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A theory for calculating the relaxation frequengyand the shiféw of exciton resonances in quantum wells with finite potential barriers and
adiabatic surface disorder is developed. The adiabaticity implies that the correlation&rfgththe well width fluctuations is much larger
than the exciton radiug, (R. > ao). Our theory is based on the self-consistent Green'’s function method, and therefore takes into accou
the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exc
resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of
classical limit itself. We present and analyze resultsifbrexciton in a GaAs quantum well with AkGay 7As barriers. It is established

that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and mak
values ofv anddw be quite realistic. In particular, the relaxation frequendpr the ground-state resonance has@ad, almostsymmetric
maximum near the resonance frequengy while the surface-induced resonance shiftvanishes nearg, and has different signs on the
sides of the exciton resonance.

Keywords: Excitons; quantum wells.

Se desarrolla una telar para calcular la frecuencia de relagati y el corrimientodw de las resonancias exaiticas en pozos @nticos
con barreras de potencial finitas y desorden superficial atitcab La adiabaticidad significa que la longitud de corrélade. para las
fluctuaciones del ancho del pozo es mucho mayor que el radidsiaia (R. > ao). Nuestra teda se basa en el&@odo de la funén
autoconsistente de Green y, por lo tanto, toma en cuenta lanaictierente de la dispeési del excibn sobre smisma. Se muestra que
la aproximadbn autoconsistente describe cuantitativamente la resonanciaregaiiguda. Adefs, da una descrigm cualitativamente
correcta de la resonancia durante la tragsicl imite clasico, ascomo dentro del dominio delrhite clasico mismo. Presentamos y
analizamos resultados para el e&nith en un pozo cantico de GaAs con barreras desAlGa 7As. Se establece que la autoconsistencia
y la altura finita de las barreras de potencial influyen significativamente sobre la forimeeaelé las resonancias ekcitcas y hacen que
los valores dev y w sean bastante realistas. En particular, la frecuencia de rélajapiara la resonancia del estado base tiene aximmo
anchq casisimétrico cerca de la frecuencia de resonangjamientras que el corrimientw de la resonancia, inducido por la superficie, se
anula cerca dey Yy tiene signos diferentes a los lados de la resonanciabexcit.

Descriptores: Excitones; pozos @nticos.

PACS: 71.35.-y; 78.67.De

1. Introduction are also modified. In the majority of the investigations, it
has been assumed that the sample surfaces are adiabaticall
In the past few years, the intricate behavior of excitons indisorderedj.e. the roughness correlation lenght is much
surface-disordered semiconductor confined systems (nedearger than the 3D-exciton radiug [32]:
surface potential wells [1, 2], thin films [3-6], quantum-
well [7-27] and quantum-wire [28] structures) has been in- ag < R.. 1)
tensively investigated. In the regime of weak confinement,
the characteristic sizéof the system is much larger than the This assumption has enabled to construct relatively simple,
exciton Bohr radiusyy (d > ag). Here, the relative motion but rather realistic theories for interpreting optical properties
of the electron-hole pair is as in the bulk, except for a distor-of excitons in surface-disordered systems within the regime
tion near sample boundaries at distances of the ordeg.of of weak confinement.
In this regime, the quantization of the exciton center-of-mass In systems such as quantum wells, having a size (width)
motion occurs giving rise to an specific resonance structure id smaller than the exciton radiug (d < ap), the regime
optical spectra [5,29-31] (absorption, transmission, speculasf strong confinement of excitons is realized. Several phe-
and diffuse reflection). Surface roughness alters the spectrumomenological [21,22,25] and microscopic [10-17,19] theo-
of quantized excitons by increasing the damping factor [6,30}ies have been developed for describing the interaction of ex-
and shifting the eigenfrequencies [6]. Consequently, the lineeitons with the inherently rough surfaces of quantum wells.
shape and position of exciton resonances in optical spectfglicroscopic theories are based on the use of the@tihger
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equation for the exciton in-plane center-of-mass motion in anisotropic effective masses of the electron and hole, can
disordered potential. The problem of scattering of excitonbe calculated by using relatively simple equations, which are
center-of-mass by the rough quantum-well surfaces becomesasily analyzable and display explicitly the dependencies of
physically more clear, and can be solved analytically withinanddw upon the parameters of the exciton, interface rough-
the adiabatic regime (1) [19]. The microscopic solution of theness, and exciton-resonance detuning. From the analysis per-
scattering problem for an arbitrary relation between the exciformed below, one can come to an interesting conclusion:
ton radiusag and the roughness correlation lendgthcan be  The type of excitonic resonance and its line-shape are mainly
found either numerically [14, 15], or for the ground-state ex-determined by the competition between the correlation prop-
citon in quasi-2D quantum wells [26, 27]. erties of surface disorder and the finiteness of potential barri-

In the present work, we develop a theory for the exciton-ers of a quantum well. The increase of the correlation radius
surface scattering in quasi-2D quantum wells, whose averageads towards the broad resonance. Otherwise, the less height
well width d satisfies the inequality of potential barriers the sharper and more asymmetric the res-
onance.

