev́y.

PACS: 01.75.+m; 02.50.-r; 89.65.Gh; 89.90.+n

1. Introduction

The behavior of extreme variations of economic indices,
stock prices or even currencies, has been a topic of interest
in finance and economics, and its study has become relevant
in the context of risk management and Financial Risk Theory.
However, these analyses are usually difficult to perform due
to the small number of extreme observations in the tails of the
distributions of financial time series variations. Recently, the
interest of the physics community in the behavior of finan-
cial markets,has strongly increased, boosted by the availabil-
ity of worldwide, electronical recorded financial data, giv-
ing rise to different aproach to confront problems that arise
in the study of economics. The collection of methods and
techniques originally developed in the area of physics, which
are currently applied in the study of financial complex sys-
tems, is now called Econophysics and is becoming an emer-
gent branch of physics by itself [1–6].

In order to describe the behavior of distribution of fi-
nancial time series variations, several models have been pro-
posed. Some of them are:

• Gaussian distribution [7].

• Log-gaussian distribution (Geometric Brownian Mo-
tion) [8].

• Stable Lev́y distribution [9–11].

• Truncated Lev́y Distribution [12–14].

• Poisson like distribution [15,16].

• Power law Distribution withα ' 3 [17] (Asymptoti-
cally).

In this paper, a statistical analysis of the distribution of
daily variations of the IPC [18] is presented. It is organized
as follows: in the remainder of this section, we briefly review
the Pareto-Lev́y distribution, and some of the phenomena it
describes are mentioned. In the next section, a very short in-
troduction to the variables commonly used in the study of fi-
nancial index and prices variations is given. In Sec. 3, we in-
troduce the data sample analyzed in this work, and some im-
portant statistical properties of financial time series variations
(fat tails, clustering volatility, etc.) [19, 20] are discussed, all
of the above in the context of the IPC data. In Sec. 4, we
explain and justify the procedure to estimate the Pareto-Levý
exponent from the data and we show the results concerning
the fit on the tails of the cumulative distribution of the IPC
daily logarithmic variations. Finally, the last section is de-
voted to the comparison of our results to other related studies
previously reported of different international stock markets.

1.1. Pareto-Lev́y Distribution. Stable Distributions

At this point, it is convenient to make a review of the defini-
tion of the Pareto-Lev́y distribution:

An absolutely continuous random variableY , is said to
follow a Pareto-Lev́y distribution with parametersα andγ, if
its cumulative distribution functionF has the form:

F (y) := P{Y ≤ yi} = 1−
(

y0

yi

)α

= 1− γ

yα
i

(1)
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with yi ≥ y0, yα
0 = γ andα > 0. When the conditionα > 2

holds, the mean and variance of Y are both finite and by the
central limit theorem, the sum of independent Pareto-Levý
distributed random variables, converges in probability to a
gaussian law. On the other hand, whenα < 2, the Pareto-
Levý distribution has infinite variance, and it is said that the
distribution is stable. For a mathematical treatment of these
topics, consult Refs. 19 and 20. For a review from an econo-
physics point of view, Refs. 6 and 21 are recommended.

The Pareto-Lev́y distribution is often known as the
Power-lawdistribution, and its role in Physics and other areas
seems ubiquitous. In particular, we can illustrate this point by
the following examples taken from finance:

• N∆t, the number of trades in a given interval of time
∆t, follows a power-law distribution with exponent
α ' 3/2 [24].

• Pareto-Lev́y tails, with α ' 3 for extreme variations
of individual stocks prices [25], and also for indices of
different leading stocks markets [17,26,27].

• Decay of volatility correlations follows a power law
distribution [28,30].

• The tail behavior of the cumulative distribution func-
tion of volatility is consistent with a power law distri-
bution with exponent' 3 [31].

All the above suggests universality in financial complex sys-
tems, and in order to explain the above facts, new models and
even theories are currently being proposed Refs. 26 and 29
to 31.

2. Study of variations of financial time series

In the study of price variations of financial assets, many ob-
servables can be analyzed [6]. IfY (t) is the value of the
index at timet, some commonly used observables are:

• Prices or indices change themselves, for some interval
of time∆t :

Z(t) := Y (t + ∆t)− Y (t) (2)

• Deflated prices and index changes:

ZD(t) := Z(t)×D(t) (3)

WhereD(t) is a statistical factor or index called a discount
or a deflation factor,and is used to adjust the time value of
money, enabling the comparison of prices while accounting
for inflation, devaluation, etc. in different time periods.

• Returns, defined as:

R(t) :=
Y (t + ∆t)− Y (t)

Y (t)
(4)

• Differences of the natural logarithm of prices [32], de-
fined for some interval of time∆t as:

S(t) := ln Y (t + ∆t)− ln Y (t) (5)

Each one has its own merits and disadvantages [6]. In this
analysis, we have used the former variableS(t).

3. Data sample and IPC variations

The database containing the IPC series analyzed here is avail-
able at Ref. 32 and covers the 13-year period 04/19/1990 -
08/21/2003. Figure 1 shows the IPC evolution for this time
period. We have used in our analysis the daily closure val-
ues of the IPC, that is, its recorded value at the end of each
trading day

In this work, our observable isS(t) as defined in Eq. 5,
where we studied the tail behavior ofP (S(t)) = 1−F (S(t)),
for t = 1, . . . , N , whereN = 3337 is our sample size and
∆t = 1 day.

Figure 2a shows the histogram ofZ(t), the IPC daily
changes. It is interesting to point out that this strongly sym-
metric and leptokurtic (fat tailed) distribution does not follow
any well known model, which could appropriately describe
the probability of events in its central region and in its tails at
once.

