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In this paper we analyze a Brayton cycle with external and internal irreversibilities. The external ones come from heat transfer with coun-
terflow heat exchangers in the cold and hot sides; the internal irreversibilities are given by the isentropic efficiencies of the compressor and
turbine. Optimization is carried out with respect to the pressure ratio and the total inventory of the heat transfer units, asNifthe
method. We show the analytical expressions for the efficiency that mazimizes work and the optimal allocation (size) of heat exchangers. We
also analyze the asymptotic behavior of these expressions. The results obtained extend a Bejan’s model and are more general and useful.

Keywords: Thermodynamics Optimization, heat engines. internal and external irreversibilities.

En este trabajo analizamos un ciclo Brayton con irreversibilidades externas e internas. Las externas provienen de la transferencia de calor
mediante intercambiadores de calor de flujo cruzado de los latpy fraliente; las irreversibilidades internas son producidas por las
eficiencias isoenfipicas del compresor y la turbina. La optimiZatise realiza con respecto a la@azie presiones y al inventario total

del nimero de unidades de trasferencia de calor, empleandétetime-NTU. Mostramos las expresiones dtiabs para la eficiencia que
maximiza el trabajo y la dimer@n 6ptima de los intercambiadores de calor. Taénb&nalizamos el comportamiento aétito de estas
expresiones. Los resultados obtenidos extienden un modelo de Bejan yasotiles y generales.

Descriptores: Optimizacbn termodiamica, naquinasérmicas, irreversibilidades internas y externas.

PACS: 44.60.+k; 44-90.+c

1. Introduction ence representation for both the high and low temperatures
heat exchangers and assumed that it is internally operated by
The classical air standard Brayton cycle has been used asaareversible Carnot cycle. Cheng and Chen [8] made the nu-
model of the gas turbine heat engine. This cycle results imerical power optimization for a non-endoreversible Bray-
unrealistically high performance predictions. Recently, therdon cycle and, later, an ecological optimization in Ref. 9.
has been renewed the analysis of Brayton-like cycles by vaBlank [10] optimizes the power for an open Brayton cycle
ious researchers, considering the more practical aspects wfth a finite interactive heat reservoir. Chenal.[11] car-
entropy generation, power, power-density and the ecologicaied out the numerical optimization for density power and dis-
and efficiency optimization. tribution of heat exchanger operation for the endoreversible
Bejan [1] considered a closed ideal Brayton cycle (en-Brayton cycle. In the optimization made in these latter
doreversible Brayton cycle) operating between an infiniteVorks, except Blank, the proposal made by Andresen and
heat source and an infinite heat sink. He showed that, whef#ordon [12] was used: for the heat exchanger operation in
the entropy generation is minimum, the efficiency corre-the hot-side and the cold-side, a single-pass counterflow heat
sponds to the efficiency of Curzon-Ahlborn [2] and the opti-€Xchanger can represent the optimal solution.
mal allocation (size) of hot-side and cold-side heat exchang- Recently, in Ref. 13 we analyzed the maximum effi-
ers is balanced. ciency of a non-endoreversible Brayton cycle: the internal
Formerly, Leff [3] focused on the idealized Brayton cy- irreversibilities are given by the isentropic efficiencies of the
cle and obtained a Curzon-Ahlborn-like efficiency. Wu [4] compressor and turbine, and the external irreversibilities cor-
looked at a closed non-isentropic Brayton cycle, without ex+esponding to the heat transfer in the isobaric processes were
ternal irreversibilities, and found that the efficiency that max-modelled by the coupled, Andresen-Gordon proposal, single-
imizes the work corresponds to a Curzon-Ahlborn-like effi-pass counterflow heat exchangers, using th&/TU method
ciency (see also Ref. 5). Later, Sakinal[6] determined the  (effectiveness- number of transfer unit, see Ref. 14).
efficiency that maximizes the density of the work. In Ref. 5 |n this work we analyze the same non-endoreversible
we optimize the efficiency of a closed non-isentropic Braytongrayton cycle. We do the optimization by a parametrization
cycle. of the total inventory of the heat transfer units and the pres-
The optimization of Brayton-like cycles with external ir- sure ratio; the compressor and turbin efficiencies are fixed.
reversibilities started with Bejan. Later, Swanson [7] opti-We find optimal expressions for the efficiency that maximizes
mized the Bejan model using a log-mean temperature differwork for the allocation (size) of the heat exchanger inventory.
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We determine bounds for both expressions and compare theT N
numerical results respecting the endoreversible Brayton cy- mrmrm e T
cle. 3