The formulation of the problem and the details of self-

whereo is the r.m.s. roughness height. Due to the right conconsistent Green’s function method applied to the electron-
dition in Eq. (2), the Coulomb interaction is suppressed in théiole motion in quasi-2D quantum wells are exhibited in
direction perpendicular to the well plane. So, in analyzing theSecs. 2 and 3. A general expression with its brief anal-
exciton surface scattering, we consider the individual interacysis for the exciton self-energy, whose real and imaginary
tions of the electron and hole with the rough surface in presparts determine respectively the exciton-resonance &bift
ence of their in-plane Coulomb coupling. Unlike the majority and the exciton-surface scattering frequencyis given in
of previous studies, the inherent action of the exciton scattelSec. 4. Finally, in Sec. 5 we calculate and analyze the fre-
ing on itself is taken into account here. Therefore, in ordelguency dependencies ofandéw for a GaAs quantum well
to manage the exciton-surface scattering problem we hawith Alo 3Ga 7As barriers. Here, the predictions of the self-
applied and generalized to the case of two-particle motion¢onsistent approach and the ordinary Born approximation are
the self-consistent Green’s function method. This approackompared. The short report preceding this comprehensive pa-
turns out to be the most appropriate for our purposes becauger has been published in Ref. 33.
it deals with the original microscopic excitonic Hamiltonian,
and introduces thexciton-surface scattering frequenecy
and theexciton-resonance shiftv in a very natural way.

It should be commented here that the self-consistenfys consider a quantum well of average widthbeing con-
Green’s function method was applied in some PrevioUsined within the region
works [16-18, 26, 27]. In two of them [16, 17] short-range
(.6-.Iike) correlation function for interface fluctuations iof E(Fup) < 2o < d. A3)
finitely deepwells was assumed. In such a case (— 0),
both the self-consistent approach and the Ordinary (not SelfHere, CoordinateS&h Specify the transverse to the Welb(
consistent) Born approximation predict qualitatively similar along the growth direction of the well), motion of the elec-
line-shapes for exciton resonances. The advantages of thgn (), or the hole ), respectively. The surface roughness
self-consistent method iS, however, better eXploited with fl-|s described by arandom fUnCtlQl(l’F) of the in_p|ane (e]ec-
nite values of the correlation lengf. [26, 27]. In another  tron or hole) position vectaf. The function(7) is assumed
work [18], theground-state excitofinewidth for a surface- o be a statistically homogeneous and isotropic random pro-

Corrugated quantum well witinfinite barriers was calculated cess with zero average, which is characterized by standard
by using the Fermi golden rule and the self-consistent Boryroperties [34],

approximation. It was shown that the self-consistent ap-
proach gives more reasonable values of the linewidth as they (£(7)) =0, (EFEE)) = PW(F—7]).  (4)
are compared with the experiment. In Ref. 18, it was also
noted that a better (quantitative) agreement with the experfhe angular brackets stand for statistical averaging over the
imental results can be achievedly if the finiteness of the ensemble of realizations of the rough-surface-profile func-
potential barriers is taken into account. Where applicabletion ¢(7). The symbols denotes the root-mean-square
the results of Ref. 18 agree with Refs. 26 and 27, as well ag.m.s.) roughness height. The binary coefficient of corre-
with our present research. lation W(|#]) has the unit amplitudé/(0) = 1, and a typi-
The present theory will be qualitatively restricted to the cal scale of decreas®. (the correlation radius), which is of
common situation of adiabatically disordered surfaces (1)the order of the mean length of surface irregularities. So, our
As will be shown, in the adiabatic regime, the relaxationconsideration supposes that the relie £(7) of the lower
frequencyr and the resonance shiftv of any exciton (not boundary is randomly corrugated while the upper interface,
only the ground-state one, but also next excited states) in rex = d, is, for simplicity, flat. However, such a system is phys-
alistic quantum wellsj.e. with finite potential barriers and ically equivalent to a well with both boundaries being rough,

