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In this paper we analyze a Brayton cycle with external and internal irreversibilities. The external ones come from heat transfer with coun-
terflow heat exchangers in the cold and hot sides; the internal irreversibilities are given by the isentropic efficiencies of the compressor and
turbine. Optimization is carried out with respect to the pressure ratio and the total inventory of the heat transfer units, using theε-NTU
method. We show the analytical expressions for the efficiency that mazimizes work and the optimal allocation (size) of heat exchangers. We
also analyze the asymptotic behavior of these expressions. The results obtained extend a Bejan’s model and are more general and useful.

Keywords: Thermodynamics Optimization, heat engines. internal and external irreversibilities.

En este trabajo analizamos un ciclo Brayton con irreversibilidades externas e internas. Las externas provienen de la transferencia de calor
mediante intercambiadores de calor de flujo cruzado de los lados frı́o y caliente; las irreversibilidades internas son producidas por las
eficiencias isoentrópicas del compresor y la turbina. La optimización se realiza con respecto a la razón de presiones y al inventario total
del número de unidades de trasferencia de calor, empleando el métodoε-NTU. Mostramos las expresiones analı́ticas para la eficiencia que
maximiza el trabajo y la dimensión óptima de los intercambiadores de calor. También analizamos el comportamiento asintótico de estas
expresiones. Los resultados obtenidos extienden un modelo de Bejan y son másútiles y generales.

Descriptores: Optimizacíon termodińamica, ḿaquinas t́ermicas, irreversibilidades internas y externas.

PACS: 44.60.+k; 44-90.+c

1. Introduction

The classical air standard Brayton cycle has been used as a
model of the gas turbine heat engine. This cycle results in
unrealistically high performance predictions. Recently, there
has been renewed the analysis of Brayton-like cycles by var-
ious researchers, considering the more practical aspects of
entropy generation, power, power-density and the ecological
and efficiency optimization.

Bejan [1] considered a closed ideal Brayton cycle (en-
doreversible Brayton cycle) operating between an infinite
heat source and an infinite heat sink. He showed that, when
the entropy generation is minimum, the efficiency corre-
sponds to the efficiency of Curzon-Ahlborn [2] and the opti-
mal allocation (size) of hot-side and cold-side heat exchang-
ers is balanced.

Formerly, Leff [3] focused on the idealized Brayton cy-
cle and obtained a Curzon-Ahlborn-like efficiency. Wu [4]
looked at a closed non-isentropic Brayton cycle, without ex-
ternal irreversibilities, and found that the efficiency that max-
imizes the work corresponds to a Curzon-Ahlborn-like effi-
ciency (see also Ref. 5). Later, Sahinet. al[6] determined the
efficiency that maximizes the density of the work. In Ref. 5
we optimize the efficiency of a closed non-isentropic Brayton
cycle.

The optimization of Brayton-like cycles with external ir-
reversibilities started with Bejan. Later, Swanson [7] opti-
mized the Bejan model using a log-mean temperature differ-

ence representation for both the high and low temperatures
heat exchangers and assumed that it is internally operated by
a reversible Carnot cycle. Cheng and Chen [8] made the nu-
merical power optimization for a non-endoreversible Bray-
ton cycle and, later, an ecological optimization in Ref. 9.
Blank [10] optimizes the power for an open Brayton cycle
with a finite interactive heat reservoir. Chenet al. [11] car-
ried out the numerical optimization for density power and dis-
tribution of heat exchanger operation for the endoreversible
Brayton cycle. In the optimization made in these latter
works, except Blank, the proposal made by Andresen and
Gordon [12] was used: for the heat exchanger operation in
the hot-side and the cold-side, a single-pass counterflow heat
exchanger can represent the optimal solution.

Recently, in Ref. 13 we analyzed the maximum effi-
ciency of a non-endoreversible Brayton cycle: the internal
irreversibilities are given by the isentropic efficiencies of the
compressor and turbine, and the external irreversibilities cor-
responding to the heat transfer in the isobaric processes were
modelled by the coupled, Andresen-Gordon proposal, single-
pass counterflow heat exchangers, using theε−NTU method
(effectiveness- number of transfer unit, see Ref. 14).

In this work we analyze the same non-endoreversible
Brayton cycle. We do the optimization by a parametrization
of the total inventory of the heat transfer units and the pres-
sure ratio; the compressor and turbin efficiencies are fixed.
We find optimal expressions for the efficiency that maximizes
work for the allocation (size) of the heat exchanger inventory.
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We determine bounds for both expressions and compare the
numerical results respecting the endoreversible Brayton cy-
cle.

