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The response matrix of a Bonner sphere spectrometer was calculated by use of the MCNP code. As thermal neutron counter, the spectrc
has a 3.2 cm-diametéiHe-filled proportional counter which is located at the center of a set of polyethylene spheres. The response w
calculated for 0, 3, 5, 6, 8, 10, 12, and 16 inches-diameter polyethylene spheres for neutrons whose energy goes tma01deV.

The response matrix was compared with a set of responses measured with several monoenergetic neutron sources. In this comparis
calculated matrix agrees with the experimental results. The matrix was also compared with the response matrix calculated for the PT
spectrometer. Even though that calculation was carried out using a detailed model to describe the proportional counter; both matrice
agree, but small differences are observed in the bare case because of the difference in the model used during calculations. Other differ
are in some spheres for 14.8 and 20 MeV neutrons, probably due to the differences in the cross sections used during both calculations.

Keywords: Monte Carlo simulations; neutron transport; gas filled counters.

La matriz de respuesta de un espectetro de Esferas de Bonner ha sido calculada medianteligga MCNP. Como detector de neutrones
térmicos se utilib un contador proporcional de 3.2 cm damiietro que se ubica en el centro de un conjunto de esferas de polietileno. La
respuesta, ante neutrones de 10-9 a 20 MeV, se éafrarh esferas cuyoanetro es de 0, 3, 5, 8, 10, 12 y 16 pulgadas. La matriz de
respuesta se comgacon un conjunto de respuestas determinado experimentalmente con varias fuentes de neutrones atimosertarg
esta compara6n la matriz calculada coincide con los resultados experimentales. La matriztasebdompdrcon la matriz calculada para

el espectometro PTB C donde el detector se mdadeh forma detallada. De esta compabacise observaron pedies diferencias debidas

a que en esta investigaci el detector se modelen forma simple. Otras diferencias se observaron para algunas esferas y para neutron
de 14.9 y 20 MeV, la explicadn probable de estas diferencias se atribuya a que en aralootos se utilizaron versiones diferentes de los
valores de las secciones eficaces.

Descriptores: Monte Carlo; transporte de neutrones; contador proporcional.

PACS: 24.10.Lx; 28.20.Gd; 29.40.Cs

1. Introduction the sphere are moderated as they are transported inside the
polyethylene, arriving in the sphere’s center as thermal neu-
Since 1932 advances in neutron spectrometry, which has begns, where they are detected by the central counter [6].
come an important tool in other fields such as nuclear tech-
nology, have promoted the development of nuclear physics, In the original design, the BSS has a small cylindrical,
fusion plasma diagnostics, radiotherapy, and radiation prog.4 cm x 0.4 @ cm SLil(Eu) scintillator. However, ther-
tection. The introduction of the multisphere spectrometer tomoluminiscent dosimeters (TLD) [7-9], gold [10], and other
gether with the achievements in computer unfolding methodgctivation foils [11], track detectors [12], and BIFL3] or
have produced advances in neutron spectrometry from 196fHe [14] filled proportional counters have been used as ther-
to 1979. During this period, other notable developments havenal neutron detectors. The counters, that are most com-
been the applications of semiconductor detectors to neutromonly used with BSS, detect thermal neutrons through the
spectrometry and the introduction of superheated drop detegollowing exoenergetic nuclear reactiorfd:i(n, a)3H with
tors [1]. Q = 4.78 MeV, and cross section 940 barH&8B(n, «)Li,
Since its introduction in 1960, the Bonner sphere specwhich has a Q = 2.31 MeV (93%) or 2.79 MeV (7%)
trometer (BSS) [2], also known as multisphere spectrometekyith a cross section of 3837 barns, attde(n, pfH with
has been the only instrument which enables the measuremegt= 0.764 MeV and cross section 5333 barns. In Fig. 1 the

of neutron spectra in a wide range of energies, from thermagross sections of these nuclear reactions are shown.
up to at least 20 MeV [3]. By adding intermediate shells

of high mass-number material to the moderator spheres, the When the detector is located inside the polyethylene
spectrometer’s response can be raised up to a few GeV [4,58phere the response is modified. This gives rise to an over-