o <d< ag, (2

2. Problem Statement
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statistically identical, and not intercorrelated [34]. Moreover,the corrections to the exciton eigenenergies are of the order
our method can be easily generalized to systems with arbief (d/ag)? < 1. The fifth and sixth terms are responsible for
trary statistical properties of both quantum-well interfaces. the individual transverse motion of the electron or the hole,
Due to the definition (2) of a quantum well, the excitonic respectively. The quantitiés. (z., 7*.) andUp (zx, 7 ) are the
Hamiltonian’l—lQW can be suitably written in the following confining potentials of the quantum well for the electron and

form the hole,
~ R 9% R? 9* e n? 02
Haw=Fow =y 5 2,07 zop  2me 022 U (Zes Fon) = Unh
n 9 . L 5 H
—MTZ%'FUQ(ZE, Te)+U}L(Zh7 T'h)—ZfLI/O. (5) X @(g(R + Mol | ﬁ) - Ze,h) =+ @(Ze,h, - d) . (7)

HereEy,, is the energy gap between the conduction and va- _ . _ _ .
lence bands of semiconductat,.. (my,.) is the z-axis elec- HereU, , is the finite height of the potential barrier for the

tron (hole) effective mass. The second term in the Ham“_electron ¢) and the hplel(), O(z) is the Hgaviside unit-step
tonian (5) is the operator of kinetic energy of the excitonfunction. Inthe Ham|lton|an.(5), we have mt_roduced ahqmo—
center-of-mass motion, which is described by the plane geneous exciton-bulk dampimg > 0 to take into account its

total massM = m,| + my, and the in-plane radius vec- effect on the exciton-surface scattering.

tor K. The third term represents the kinetic energy of the rel- To analyze properly excitonic S_tates in a surface-
ative electron-hole motion, and is specified by the plane corrugated quantum well, we shall derive the retarded Green

reduced masg = m,ymy, /M, and the internal in-plane functionG = G(R, R'; 7, p' ze, z¢; 2, z;,) of the Hamilto-
vector 7. The relations connecting the introduced in-plane™an (3). This function obeys the equation
vectors are . Lo -
. 5 L (hw—How)G=0(R—R')6(p—p')d(ze—2.)0(2n—23,), (8)
Tep = REpp/meyn), P =7e —Th (6)
To a good approximation, the electron-hole Coulomb interacwhered(z) is the Dirac delta-function. For convenience of
tion is described by the two-dimensional Coulomb potentialthe subsequent averaging, the differential Eq. (8) is reduced
(the fourth term), withey being the dielectric constant of the to the integral Dyson-type equation that relates the perturbed
excitonic medium. Indeed, as was noted in Ref. 35, the effedby surface disorder Green functigh to the Green func-
of the finite well widthd is negligible wheni < aq (2), since  tion G, for the ideal well with flat interfaces (with() = 0).
| The explicit form of the required integral equation is

g(ﬁ,ﬁ’;@ﬁsze,Zé;Zh,zz):go(ﬁfﬁ’;@ﬁ;ze,éwh,%)+/d2R1/d2p1/dzel/d2m

— 00

X Go(R — Ry; §, 1 Zes Ze1; 2y 201) Ve (Ry, p1; 2e1) 4 Vi (R, pu; 200)1G(Ra, R 51, 0 e, 2 201, 23)- - (9)

This equation contains the kerndl’g(ﬁl, p1; Ze1) and Vh(ﬁl,ﬁl; zp1) that have the meaning of the effective electron-
surface and hole-surface scattering potentials, respectively, and take into account the individual interactions of the elec
and the hole with the rough interface. Evidently, these scattering potentials are given by the difference between the confi
potentials of the corrugated= £(7), and ideally flat: = 0 interfaces

Vo (B, 7 zen) = Uy |OE(R £ —L5) = 201) = O(—2en)| = Uen 0(ze) (B £ —L— ). (10)

Me||,nl| Me||,nl|

The delta-functiorny(z. ;) emerges in Eq. (10) due to the conditien< d, and shows clearly the surface nature of the
scattering potentialg, .