Figures 2b and 2c show the distribution of our observable
S(t). Figure 2b shows that the distribution ofS(t) appears to
follow a gaussian. This is discarded after observing Fig. 2c,
the same distribution with a vertical logarithmic scale. There
are too many extreme events visible almost as far as ten stan-
dard deviations from its mean. To compare easily, Fig. 2c
broken line shows a gaussian scaled to the amplitude

FIGURE 1. IPC development for the 13 year period 04/19/1990-
08/21/2003.
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FIGURE 2. IPC variations. a) Histogram ofZ(t), the daily changes
of the IPC index. The distribution shows symmetry and fat tails. b)
Histogram of S(t). Regions studied in this paper,S(t) > 0.035
andS(t) < −0.035, are indicated by two vertical lines. c) Same
as above, but with a vertical logarithmic scale. The broken line
corresponds to a gaussian density with the same mean and standard
deviation than theS(t) distribution.

of S(t), and with the same mean and standard deviation than
those ofS(t) series.

Figure 2 shows how IPC variations are distributed; how-
ever it does not give any insight about the dynamics of the
stochastic process that governs them. Evolution of the IPC
daily log-differences is displayed in Fig. 3a. We observe that
large variations are not uniformly distributed over time, and
that is possible to distinguish phases of higher volatility [37]
alternated with phases of a relative financial calm. This is a
characteristic of financial time series called clustered volatil-
ity.

The clustering phenomenon has not been completely
understood, however some successful models, such as the
GARCH and Stochastic Volatility models have been pro-
posed [38–40].

In order to appreciate the magnitude of these strong fluc-
tuations, gaussian values with the same mean and standard
deviation than those of theS(t) distribution were simulated.
In the simulation, nearly no clustering is appreciated, as it is
shown in Fig. 3b.

4. Parameter estimation from IPC empirical
data

The procedure to estimateα, the Pareto-Lev́y exponent from
empirical data is straightforward: Pareto-Levý tails behave as
straight lines in a logarithmic plot. Then, after performing a
linear fit of log P (S(t)) on log S(t), the obtained slope gives
us an estimate of the exponentα of the Pareto-Lev́y Distribu-
tion. Clearly, a distribution whose tails do not behave linearly
in a log-log plot can not be properly described by the Pareto-
Levý model.

The fit was carried out using data available in the tails
regions|S(t)| > 0.035. Both tails are marked with verti-

cal lines in Fig. 2b. Those regions were chosen simply by
examining the set of points for which the corresponding log-
log plot behaves linearly.P (S(t)) was then reduced to 79
and 93 events in its negative and positive tails, respectively.
Note that, as is showed in Fig. 4, and in order to deal with
the undefined logarithmic scale for the left tail ofP (S(t)),
we have used−S(t) in our analysis.

It was found that for these regions the tails ofP (S(t))
decay following a power law model. A straight line provides
a good fit for them in a logarithmic plot. Both fits are shown
in Fig. 4.

Table I shows the estimated parameters and the 95% con-
fidence intervals obtained from the lineal regression fit for the
negative and positive tails ofP (S(t)).

FIGURE 3. a) S(t) behavior for the period of time under study.
Large variations inS(t), some of them as far as eight standard de-
viations from its mean, can be appreciated. It can also be seen that
large variations tend to form clusters in time; this phenomena is
called clustered volatility. b) Gaussian simulation already shown
as a broken line in Fig. 2c. Clustering is virtually not present.

FIGURE 4. Linear fitted tails in a log-log plot of the cumulative
distribution functionP (S(t)) on S(t). Right image positive tail.
Left image negative tail. Fitted parameters are shown.
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TABLE I. Fitted Parameters plus minus twice the standard error of
the estimates, for positive and negative tails.

Fitted region α

S(t) > 0.035 3.634± 0.272

S(t) < −0.035 3.540± 0.278

TABLE II. Pareto exponent for some international Stock Markets.
Daily data (d). High Frequency data (*).

Market α (Right tail) α (Left tail) Data Period

AMEX 2.84± 0.12 2.73± 0.14 01/94-12/95∗

NASDAQ

NYSE

(Combined)

(USA)

[17]

S& P 500 3.66± 0.011 3.61± 0.11 1962-1996d

(USA) 3.39± 0.05 3.37± 0.07 1984-1996∗

[26]

DAX 2.4 (minutely) 10/97-12/99∗

(Germany) to3.5 (hourly) 1959-2001d

[27,41]

NIKKEI 3.05± 0.16 1984-1997d

(Japan)

[26]

Hang-Seng 3.03± 0.16 1986-1997d

(Hong Kong)

[26]

5. Discussion

Results shown in Table I are consistent with similar studies,
where the Pareto-Levý model with2.5 < α < 4.0, has been
found to be useful to describe the behavior of extreme vari-
ations of diverse financial markets. Table II summarizes re-
sults of some of these studies.

High frequency studies of price variations, most of them
performed for stock markets belonging to developed coun-
tries, show that the distribution of returns follows a Pareto-
Levý form with exponent converging toα ' 3 as ∆t de-
creases to time intervals of about one minute. For the case of
stock markets of emergent economies, it seems that they may
belong to a different universality class, some studies [42, 43]
show that the return distributions from emergent markets
have fatter tails than the observed in developed markets.

In summary, it has been shown that the cumulative prob-
ability of daily extreme logarithmic changes of the Mexican
IPC index can be approximated by the Pareto-Levý model,
with exponentsα = 3.634±0.272 andα = 3.540±0.278 for
its positive and negative tails, respectively. As a consequence
of these values, we can affirm that the stochastic process that
governs the time seriesS(t) is well outside the Lev́y stable
regime (0 < α < 2).
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21. P. Lev́y, Théorie de l’Addition des Variables Aléatories
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