This paper is organized as follows. In the Sec. 2, we use \
thee — NTU method, for the external irreversibilities, and 2s 2 \
the isentropic efficiencies of turbine and compressor, for the / \
internal irreversibilities, to find the relation for the dimen- / \
sionless work. In the sectidh we show the optimal expres- / \
sions for efficiency (maximum work) and allocation (size) 4 -7 4
of the heat exchangers, we present some limit cases of ou ! 4s
model and we analize the asymptotic behavior of the model
with respect to the endoreversible model. In Sec. 4, numer-
ical results are presented, on the behavior of the allocation
with respect to the total number of transfer units and of the
efficiency (maximum work) with respect to mininimum and
maximum temperature ratio. In the conclusions, we propose >
that the allocation for the heat exchangers should be approxi- S
mately 2—4% less than the Bejan’s value; thus, the size of the
heat exchanger in the hot side decreases. FIGURE 1. A non-endoreversible Brayton cycle.

whereTs, T are the maximum and minimum temperatures
achieved in the reversible cycle.
We now, consider an endoreversible Brayton cycle with

2. The relation for the dimensionless work.

We consider a non-endoreversible Brayton cycle shown in

Fig. 1. external irreversibilities, temperature reservoirs given by the
The reversible Brayton cycld (- 2s — 3 — 4s — 1) effi- constant temperaturéS;_{ ‘f.jm.d T (since the substapce can
ciency is given by: be in phase ch.ange or infinite temperature reservows) apd in-

ternally reversiblexy; = 1, = 100% (see Fig. 1). In this
n=1-x (1)  cycle, two single-pass counterflow heat exchangers are cou-

pled toTy andT;. We calculate the heat transfer between
wherez = e'=(1/7) 'with e = (p2s/p1) the pressure ra- the reservoir and the working substance using the log mean
tio (maximum pressure divided by minimum pressure) andemperature difference (M T' D). The heat transfer balance
v = (¢p/cv), Wheree, is the constant-pressure specific heatfor the hot-side is:
andc, is the constant-volume specific heat. Furthermore, for

the reversible cycle the following temperature relations are Qu =UgAgLMTDy = mc, (T3 — Tay)
satisfied:
T where H denotes the hot-sidé] is the global heat transfer
Ty = — (2) coefficient per area unitd is the superficial area of the ex-
. changer andh is the substance working mass. Th&/T' Dy
Tys = Tzx (3)  is given by [14]:
wherez is given by the Eq. (1). Henceforth, denotes the Ty — Tos — (T — T3)
working substance temperature ratio. LMTDy = log Lu—To
Considering a non-isentropic Brayton cycle, without ex- & Ty =Ty

ternal irreversibilities (seé— 2 — 3 — 4 — 1, cycle in Fig. 1) The number of transfer unit{T') of the hot-sideNy;,
with the isentropic efficiencies of the turbine and compressoyg [14]:

11 andny given by ([15]):

T _UndAn _ T3 - T

Ny

== = 4 -
m Ts — Ty 4) mey LMTDg
Tos — T and so,
2 = ﬁ ®)
2t oNi Ty — Tas
we obtained the following temperature relations ( [5]): Ty — Ty,
1- ' is:
T, =T, (1 n ; ;) (6) the effectiveness is:
2
Ty — T
ST (1 — (1 7 ep=1—c N = L3 ®)
Ty=T3(1—m(l —x)) (7) Ty —Tss
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Assuming that the heat exchangers are counterflow, theith . = (71./Ty) and ey, €1 given by the Egs. (8)
heat conductance of the hot-side (cold side)lig Ay and (11); but instead of the temperatufies, 74, how the
(UL Ap) and the thermal capacity rate (mass and specific hedemperatures involved afl®, 7. Thus,e g andey, are given
product) of the working substancedsy . by:

The heat transfer balance results in:
Ty —T3 d T -Tp
Qu =Cwen (Tyg —Tzs) = Cw (T3 = Tzs)  (9) fH=p o A oar=a

Similarly, the balance for the cold-side is given by:

We find expressions for temperaturBsand T}, includ-

Qr =Cwer (Tys — T1) = Cw (Tys — T1) (10) ing the isentropic efficiencieg andns,, effectiveness and

er,, and the parameter (that is, the ratio between the tem-
peratures of hot-side and cold-side). Combining Egs. (2), (3),
(6), (7), (12) and (13), we have:

with £, given by:
- T -1Tp

_1_ ,—No
L = 1 & T4S — TL (11)
As the effectiveness has expressions analogs to the isen- [erpa™ +en (1 —ep)] (1{21 + 3?)
tropic efficiencies (Egs. (4), (5) and (8), (11)), we can make a = ler +em (1—<1)] Ty (16)
similar analysis to the non-isentropic cycle, without external
irreversibilities. leaz +epp(l—emn)] (% - %)
The temperature reservoif§y; and 7, are fixed. By Ty = o ten (1—co)] Ty (A7)
Egs. (9) and (10) we obtain the temperatifesandT},:
T3 —egTy The workw of the non-endoreversible cycle is (Egs. (14)
Toy = ——m— .
1—cq and (15)):
Ty, = el U P R B
1—¢p wW=€EH T €L T wl .

Combining these Egs. with Egs. (2) and (3), we obtain:

1 Substituting the Egs. (16) and (17), we obtain the analytical
_ Tysx™" —egTy

T relation:
1—cy
T, — xThs — e Ty, w=cp {1 B eppur t+eg (1—cr) (l—a: +x)]
s 1—EL EL+EH (I—EL) 72

In these Egs. there are two temperatures, one of the cycle e egaterp(l—ep) (1 (I—z)m) (18)
and another of the exchanger. Resolvingfer andTy,, we L erten (1—er) H
obtain (cf. [11]):

x xT

T, — eppr~ + 81111(1 - €L)TH @12) 3. Analytical optimal expressions for the effi-
e +en(l—er) ciency (maximum work) and the allocation
T, = o epp(l - i)y (13) (size) of the heat exchangers.

e +em(l—ep)
First, let us look at some special casezdf=c=n;=n2=1
iIn the Eq. (18), then we have the reversible Brayton cy-

w ( of the workW) of the non-endoreversible Brayton cycle cle 1 —2s —3—4s —1inFig. 1), withTy = T3 and

(see Fig. 1) with respect to the maximum energy by mass unit - E Tl'_BUt mCpTy = _mCPT3; thus, the dimensionless
attained in the cycle: work, w = (W/mcpTs), is:

w= 1 -
CwTlh w=( —x)( _x>

whereCyy is as above (Egs. (9) and (10)). ) ) _

wherey = T1, /Ty
We are interested in optimizing the dimensionless wor

hot-side and cold-side are: ratio [Eq. (1)].
T This last expression is a function of only the temperature
qH = €g (1 — TQ) (14) ratiox. To maximize it, we obtain the Curzon-Ahlborn effi-
H ciency ([2]; see also Leff [3]):
Ty
= — — 15
qr = €L (TH M) (15) nrr =1 — Vi* (19)
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Now, we suppose thaty = ¢, = 1, n; andn, posi-  will have the same size -allocation balanced- and it corre-
tives and less than one, in Eq. (18). Then, we have the norsponds to the efficiency of Curzon-Albhorn:
isentropic Brayton cyclé — 2 — 3 — 4 — 1 (see Fig. 1), with
Ty =13 andTL =1T. Again,mCHTH = mecpT1s3, and the NcaA = 1- \//j (27)
dimensionless worky, is:
(see Ref. 1 who obtained the same result but minimizing the
w=(1-2) {771 _ 1M*] entropy generation).
2T The variations of the total number of transfer urisare
related to the heat transfer between the reservoirs and the
working substance. Whel increases, the temperature of
NI = \/1;7 (20) the working substancd&} or 77) tends toward the tempera-
ture of the reservoirsi(y or T7). If there is a decrease iN,
with I = (1/mn2). By Eq. (1) we find the efficiency that the temperatures difference increases.

with p* = (T1/T5); which reaches its maximum value in:

maximizes work: Obviously, if the temperatures corresponding to the heat
exchangers are very close to the working substance tempera-
nNr=1—+/1p (21) tures, T3 tends tol'y andT tends tal;,, the total number of

heat transfer unitd/ increases very fast, excluding any prac-

Now n; = 12 = 1, eg ande, positive and less than one, .. o .
in Eq. (18). We have the endoreversible Brayton cycle (Segcal application. Thus, the effectiveness tends to one and the