One of the central points of our approach is that within the adiabatic regime (1) the correlators of the electrori‘surface
and hole-surfac#;, scattering operators, having the variation s@aleslowly vary over the scalpy = h%cq/2e?u (~ ao/2)
of the rapid relative electron-hole motion in the 2D Coulomb potential. Therefore, we can neglect their dependence on
internal vector. Indeed, in accordance with the definition (10), and the correlation properties (4), these correlators contain
dependence ogionly in the argument of the correlation functio. Since the variation scajg ~ ag/2 is much less than the
correlation radius?,., we can puiy = 0 everywhere in the argument ¥V. Therefore, in the adiabatic approximation (1) we
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get
(Ve (B, ps zen) Ve (R, 713 2L 1)) = 02U2 ), 8(2e,)0 (2L ) )W(IE — R'); (11)

(Ve (R, P zen) Vi (R, 73 21, 0)) = 02ULUp 8(2e,1)8(2, JW(| R — B')). (12)

As follows from the statistical homogeneity and isotropy of the scattering potehtiaadV}, with respect to the exciton
center-of-mass position vect&[see Egs. (11) and (12)], the average Green funciq®, R'; 7. p'; ze, z.; zn, 2,)) @lso turns
out to be uniform and isotropic in the exciton center-of-mass radius véctor

(G(R, R/ 5,05 2es 2 2y 7)) = G(R — B3 B, 1 2 203 20, 2. (13)

To derive the equation faF we average the exact Eq. (9) fét. To this end one can use methods developed in the spectral
theory of surface-disordered systems, such as the perturbative diagrammatic methed)($eefs. 34 and 36), or the tech-

nique proposed in Ref. 37. Both of the methods allow to take adequately into account the effeciige scatteringof

electron and hole from the corrugated surface. As a result, the integral equation for the averaged Green function within the
self-consistent Born approximation in the perturbation operdter V;, can be explicitly written as

oo oo oo
X /dze2/d2h1 /thQQo(R—R1;ﬁ,/71;Zmzel;zmzhl)M(Rl—Rz;ﬁl,ﬁz;Zehzez;zhuzhg)
— 00 — 00

Xg(EQ 7R’l;527f;;;262azé;2h272;1)‘ (14)

Here, the self-energy kerngh has the form

M(Ry — Ro; By, o Ze1, 2e2; 2n1, 2n2) = (Ve + V)G (Ve + Vi) = 02 W(|Ry — Ra|) [Ued(2e1) + Und(2n1)]
XG(Ry — Ra; 1, f2; Ze1s ze2} 2n1, 2n2) [Ued(2e2) + Und(2n2))] (15)

Note that within the ordinary Born approximation the self-energy contains the unperturbed Green fggctignile in the
self-consistent approadch is replaced by .

3. Average Green Function

One can see that the self-energy depends only on the differend®, — R, between the exciton center-of-mass position
vectors, and its dependence on the internal exciton vegicasd ., due to the adiabaticity, is contained onlydn This fact
allows to seek the average Green functipin the form of a Fourier integral over the in-plane exciton center-of-mass wave
vectork;, and a series over the 2D Coulomb modes,

o0 n o0 2
G(R— R0 2, 2im2h) = @nm(ﬁ)@;m(p/)/%exp[z'kt(R—R/)]é(kt;n;ze,zg;zh,z;). (16)

n=0 m=-—n oo

Here, ®,,,,(p) are the eigenfunctions (2D Coulomb modes) for the exciton intrinsic motion in the 2D Coulomb potential,
with n andm being radial (energy), and azimuth quantum numbers, respectively. The astéritharids for the complex
conjugation. Evidently, the unperturbed Green functigrcan be expressed in the same way as Eq. (16) representation, but
with Go(k_;g; n; Ze, 20} 2h, 25,) INStead O@(k?;; N} Ze, 203 Zh, 25)-

According to Eq. (14) the average Green functi@is governed by the equation

o0 o0 o0 o0
Valan ! ! M ! ! o
G(kt;nazeaze;zh,%):Go(kt;n;ze,%;zhazh)+/dzel/dZeQ/thl/d2h2Go(kt;n;ze’zd;zh,zm)
— 00 — 00

—00 — 00

XM (k3 15 Ze1, 2e2; 2015 2h2) Gk 15 262, 203 202, 2). - (17)
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The self-energy\ in the{li, n,m}-representation is given by

M (K315 261, 2e2; 201, 2h2) = [Ued(2e1) + Und(2n1)] [Ue(2e2) + Und(2n2)] 02

2R
X / (27T)t2 W (ke — ki|) G(kp; 15 ze1, 2e2; 2h1s 2n2). (18)

— 00

In this expression, we have introduced the Fourier transform
W (|k¢|) of the binary coefficient of correlationV/ (| R|),

N€i
Go ks 2e, 25 2n, 2h) = D U (2) W40 (21) O

—
Ne,n,=1

WD = [ &R expl-ifi ) W )