This paper is organized as follows. In the Sec. 2, we use
the ε − NTU method, for the external irreversibilities, and
the isentropic efficiencies of turbine and compressor, for the
internal irreversibilities, to find the relation for the dimen-
sionless work. In the section3, we show the optimal expres-
sions for efficiency (maximum work) and allocation (size)
of the heat exchangers, we present some limit cases of our
model and we analize the asymptotic behavior of the model
with respect to the endoreversible model. In Sec. 4, numer-
ical results are presented, on the behavior of the allocation
with respect to the total number of transfer units and of the
efficiency (maximum work) with respect to mininimum and
maximum temperature ratio. In the conclusions, we propose
that the allocation for the heat exchangers should be approxi-
mately 2–4% less than the Bejan’s value; thus, the size of the
heat exchanger in the hot side decreases.

2. The relation for the dimensionless work.

We consider a non-endoreversible Brayton cycle shown in
Fig. 1.

The reversible Brayton cycle (1− 2s− 3− 4s− 1) effi-
ciency is given by:

η = 1− x (1)

wherex = ε1−(1/γ), with ε = (p2s/p1) the pressure ra-
tio (maximum pressure divided by minimum pressure) and
γ = (cp/cv), wherecp is the constant-pressure specific heat
andcv is the constant-volume specific heat. Furthermore, for
the reversible cycle the following temperature relations are
satisfied:

T2s =
T1

x
(2)

T4s = T3x (3)

wherex is given by the Eq. (1). Henceforth,x denotes the
working substance temperature ratio.

Considering a non-isentropic Brayton cycle, without ex-
ternal irreversibilities (see1− 2− 3− 4− 1, cycle in Fig. 1)
with the isentropic efficiencies of the turbine and compressor
η1 andη2 given by ( [15]):

η1 =
T3 − T4

T3 − T4s
(4)

η2 =
T2s − T1

T2 − T1
(5)

we obtained the following temperature relations ( [5]):

T2 = T1

(
1 +

1− x

η2x

)
(6)

T4 = T3 (1− η1(1− x)) (7)

FIGURE 1. A non-endoreversible Brayton cycle.

whereT3, T1 are the maximum and minimum temperatures
achieved in the reversible cycle.

We now, consider an endoreversible Brayton cycle with
external irreversibilities, temperature reservoirs given by the
constant temperaturesTH andTL (since the substance can
be in phase change or infinite temperature reservoirs) and in-
ternally reversible:η1 = η2 = 100% (see Fig. 1). In this
cycle, two single-pass counterflow heat exchangers are cou-
pled toTH andTL. We calculate the heat transfer between
the reservoir and the working substance using the log mean
temperature difference (LMTD). The heat transfer balance
for the hot-side is:

QH = UHAHLMTDH = mcp (T3 − T2s)

whereH denotes the hot-side,U is the global heat transfer
coefficient per area unit,A is the superficial area of the ex-
changer andm is the substance working mass. TheLMTDH

is given by [14]:

LMTDH =
TH − T2s − (TH − T3)

log TH−T2s

TH−T3

The number of transfer units (NTU ) of the hot-side,NH ,
is [14]:

NH =
UHAH

mcp
=

T3 − T2s

LMTDH

and so,

eNH =
TH − T2s

T3 − T2s

the effectiveness is:

εH = 1− e−NH =
TH − T3

TH − T2s
(8)
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Assuming that the heat exchangers are counterflow, the
heat conductance of the hot-side (cold side) isUHAH

(ULAL) and the thermal capacity rate (mass and specific heat
product) of the working substance isCW .

The heat transfer balance results in:

QH = CW εH (TH − T2s) = CW (T3 − T2s) (9)

Similarly, the balance for the cold-side is given by:

QL = CW εL (T4s − TL) = CW (T4s − T1) (10)

with εL given by:

εL = 1− e−NL =
T1 − TL

T4s − TL
(11)

As the effectiveness has expressions analogs to the isen-
tropic efficiencies (Eqs. (4), (5) and (8), (11)), we can make a
similar analysis to the non-isentropic cycle, without external
irreversibilities.