The BSS consists of a set of polyethylene spheres oéll response function for each set of thermal neutron detector
different diameter. At the center of each sphere a therand moderating sphere; the response function is also known
mal neutron detector is located. Fast neutrons impinging oas response matrix [5].
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4 The model SP90 is a commercially available 3He-filled
8 oyLi | spherical proportional counter that is used as thermal neu-
i tron detector in BSS. Itis 3.2 cm in diameter, and is made by
] Centronic Ltd, UK. The response matrix of a BSS with this
particular counter has been experimentally determined [19].
Using the Monte Carlo code MCNP 4C [20], the thermal
neutron detector and polyethylene spheres were modeled and
the response matrix was calculated. The proportional counter
was modeled as a hollow sphere filled witHe at 200 kPa
with 4.9431 x 16° 3He atoms per cth The gas enclo-
sure was modeled as a spherical shell with 1.60 cm inner ra-
dius and 1.65 cm outer radius, made of stainless steel. The
L ] counter wall composition was 70.5% Fe, 19.5% Cr and 10%
107 3 R Ni. Cross sections were obtained from the ENDF/B-VI li-
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Neutron energy [ MeV ] Moderating spheres were modeled as 0.946 g<tm
polyethylene-spheres. Chemical binding and crystalline ef-
FIGURE 1. Cross sections of the most commonly nuclear reactionsfects of polyethylene during thermal neutron scattering were
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used in BSS to detect thermal neutrons. taken into account using th&®, 3) treatment [20]. A disk-
shaped source term with the same diameter as the moderat-
The detector’s count rate (C), response matrix (E)),  jng sphere was used to represent a monoenergetic neutron
and the neutron spectrun®g(E)) are related through the source whose neutrons were directed towards the polyethy-
Fredholm integral equation of the first kind lene sphere.
During the neutron transport calculation, three nuclear re-
By actions, (n, total), (n, n") and (n, p), occurring inside the ac-
C = / Ry (E) ®p (E) dE (1) tive volume of the detector, were determined. The spectrom-

eter’'s response was defined only through the (n, p) reactions
per neutron emitted by the source term. Polyethylene spheres
Once the neutron spectrum is obtained, the dose equivalerffr€ modeled as a series of concentric polyethylene shells,
H, is calculated using equation (2) each with a different neutron importance, increasing as the
sphere center was approached. This was the only variance

E; reduction technique used in the calculations. Throughout the

MCNP calculations, the number of histories used for each

H = / he (E) @5 (E) dE )

E;

sphere was long enough to have uncertainties less than 1%.
B; The responses were calculated for 27 neutron energies
ranging from 10° to 20 MeV. Diameters of moderating

Here hy (E) represents the fluence-to-dose equivalent coefspheres were 0, 7.62, 12.70, 15.24, 20.32, 25.40, 30.48, and
ficients [15]. Other kind of doses are obtained using proper0.64 cmi.e. 0, 3, 5, 6, 8, 10, 12 and 16 inches, respectively.
fluence-to-dose coefficients.

It is highly desirable to determine the response matrix3. Results and Discussion
experimentally by use of monoenergetic neutrons. How-
ever, this is only practical for few monoenergetic neutronsip Fig. 2, the response functions for 0, 3, 5, 6, 8, 10, 12, and
with energies greater than a few keV, and for thermal neu4 6 inches-diameter polyethylene spheres as a function of neu-
trons [6]. Therefore the responses have been determined yon energy are shown. The bare detectbte proportional
means of calculations using the one-dimensional discrete okounter without moderator) has the maximum response for
dinates transport code (ANISN) calculations [16], or Monte10-9 MeV neutrons and the minimum response for 20 MeV
Carlo methods with the MCNP code [17,18] and high-energyheutrons; between these two extremes the response is approx-
codes [4,5]. imately 1/v. As the sphere’s diameter increased the response