Fig. 1), withTy > T3 andT; < Ti. The dimensionless efficiency will correspond to (Eq. (19)):

work, w, is: =
v nrr =1—/p
eger(l—x)x — (1 —x) p
w= (22) Now we consider the optimization of the non-

x[EL-i-EH(l—E:‘L)] R X
_ _ o endoreversible Brayton cycle. The parameters and variables
_Now we include the foIIO\{vmg parametrization of the to- y, and,, ey andey, p = (T1/Ty), © = 1 — 5 are all
tal mventory of heat transfer in Eq. (22). T'he total number ofpositive and less than one. We include in Eq. (22) the same
transfer units)V, of both heat exchangers is: parametrization that in above cycle, for the total inventity

of transfer units of heat (Eqgs. (24) and (25)). Thenis a

Nu+Np =N (23)  function of onlyz andy.
Ny =yN (24) Applying the extreme conditions:
N =(1-y)N (25) dw_ g W
ox dy

Optimizing Eq. (22) with respect to the ratio of tempera-
tures,z, and to the allocation (size) of both heat exchangersve obtain the following analytical expressions fpfsee Eq.

inventory,y, we obtain the following: (1)] andy:
1
y=5 n=1-vi 26) e =1— /I (28)
L . . 1 1
The physical interpretation of these values is the follow- yne = 5+ 5 n(le) (29)

ing: iny = 1/2 the hot-side and cold-side heat exchangers
| wherel, andI, are given by:

(€ =) ¥ (@ =1) + (1= m) (e — V)]

eN (evN — 1) [mna (e — e¥N) — (1 —m2) (e¥N — 1)]
= mnge (x—p) — (1 =) (eNp— )

r eN(x—p)—ny(eNe—p)(1—m)

I, = (30)

(31)

The Egs. foryg andyng [(28) and (29)] are coupled | ] _ _ )
and are difficult to uncouple. But we can establish the fol-With 71 given by the Eq. (21). The inequality (32) is sat-
lowing bounds fom x5 andyy & isfied becausé, > I > 1, wherel = (1/n,7-) is the irre-
versible factor of the non-isentropic cycle (Eq. (20)).

To see the inequality (33), first we wrife (Eq. (31)) as:

1 p _Az=Bu A B -CA
0<yve <5 (33) *“Br-Cu B "Bz-CuB

0<nNNE S NNT (32)

(34)
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whereA = nineeN +1 —1n9; B =eN(mmna +1 —1n2) and  And with; = 1, = 0.8,0.9, we get Fig. 2.

C = eN —na+mna. ClearlyA,B,C > 0; A < B and Now, with the same approximation (Eg. (35)) in Eq. (30)
B?> - CA>0. and (28), we obtain the Figs. 3 and 4.
Furthermore, from the last inequality we find that>
Spif x> Bp. Therefore, Yne
100%
Ax—Bp A 0.50
I, = < =<1
O<l=g—cu=B°
) ) ] o 0.49 90%
and the inequality (33) is satisfied.
WhenI =1 (n; = 2, = 100%), we obtain the values: 0.48
e =1—/p 0.47 - 80%
1
YUNE =5 0.46 1
corresponding to the endoreversible Brayton cycle. There-0.45 1
fore, Egs. (28) and (29) generalize Egs. (26).

The optimal allocation (size) of the heat exchangers has?®44 ) 3 . 5 5 7

the following asymptotic behavior: N
lim . 1 FIGURE 2. Behavior ofyn g versusN, using the approximation
N YNE = 5 I, = (A/B)in Eq. (29) = 72 = 0.8, 0.9.

That is, yny g is asymptotic to the value 05 found by Be-
jan [1], as the inventory of the total number of heat transfer
units is increased. This differs from the result obtained by 1_01
Swanson ( [7]).