The temperature reservoirsTH and TL are fixed. By
Eqs. (9) and (10) we obtain the temperaturesT2s andT4s:

T2s =
T3 − εHTH

1− εH

T4s =
T1 − εLTL

1− εL

Combining these Eqs. with Eqs. (2) and (3), we obtain:

T2s =
T4sx

−1 − εHTH

1− εH

T4s =
xT2s − εLTL

1− εL

In these Eqs. there are two temperatures, one of the cycle
and another of the exchanger. Resolving forT2s andT4s, we
obtain (cf. [11]):

T2s =
εLµx−1 + εH(1− εL)

εL + εH(1− εL)
TH (12)

T4s =
εHx + εLµ(1− εH)

εL + εH(1− εL)
TH (13)

whereµ = TL/TH .
We are interested in optimizing the dimensionless work,

w ( of the workW ) of the non-endoreversible Brayton cycle
(see Fig. 1) with respect to the maximum energy by mass unit
attained in the cycle:

w =
W

CW TH

whereCW is as above (Eqs. (9) and (10)).
The dimensionless expressions,q = Q/(CW TH), for the

hot-side and cold-side are:

qH = εH

(
1− T2

TH

)
(14)

qL = εL

(
T4

TH
− µ

)
(15)

with µ = (TL/TH) and εH , εL given by the Eqs. (8)
and (11); but instead of the temperaturesT2s, T4s, now the
temperatures involved areT2, T4. Thus,εH andεL are given
by:

εH =
TH − T3

TH − T2
and εL =

T1 − TL

T4 − TL

We find expressions for temperaturesT2 andT4, includ-
ing the isentropic efficienciesη1 andη2, effectivenessεH and
εL, and the parameterµ (that is, the ratio between the tem-
peratures of hot-side and cold-side). Combining Eqs. (2), (3),
(6), (7), (12) and (13), we have:

T2 =

[
εLµx−1 + εH (1− εL)

] (
1−x
η2

+ x
)

[εL + εH (1− εL)]
TH (16)

T4 =
[εHx + εLµ (1− εH)]

(
1
x − (1−x)η1

x

)

[εL + εH (1− εL)]
TH (17)

The workw of the non-endoreversible cycle is (Eqs. (14)
and (15)):

w = εH

[
1− T2

TH

]
− εL

[
T4

TH
− µ

]
.

Substituting the Eqs. (16) and (17), we obtain the analytical
relation:

w = εH

[
1− εLµx−1+εH (1−εL)

εL+εH (1−εL)

(
1−x

η2
+ x

)]

×εL

[
εHx+εLµ (1−εH)

εL+εH (1−εL)

(
1
x
− (1−x) η1

x

)
−µ

]
(18)

3. Analytical optimal expressions for the effi-
ciency (maximum work) and the allocation
(size) of the heat exchangers.

First, let us look at some special cases. IfεH=εL=η1=η2=1
in the Eq. (18), then we have the reversible Brayton cy-
cle (1 − 2s − 3 − 4s − 1 in Fig. 1), with TH = T3 and
TL = T1. But mCHTH = mcP T3; thus, the dimensionless
work, w = (W/mcP T3), is:

w = (1− x)
(

1− µ∗

x

)

with µ∗ = T1/T3 andx is the working substance temperature
ratio [Eq. (1)].

This last expression is a function of only the temperature
ratio x. To maximize it, we obtain the Curzon-Ahlborn effi-
ciency ( [2]; see also Leff [3]):

ηRT = 1−√µ∗ (19)
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Now, we suppose thatεH = εL = 1, η1 andη2 posi-
tives and less than one, in Eq. (18). Then, we have the non-
isentropic Brayton cycle1− 2− 3− 4− 1 (see Fig. 1), with
TH = T3 andTL = T1. Again,mCHTH = mcP T3, and the
dimensionless work,w, is:

w = (1− x)
[
η1 − 1

η2x
µ∗

]

with µ∗ = (T1/T3); which reaches its maximum value in:

xNI =
√

Iµ∗ (20)

with I = (1/η1η2). By Eq. (1) we find the efficiency that
maximizes work:

ηNI = 1−
√

Iµ∗ (21)

Now η1 = η2 = 1, εH andεL positive and less than one,
in Eq. (18). We have the endoreversible Brayton cycle (see
Fig. 1), with TH > T3 andTL < T1. The dimensionless
work, w, is:

w =
εHεL (1− x)x− (1− x)µ

x [εL + εH (1− εL)]
(22)