Ny
% } < > () ()8t g0 (Krs mimes my). (21)
= 27TR3 / l’dIW(RCI) J0(|kt|RCZC), (19) nmn’h,:l "
0
Here, we have introduced the Kronecker delta-symbols
whereJo(z) is the zero-order Bessel function. Note that thedn.nr  Onanj, -and the unperturbed Green function
function W(R.z) is the dimensionless correlation function go(k:;7;me; ny) in the eigenstate representation,
of the dimensionless variablewith the scale of decrease of
the order of unity. 951(7@; n; MNe; nh):h|:w — Wnny, (”)—( )+iu0]. (22)
We should note that the average Green function turns

out to be a diagonal matrix in the representation of the 2Drpe third term in Eq. (22) is the kinetic energy of the infinite

Coulomb modes, and the self-energy (18) does not Conmotion of the exciton center of mass, ahd,_,,, (n) is the
tain the transitions between different Coulomb modes as igigenvalue of the total exciton eneriyy, ‘
would take place in a general case. This means that the rel-

ative electron-hole quantum state is conserved at the adia—w (n)_Egap+E2D(n) k2, (ne)  hk?, (np)
batic (with respect to the 2D Coulomb potential) exciton- “7enn /=5 B My 2.
surface interaction. This conclusion is in total agreement

with the general theory of adiabatic perturbations [38]. Be-The quantityEs>p(n) is the eigenenergy of the exciton intrin-
sides, since the unperturbed exciton states are degenerat@f motion originated from the electron-hole Coulomb inter-
over the discrete Coulomb azimuth quantum number action, .

and the adiabatic exciton-surface scattering does not result Eap(n) = e (24)

in the transitions between Coulomb modes, we can seri- T 2R3 (n+ 1/2)2

ously expect that the perturbed states should also be dgyhich is degenerated over the discrete azimuth quantum
generated over the azimuth number That is why we  ympern. The third and fourth terms in Eq. (23) denote the
do not write the variablen in the arguments of the mode qaniized energies of the transverse electron and hole mo-
Green functionG/(ki; n; ze, 2;; 2n, 2,) and the self-energy (ions respectively. The integefs., N, are the numbers of
M(ke; 15 Ze1,s ze2; 2n1, Zh2)- levels of the transverse quantization for the electron and hole.
In order to solve Eg. (17), we express the Note that the Green coefficiegt does not depend on the
perturbed  G(ki;n; ze, 205 21, 2,) and unperturbed azimuth quantum numbern due to the degeneration of the
Go(kz;n;ze,zé;zh,zfl) Green functions in the form of a exciton eigenenergy over it.
double series in the complete set of orthonormal confine- After substituting Eqgs. (20) and (21) into the adiabatic
ment eigenfunctionﬂ/i (ze) and q/;’;?(zh) for the individ- ~ Dyson equation (17), we get the new one for the Green ma-

i
2M

. (23)

ual transverse motion of the electrar) &nd the hole/), trix g(ke; g ne, nl;np, ng,),
. Ne () ?(k?t;n;n87n;;nhvn;L):.90(k?t;n;ne;nh)(;nen/e(;nhn;
G(k‘t;n;ze,Zé;Zh,Z;L): Z \I}'SZ)(ZE)\I}ni*(Zé) N. Ny,
e =1 Jrgo(l;t;n; Ne;Npy) Z Z Mnenel;n,;l7l,11(k;;n)
Ny, ) Ne1=1np1=1
X T (VO (G (ks ne, L nn, ) ); (20 -
Z nh ( h) nj, ( h)g( t esTbes TUh h) ( ) X?(l{t;n;nel,né;nhhn%% (25)

-
np,ny, =1

where the self-energy matri&t,, ..., .n,n,. (k:; n) is defined

Rev. Mex. .51 (1) (2005) 53-63



58 N. ATENCO-ANALCO, N.M. MAKAROV, AND F. PEREZ-RODRGUEZ

by Here, the adiabatic matrix elemem(nenh)(néngl) of the
) 0o 2 o exciton-surface interaction is written as
Maenersmnnn, (ki n) = o / (277;2 W (ke — ki) Xpomn) (nimt) = Ue\I’%e)(O)‘I’S)*(O) Sun
i i - +URT ) (000 (0) . (27)
X
ne2,nes=1npa,npz=1 (renmneznna) Note that within the adiabatic regime the matrix ele-

ments (27) turn out to be independent of the Coulomb quan-
tum numbers:, m and the in-plane center-of-mass wave vec-
| tor k:

X (ks 15 Me2, Me35 02, Mh3) X (nernns ) (nesnng) - (26)

Assuming the exciton-surface scattering to be weak, one can conclude that in the first-order approximation in the small
adiabatic self-energy1 the solution of Eq. (25) is represented by the diagonal matrix

6nené 5nh,n;L

go_l(k?;; TS Nes nh) - Mnenh(k?;; 77)

T . Iy —
g(ktan7neaneanhanh) -

: (28)

whereM,, (ky;n) is the diagonal element of the self-energy matrix (26).
Now, we summarize the calculations performed above. In accordance with the Egs. (16), (20), (28), and (22) we can write
down the adiabatic Green function in the form

—

) n N, Np,
R~ Fip sz oo ) = 3 D Bun (@) 30 WO ()W () S W ()W (31

n=0m=-—n ne=1 np=1
T &k k(B — R
/ t exp[z t( — )} (29)

(2m)2 [w — o () — (k2 J2M) + vy — Mo, (i) /h} '

Within the self-consistent approach, this expressiowtdt — R'; 5, o/ ze, z.; zn, z5,) should be complemented by the equation
for the self-energyM,,. ., (k+;n). Substituting Egs. (29) and (27) into the definition (26), we obtain
0? 2 [ & W~k

Maom, (kpin) [ == |Ue| 0L (0) P+U,, |2 (M) (0)2 / _ .
(ki) /=2 (U042 (0) 40 2 (0) 2 B o () P2t v G

(30)

—0o0

As we expected, the self-energyl,, ., (k:;n) turns out to
be independent of the azimuth Coulomb quantum number . .
m. Thus, the adiabatic in the Coulomb potential perturba-gether absent. Indeed, in accordance with the general quan-
tio.n does,not destroy the Coulomb degeneration of the excit-um theory, in the case of adiabatic perturbation the discrete

. L uantum numbers are conserved and only continuous quan-
ton eigenstates. In addition, in Eq. (30) we have dropped th Um numbers should change due to scattering [38]. In the

summation over electron and hole quantum numbérs),. : .
The inequalityd < R., which follows from Egs. (2) and (1) problem of exciton-surface scattering such a quantum num-
< i Per is the in-plane exciton center-of-mass wave vektor

implies that the exciton-surface scattering is adiabatic no
only with respect to relative electron-hole Coulomb motion,
but also with respect to their individual transverse motion.
Then, the main contribution in the sum owver, nj, is pro-
vided by the term witm/, = n. andnj, = ny,.

4. Complex Shift of Excitonic Spectrum

As follows from the expression (29) for the average Green
function, the surface-induced complex correction to the un-
So, the average Green function (29) contains only a singleerturbed excitonic spectrufiw = fuw,_n, (n) of a quan-

summation over the Coulomb quantum numbers: aswell  tum well is determined by the self-energy(,, ., (k?t; n). Its

as over the transverse quantum numbegrs:,. Now, we can  real part is responsible for the shift,,, ,,, (n) of the exci-
conclude that the reason for canceling the second summatidonic resonance frequency while the imaginary part gives the
is the adiabaticity of the electron-surface and hole-surfacexciton-surface scattering frequengy, ,,, (n),

scattering potentials. The adiabaticity clearly manifests itself
in the equation for the self-energy (30), where the summation
over the adiabatic quantum numbersn andn., n;, is alto-

Mo, (n)

0Wn,n,, (N) = 3 )
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is reasonable when studying the effect of rough interfaces on
SMy,n, (n) the broadening and shift of excitonic resonances in quantum
— (31)  wells. One can see from Eq. (33) that the line-shape of ex-

_ citonic resonances ifw,,_ ., (n) andv,,_,, (n) is determined

Therefore, to analyze these quantities we should solve the 'rb'y the relation between the values of, andvy. When
tegral Eq. (30), which is rather complicated for the analysis.[he normalization frequencyy is less than the scaling fre-

Nevertheless, it can be substantially smphﬁed 'f_the,fouow'quencyww (3 < w2,), the excitonic resonance &harp
ing facts are taken into account. In optical applications the

: ~ . andasymmetricHere, at the resonance point
in-plane wave vectok; turns out to be equal to the longi-

tudinal wave vector of light and hence, its value, in general,
is of the order of the light wave number. Therefore, we can
considerk; as the smallest wave number of our problem. Inthe surface scattering frequengy. ,,, (n) has a value of the
particular, we suppose that the following conditions hold  order ofv%; /ww, and the resonance shift is negative,