In this investigation, the response matrix of a Bonnertends to decrease for thermal and epithermal neutrons. On
spectrometer with &He filled proportional counter has been the other hand, the maximum in the responses is shifted to
calculated using Monte Carlo methods with updated croshigher energies for large spheres. This, agrees with the work
section libraries. This matrix was compared with experimen-of Thomas [25], and Wigel, and Alevra [14]. The calculated
tal and calculated responses. discrete set of responses is shown in Table I.
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TABLE |. Responses, in reactions per unit fluence, for each sphere in function of neutron energy.
Energy 0 7.62 12.70 15.24 20.32 25.40 30.48 40.64
[MeV] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]
1.000E-09 6.289E+00 5.876E-01 2.807E-01 1.850E-01 7.607E-02 2.922E-02 1.068E-02 1.207E-03
4.140E-07 1.029E+00 2.443E+00 1.312E+00 8.666E-01 3.501E-01 1.337E-01 4.972E-02 6.011E-03
6.826E-07 8.161E-01  2.597E+00  1.466E+00  9.698E-01 3.946E-01 1.497E-01 5.515E-02 6.914E-03
1.445E-06 5.730E-01 2.731E+00 1.667E+00 1.114E+00 4.543E-01 1.728E-01 6.428E-02 7.957E-03
3.059E-06 4.000E-01 2.779E+00 1.846E+00 1.246E+00 5.096E-01 1.944E-01 7.203E-02 9.052E-03
6.476E-06 2.781E-01 2.780E+00 2.004E+00 1.374E+00 5.648E-01 2.158E-01 7.943E-02 9.834E-03
1.371E-05 1.929E-01  2.689E+00 2.118E+00 1.475E+00  6.118E-01 2.336E-01 8.481E-02 1.056E-02
2.902E-05 1.336E-01 2.566E+00 2.211E+00 1.561E+00 6.573E-01 2.516E-01 9.258E-02 1.171E-02
6.144E-05 9.278E-02 2.424E+00 2.278E+00 1.638E+00 6.978E-01 2.671E-01 9.778E-02 1.237E-02
1.301E-04 6.442E-02 2.267E+00 2.327E+00 1.710E+00 7.391E-01 2.847E-01 1.051E-01 1.360E-02
2.754E-04 4.488E-02  2.106E+00 2.367E+00  1.769E+00  7.800E-01 3.021E-01 1.113E-01 1.417E-02
5.929E-04 3.115E-02 1.952E+00 2.386E+00 1.825E+00 8.211E-01 3.192E-01 1.176E-01 1.510E-02
1.234E-03 2.211E-02 1.805E+00 2.402E+00 1.875E+00 8.548E-01 3.375E-01 1.236E-01 1.551E-02
2.613E-03 1.571E-02 1.658E+00 2.408E+00 1.920E+00 8.995E-01 3.583E-01 1.321E-01 1.629E-02
5.531E-03 1.126E-02  1.523E+00  2.404E+00 1.963E+00  9.472E-01 3.782E-01 1.405E-01 1.768E-02
1.171E-02 8.227E-03 1.394E+00 2.406E+00 2.011E+00 9.947E-01 4.053E-01 1.502E-01 1.915E-02
2.479E-02 6.151E-03 1.269E+00 2.423E+00 2.087E+00 1.074E+00 4.439E-01 1.655E-01 2.072E-02
5.247E-02 4.569E-03 1.148E+00 2.464E+00 2.197E+00 1.193E+00 5.023E-01 1.905E-01 2.441E-02
1.111E-01 3.418E-03  1.011E+00  2.529E+00  2.381E+00 1.391E+00  6.114E-01 2.373E-01 3.024E-02
2.237E-01 2.736E-03 8.468E-01 2.582E+00 2.605E+00 1.694E+00 8.115E-01 3.301E-01 4.296E-02
4.508E-01 2.425E-03 6.466E-01 2.529E+00 2.786E+00 2.149E+00 1.182E+00 5.381E-01 8.505E-02
9.072E-01 2.397E-03 4.355E-01 2.251E+00 2.757E+00 2.593E+00 1.755E+00 9.738E-01 2.192E-01
1.872E+00  2.731E-03 2.481E-01 1.704E+00  2.346E+00  2.763E+00  2.323E+00  1.640E+00  6.212E-01
3.679E+00 2.323E-03 1.277E-01 1.075E+00 1.611E+00 2.213E+00 2.187E+00 1.815E+00 9.658E-01
7.408E+00 1.630E-03 5.789E-02 6.015E-01 9.934E-01 1.621E+00 1.931E+00 1.924E+00 1.519E+00
1.492E+01 9.629E-04 2.768E-02 3.072E-01 5.323E-01 9.642E-01 1.255E+00 1.389E+00 1.370E+00
2.000E+01 7.411E-04 1.884E-02 2.174E-01 3.832E-01 7.219E-01 9.799E-01 1.122E+00 1.188E+00