Also, the efficiency)y g has the following asymptotic be- 4 5-
havior:
: 0.6 -
A}gnoo NNE = 1NI

whereny  is the efficiency that maximizes work in the Bray- 0.4 -
ton cycle with only internal irreversibilities (see Eq. (21))
02"

4. Numerical results

In Ref. 4 the influence of the isentropic efficiencigsand 01 02 03 04 05 06 07 08 W
2 on th_e maximum power output is ?S'_[abl'ShEd for a NONk 5uRE 3. Behavior ofnn e versusy, using the approximation
isentropic Brayton cycle. Several realistic values were takery . (A/B)inEq. (29).71 = 12 = 0.8,0.9 and N = 3,6.

for the compressor and the turbine efficiencies, all of them
above0.90. In Ref. 9 the power optimization of an irre- M
versible Brayton heat engine is discussed, taking the com-
pressor efficiency ag, = 0.85 and the turbine efficiency 107
asn; = 0.9. We can then, take the following realistic val-

ues for the isentropic efficiencies of turbine and compressor: 0.8 1
m = n2 = 0.8, 0.9. For the total number of heat transfer
units V, we take the value df, so there is a finite difference 0.6 -
of temperatures, sinc& = 6 tends to the non-isentropic.

Brayton cycle without external irreversibilities. 0.4
Also, if we approximateyy  with
7 A 1 0.2 7 n NE 1 N
= = <
B

since A/B is an upper bound of, and A = B if 01 02 03 04 05 06 07 08 M
m = 1, = 100% [see Eq. (34)], we obtain:

1 1 A FIGURE 4. Behavior ofny g andnn versusu, using the approx-

YNE 2 3 + N In (B) (35) imationI, = (A/B) inthe Eq. (29)n1 = 12 = 0.9 andN = 3.
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In Fig. 2 we can see the behavior of the allocation (size)The procedure for bounding these coupled expressions and
of the heat exchangers in the hot and cold sides. In the Figs.tBeir asymptotic behavior are outstanding, since with these
and 4 we can see that the efficiengyz can be well ap- expressions a more realistic approximation than Bejan’s

proached by the efficienayy ;. model is obtained, moreover this model could be adjusted.
We find some expressions for efficiency and allocation (size)
5. Conclusions that can be used for real gas turbine plants. In particular, our

results can be used to maximize the work output relating it
The results found provide us with important information to the temperature ratio, optimal heat exchangers allocation
about the performance of Brayton-like cycles, including the(size) with the endoreversible cyclg & 0.5), or optimal
ideal cycle and those with internal and external irreversibili-neat exchangers allocation (size) with the non-endoreversible
ties (endoreversible and non-endoreversible). cycle yve =1/2+ (1/2N) In1,,).

This study combines the first and second law in order to  The approximation made fayy , with realistic values
develop new analytical expressions, both for efficiency andor the isentropic efficiencies of turbine and compressor (see
allocation, when we optimize work output by the- NTU Fig. 2), gives an allocation for the heat exchanggrBhat
method. Optimization is carried out by the use of temperaturés approximately2 — 4% less than Bejan’s value. This re-
ratio (z) and optimal allocation (size) for the heat exchang-sult shows that the size of the heat exchanger in the hot side
ers (). decreases. This optimal allocation will lead to better power

The analysis done in this paper for the non-endoreversiblglant designs, lower pumping and maintenance costs.
Brayton cycle generalizes the Bejan model for irreversible  Finally, we can apply the method developed in Ref. 13
power plants, and it is asymptotic to Bejan's value, for theyith the expressions found (Egs. (28) and (29)) to maximize
allocation. This result is more realistic than the one obtaineghe efficiency, with respect to the pressure ratio and the total
by Swanson. inventory of the heat transfer units, of this cycle. Also, the

The maximum work output occurs when tHeI'U in-  results of this work can be compared, to the results obtained

creases{ = 6). This happens because of the temperaturesor regenerative Brayton cycles in Ref. 16 and extended. This
in the cycle {1, T5) tend toward the temperatures of the heatyork is under way.

exchangersi(y, Ty). This situation can be reached just if the
heat exchangers operate with phase change or greater flow
rates.
The analytical expressions found for the efficiency that\CKnowledgement
develops maximum work and the optimal allocation (size) of

heat exchangers are: The authors wish to acknowledge the very helpful comments
and suggestions made by Alethigaxuez-Morilla. This
e =1-=+vIp work was supported by the Program for Professional Devel-
1 1 opment in Automation, through the grant from the Universi-
yNE =5+ 5 In (Lz) - dad Aubnoma Metropolitana and Parker Haniffineco.
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