Vneny, () = —

W = Wneny, (1) + 0wn,n, (N)

kiRe < 1, Bk} /2M < min{w,wn, 5, (1)}, Swnny, (n) ~ —Vnmy, (0) In(Wy Vo, (7))

2
hki [2M < max{vo, [ M|/h}. (32) As the frequenciesy, andvy approach each other, the ex-

Under these conditions we can ﬁﬁt — 0 in the argument citonic resonance im,_,, (n) is enhanced, becoming more
of the correlatofl’ andk: _ ,;2 — 0 in the argument of\t symmetric, and the relaxation frequency tends to its maxi-

in the Eq. (30). Then we rewrite the integral O\k%rin po- mal value equal toy. At the same time, the resonance shift

: : dw (n) vanishes.
lar coordinateq %}, ¢}, take the integral ovep and change TeTh : I
the integration variablé] with w;, — hk/2 /2. Afterwards, It should be noted that the self-consistent approximation

we obtain a simpler (not integral) equation for the adiabatidS "90rously justified if the resonance term in Eq. (33) is a
self-energyM,,. ., (), sharper function than the Fourier transform of the binary cor-

relator. From the analysis performed above, this suggests that
Mo,y () /1 = va% the conditionvy < wy should hold. In the opposite case
et h whenwy < vy, the theory should be constructed within
oo the so-callectlassical limit As is known from Refs. 14, 39,
« @ W( 2M_“’t/h) . (33) and 40, in this region the resonancéisadand almossym-
) 2T W = wn.ny, (n) = we +ivp — M n, (1) /B metric. The surface scattering frequency reaches its largest
value and the imaginary part of the resonant Green-function
Here, the Fourier transfori’ (/2Mw;/k) as a function of coeﬁicient,%y(k: = 0;n;ne;ny), which determines the op-
integration variablew, has the maximal valu#@ (0) ~ R2  tical absorptivity, follows the distribution function of surface
and the scale of decreaseg, roughness. We should emphasize that the theory of the classi-
o cal limit needs further development because the earlier inves-
ww = hR7/2M. (34) tigations have been restricted just to the consideration of the
In Eq. (33) we have introduced the normalization frequencyexciton ground statén infinitely deepwells with Gaussian

vy by the expression surface disorderand the study has been realizedriwmeric
o simulations Evidently, this development is a problem of es-
v = [Ue|‘115i)(0)|2 + Uh\‘l’gﬁ)(o)ﬁ] . (35)  pecial research. Here, we would like to draw attention to the

. - __fact that our self-consistent Egs. (29), (33), being applied to
This frequency controls the effect of finiteness of potentlalthe region of broad resonance, give qualitatively correct re-

barriers, the effect of transverse electron and hole quantizas—u',[S Indeed, whemyy < v in the resonance vicinity, the

tion on the inho_mogeneous Shitbr, ), (), %”d broadening self-energy (33) and the resonant Green-function coefficient
Un,n, (n) Of excitonic resonances. According to the surfacep(k-;S — 0; 13 10; 1) from Eq. (29) are related by the expres-
origin of the exciton scattering potentials (10), the charac-s-O
teristic frequencyvy contains the confinement eigenfunc-

ion
tions \11516"};) (0) for the electron €) and the hole %) taken Ma.n,, (n)

en 2 —7.
e =vyg(ki =0;n;ne5n
at the unperturbed well interface , = 0. It is notewor- h (ke )
thy that for infinitely deep quantum wells whén ;, = oo w—w (n) (W —w (n))?
and U™ (0) = 0, the productl/, ,| "™ (0|2 has finite = i\/’/?v e 39

value, U, | U™ (0)]2 = (2/d)h2(7ne.p/d)2/2mez pz. 1N
this way, the results (33), and (35) provide the transition fro
the finite to the infinite potential barriers.