Uncertainties areC 1%
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FIGURE 2. Calculated response matrix for BSS witHe detector.
Neutron energy [ MeV ]

. . ) FIGURE 3. Calculated and measured responses for the BSS with
Response functions are similar in shape independently ofyyq getector.

the thermal neutron detector, except for the bare case whose

response 1 strongly influenced by the cross section. Thugeio. For other spheres there is a good agreement between
for "Lil(Eu) and TLDs, there is a resonance between 0.1, responses except for the two last neutron energies. In the

and 0.5MeV [17,18] due to théLi cross section. EVeN . qe of the bare detector, the differences may be attributed to
though these are solid detectors, their responses go frOIEﬂe details included in the model used in the PTB C cal-
10~° upto 0.2 cm, being smaller than those for the BSS with

3He detector, whose responses go fromm10p to approxi- T e B
mately 7 cm3. This is mainly due to the differences between P ]
theSLi(n, «)>H and®He(n, pfH cross section.

The calculated matrix was compared with a set of ex-
perimental values reported for a BSS witHe [19]. This
comparison is shown in Fig. 3. Here the 16 inches-diameter
sphere was not included because no experimental data ar .
reported for it. For the bare detector, there is only a single o1
response experimentally reported. By analyzing the calcu- —. g
lated and measured responses, a good agreement was foun's
This matrix is better than the set of calculated responses use(™
originally by Alevraet al. [19] to compare their experimental ~ * '°*F
data. i

The International Atomic Energy Agency has published 1
two technical reports [22,23] in which the updated data about ;5= |
detector responses, using a consistent energy structure, wetr i
compiled. In this data set the response of a BSS Wiith,
known as PTB C, is shown. This response was calculated
in 1993-1994 using a realistic detector model, and was taken "' .
here to compare it with the responses obtained in this work. T SRV AT VT IR RE T IR
In Fig. 4 continuous lines are the calculated responses com- ~ '" 07 107 107 107 107 40T 0% A0% 0T A0 0T A0
piled by the IAEA and discrete dots are the responses calcu-

lated in this study. . . FIGURE 4. Calculated response matrices. Continuous lines are the
It can be seen from Fig. 4, that there are small differencesalculated responses compiled by the IAEA and discrete dots are
between both calculated responses in the case of the bare déte responses calculated in this study.

Neutron energy [ MeV ]
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FIGURE 5. Total response of BSS with different thermal neutron The response m{:ltrlx has been compared _W'th a set.of ex-
detectors. perimentally determined responses. From this comparison a

good agreement was found.

culations. For other spheres the differences observed are at- Good agreement was also observed between our response
tributable to the differences in the polyethylene density andnatrix and the matrix calculated by other scientists, even
to the neutron cross sections used here in comparison witlvhen a simple model of théHe proportional counter was
those used in the PTB C calculations, because between thesed in this work. However, small differences are observed
ENDF/B-V and ENDF/B-VI cross section libraries there are for the bare detector in both calculated responses; differences
significant changes [21]. are also noticed for 14.9 and 20 MeV neutrons, attributed

The total response of BSS witiHe [23], SLil(Eu) [17] to the cross sections used during the calculations and to the
and TLD [18] as a function of neutron energy is shown indifferences in the neutron detector model. Therefore, it is
Fig. 5. Here it can be noticed that the total responses havadvisable that every time a cross-section library is updated,
similar shapes. However their amplitudes are different, bethe response matrix of the BSS must be calculated in order
ing larger for*He and lower for TLD. This difference is due to have data that allow measuring neutron fields with greater
to the cross section and to the nuclei density. Regardless tteecuracy.
neutron detector, the total BSS response is larger for neu- The total response for the BSS with different thermal neu-
trons between 1 and 10 MeV. These neutrons have the largegbn detectors was also determined. Approximately, the re-
fluence-to-dose (personal and ambient) coefficients and akponse has the same shape regardless the thermal neutrol
found in actual situations [9,10,24,26,27], as can be noticedetector. This shape shows larger efficiency for those neu-
in Fig. 6. trons that have larger fluence-to-dose conversion coefficients.
Here, the total response is plotted with the Ambient (h*(E)),However, the total response’s amplitude strongly varies with
Personal (j1a5(10, 0°)) and Effective £7s50) dose per unit  the type of thermal neutron detector due to the difference in
neutron fluence.[28] the cross sections and the nuclei density.
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