Now we include the following parametrization of the to-
tal inventory of heat transfer in Eq. (22). The total number of
transfer units,N , of both heat exchangers is:

NH + NL = N (23)

NH = yN (24)

NL = (1− y) N (25)

Optimizing Eq. (22) with respect to the ratio of tempera-
tures,x, and to the allocation (size) of both heat exchangers
inventory,y, we obtain the following:

y =
1
2

η = 1−√µ (26)

The physical interpretation of these values is the follow-
ing: in y = 1/2 the hot-side and cold-side heat exchangers

will have the same size -allocation balanced- and it corre-
sponds to the efficiency of Curzon-Albhorn:

ηCA = 1−√µ (27)

(see Ref. 1 who obtained the same result but minimizing the
entropy generation).

The variations of the total number of transfer unitsN are
related to the heat transfer between the reservoirs and the
working substance. WhenN increases, the temperature of
the working substance (T3 or T1) tends toward the tempera-
ture of the reservoirs (TH or TL). If there is a decrease inN,
the temperatures difference increases.

Obviously, if the temperatures corresponding to the heat
exchangers are very close to the working substance tempera-
tures,T3 tends toTH andT1 tends toTL, the total number of
heat transfer unitsN increases very fast, excluding any prac-
tical application. Thus, the effectiveness tends to one and the
efficiency will correspond to (Eq. (19)):

ηRT = 1−√µ∗

Now we consider the optimization of the non-
endoreversible Brayton cycle. The parameters and variables
η2 andη1, εH andεL, µ = (TL/TH), x = 1 − η are all
positive and less than one. We include in Eq. (22) the same
parametrization that in above cycle, for the total inventoryN
of transfer units of heat (Eqs. (24) and (25)). Then,w is a
function of onlyx andy.

Applying the extreme conditions:

∂w

∂x
= 0 and

∂w

∂y
= 0

we obtain the following analytical expressions forη [see Eq.
(1)] andy:

ηNE = 1−
√

Iyµ (28)

yNE =
1
2

+
1

2N
ln (Ix) (29)

whereIy andIx are given by:

Iy =

(
eN − eyN

) [
eN

(
eyN − 1

)
+ η2 (1− η1)

(
eN − eyN

)]

eN (eyN − 1) [η1η2 (eN − eyN )− (1− η2) (eyN − 1)]
µ (30)

Ix =
η1η2e

N (x− µ)− (1− η2)
(
eNµ− x

)

eN (x− µ)− η2 (eNx− µ) (1− η1)
(31)

The Eqs. forηNE andyNE [(28) and (29)] are coupled
and are difficult to uncouple. But we can establish the fol-
lowing bounds forηNE andyNE :

o < ηNE ≤ ηNI (32)

0 < yNE ≤ 1
2

(33)

with ηNI given by the Eq. (21). The inequality (32) is sat-
isfied becauseIy ≥ I ≥ 1, whereI = (1/η1η2) is the irre-
versible factor of the non-isentropic cycle (Eq. (20)).

To see the inequality (33), first we writeIx (Eq. (31)) as:

Ix =
Ax−Bµ

Bx− Cµ
=

A

B
− µ

B2 − CA

(Bx− Cµ) B
(34)
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whereA = η1η2e
N + 1 − η2; B = eN (η1η2 + 1 − η2) and

C = eN − η2 + η1η2. ClearlyA,B, C > 0; A ≤ B and
B2 − CA > 0.

Furthermore, from the last inequality we find thatx >
C
B µ if x > B

Aµ. Therefore,

0 < Ix =
Ax−Bµ

Bx− Cµ
≤ A

B
≤ 1

and the inequality (33) is satisfied.
WhenI = 1 (η1 = η2 = 100%), we obtain the values:

ηNE = 1−√µ

yNE =
1
2

corresponding to the endoreversible Brayton cycle. There-
fore, Eqs. (28) and (29) generalize Eqs. (26).

The optimal allocation (size) of the heat exchangers has
the following asymptotic behavior:

lim
N→∞

yNE =
1
2

That is,yNE is asymptotic to the value of12 found by Be-
jan [1], as the inventory of the total number of heat transfer
units is increased. This differs from the result obtained by
Swanson ( [7]).

Also, the efficiencyηNE has the following asymptotic be-
havior:

lim
N→∞

ηNE = ηNI

whereηNI is the efficiency that maximizes work in the Bray-
ton cycle with only internal irreversibilities (see Eq. (21))

4. Numerical results

In Ref. 4 the influence of the isentropic efficienciesη1 and
η2 on the maximum power output is established for a non-
isentropic Brayton cycle. Several realistic values were taken
for the compressor and the turbine efficiencies, all of them
above0.90. In Ref. 9 the power optimization of an irre-
versible Brayton heat engine is discussed, taking the com-
pressor efficiency asη2 = 0.85 and the turbine efficiency
asη1 = 0.9. We can then, take the following realistic val-
ues for the isentropic efficiencies of turbine and compressor:
η1 = η2 = 0.8, 0.9. For the total number of heat transfer
unitsN , we take the value of3, so there is a finite difference
of temperatures, sinceN = 6 tends to the non-isentropic.
Brayton cycle without external irreversibilities.

Also, if we approximateyNE with

Ix w A

B
< 1

since A/B is an upper bound ofIx and A = B if
η1 = η2 = 100% [see Eq. (34)], we obtain:

yNE w 1
2

+
1

2N
ln

(
A

B

)
(35)

And with η1 = η2 = 0.8, 0.9, we get Fig. 2.
Now, with the same approximation (Eq. (35)) in Eq. (30)

and (28), we obtain the Figs. 3 and 4.

FIGURE 2. Behavior ofyNE versusN , using the approximation
Ix w (A/B) in Eq. (29)η1 = η2 = 0.8, 0.9.

FIGURE 3. Behavior ofηNE versusµ, using the approximation
Ix w (A/B) in Eq. (29).η1 = η2 = 0.8, 0.9 andN = 3, 6.

FIGURE 4. Behavior ofηNE andηNI versusµ, using the approx-
imationIx w (A/B) in the Eq. (29).η1 = η2 = 0.9 andN = 3.
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In Fig. 2 we can see the behavior of the allocation (size)
of the heat exchangers in the hot and cold sides. In the Figs. 3
and 4 we can see that the efficiencyηNE can be well ap-
proached by the efficiencyηNI .

5. Conclusions

The results found provide us with important information
about the performance of Brayton-like cycles, including the
ideal cycle and those with internal and external irreversibili-
ties (endoreversible and non-endoreversible).

This study combines the first and second law in order to
develop new analytical expressions, both for efficiency and
allocation, when we optimize work output by theε − NTU
method. Optimization is carried out by the use of temperature
ratio (x) and optimal allocation (size) for the heat exchang-
ers (y).

The analysis done in this paper for the non-endoreversible
Brayton cycle generalizes the Bejan model for irreversible
power plants, and it is asymptotic to Bejan’s value, for the
allocation. This result is more realistic than the one obtained
by Swanson.

The maximum work output occurs when theNTU in-
creases (N = 6). This happens because of the temperatures
in the cycle (T1, T3) tend toward the temperatures of the heat
exchangers (TL, TH ). This situation can be reached just if the
heat exchangers operate with phase change or greater flow
rates.

The analytical expressions found for the efficiency that
develops maximum work and the optimal allocation (size) of
heat exchangers are:

ηNE = 1−
√

Iyµ

yNE =
1
2

+
1

2N
ln (Ix) .

The procedure for bounding these coupled expressions and
their asymptotic behavior are outstanding, since with these
expressions a more realistic approximation than Bejan’s
model is obtained, moreover this model could be adjusted.
We find some expressions for efficiency and allocation (size)
that can be used for real gas turbine plants. In particular, our
results can be used to maximize the work output relating it
to the temperature ratio, optimal heat exchangers allocation
(size) with the endoreversible cycle (y = 0.5), or optimal
heat exchangers allocation (size) with the non-endoreversible
cycle (yNE = 1/2 + (1/2N) ln Ix).

The approximation made foryNE , with realistic values
for the isentropic efficiencies of turbine and compressor (see
Fig. 2), gives an allocation for the heat exchangersy That
is approximately2 − 4% less than Bejan’s value. This re-
sult shows that the size of the heat exchanger in the hot side
decreases. This optimal allocation will lead to better power
plant designs, lower pumping and maintenance costs.

Finally, we can apply the method developed in Ref. 13
with the expressions found (Eqs. (28) and (29)) to maximize
the efficiency, with respect to the pressure ratio and the total
inventory of the heat transfer units, of this cycle. Also, the
results of this work can be compared, to the results obtained
for regenerative Brayton cycles in Ref. 16 and extended. This
work is under way.
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