In what follows, the exciton-surface scattering frequency (0w (n))2
Un.n, (1) is assumed to prevail over the homogeneous broad- S@(E:O; n;Ne; nh)u;,l\/lnez*". (37)
eningvy (g < Vn,n, (n)). Evidently, only such a situation vy

mo0 that the imaginary part of the Green-function coefficient
turns out to be
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One can see that the line-shape of the excitonic resonancefs Numerical Results and Discussion

symmetric, the real resonance shift is absent and the broad-

ening reaches its maximal val@ey. Therefore, the quan- Here, in solving Eq. (33) numerically, we shall use a Gaus-
tity vy can be regarded as the exciton-surface scattering frésian correlation functiodV(|7]) = exp(—r?/Rz), for which
guency for the classical limit. It generalizes the correspond-

. 2 12 p2
ing result obtained in Refs. 14, 39, and 40. The only (but W([ks|) = mRe exp(—[k:["R:/4),
substantial) distinction from the predecessors is that the line- W (\/2Mw, /1) = 7 R2 exp(—ws /4w ) (38)

shape is ellipsoidal instead of coinciding with the line-shape

of the roughness distribution function. So, if one is interestedyence, the Eq. (33) for the self-energy can be rewritten in the
just in qualitative (rather than exact) description of the excigrm

tonic resonance, the self-consistent expressions (29), (33) can

be used independently of the ratio betwegnandwyy . T, - dw,
The qualitative agreement between the rigorous theory Mun.n, (7)/h = o | om0
of the classical limit and the corresponding consideration 0
within the self-consistent Born approximation can be nat- exp(—wy /4wy

urally explained in the following way. Within the former SrE— ) =+ vy — Mo () (39)
approach, the results are obtained by the exact summation o o
of all terms in the perturbative expansion for the average We shall present the calculated frequency dependen-
Green function [14] reducing this expansion to a convolu-cies of the broadening,,_,, (n) and shiftdw,_,, (n) of
tion of the roughness Gaussian probability density and théhe ground-statéh-exciton resonancen{ = 1, n, = 1,
unperturbed Green function. Otherwise, the latter approxin = 0) for a GaAs quantum well of thicknegs= 60 A with
mation sums up accurately only the “dangerous” (of the highAl ,Ga,_,As (z = 0.3) barriers [Curves (a) in Figs. 1-4].
est singularity) diagrammatic terms in the series for the selfThe band gap is calculated by employing the formula
energy. Evidently, the contribution of these specific terms isk,,,,(x) = [1.52 + 1.36x + 0.222%] eV. The band-gap offset
the main one, and therefore, provides a qualitatively correctonsidered in the calculations is%dor the conduction band
description of the exciton-surface scattering within the clasand 40% for the valence band. In applying the theory, devel-
sical limit. oped in the preceding sections, we have used identical effec-
After analyzing Eqg. (33), we come to a very interestingtive masses for the quantum well and the barriers [41, 42].
and non-trivial conclusion: The type of excitonic resonanceSo, the effective electron mass.. = m. = 0.067mg
and its line-shape are determined by doenpetition between (heremy is the free electron mass), they plane heavy-
the adiabaticity of the surface disorder and the finiteness ohole massmy; | = 0.1mg, the z-axis heavy-hole mass
potential barriers of the quantum wellThe increase of the my, . = 0.45my. Besides, the rough surface of the quan-
adiabaticity (the decrease®fy ) leads towards the broad and tum well is characterized by a correlation radRis= 500 A,
symmetric resonance. Otherwise, the less height of potenti@huch larger than the 2D-exciton radips (oo ~ ao/2), and
barriers (the smallery), the sharper and more asymmetric a small r.m.s. roughness height= 2 A. We have also used a
resonance. That is why the consideration of finite values fohomogeneous damping factar, = 0.1 meV andsy = 12.5.
the roughness correlation lengll, and for the height of the As is seen in Fig. 1(curve (a)), the line-shape of the
potential barrierd/. ;, is a fundamental requirement to con- inhomogeneous broadening = v, ,(0) for the ground-
struct an adequate theory of exciton-surface interaction.  state exciton resonance is almggmmetricwith respect to
It should also be emphasized that the here described fedhe resonance frequenay, = w; 1(0) ~ 1.5886 eV. Be-
tures of the excitonic resonances are specific predictions afides, the damping has abroad maximum at a frequency
theself-consistent approaciwvhich takes into account the in- very close tawy. As was commented above, such behavior
herent action of exciton-surface scattering on itself. Indeedof v should be observed when the characteristic scaling fre-
within the usual Born approximation, Eq. (33) goes over intoquencywy (34) of the roughness power spectrum is much
a similar one, but withM,,_,,, (n) = 0 in the denominator smaller than the normalization frequeney (35). It should
of the integrand therein. This fact crucially changes the pabe emphasized that this condition is well satisfied by the cho-
rameter controlling the type of the resonance. Now, it is thesen parameters because hefe ~ vy andsivy ~ 3.6 meV.
ratio betweenuy;, and the homogeneous bulk broadenigg  Therefore, the maximum of the inhomogeneous broadening
alone. Evidently, this ratio does not depend on the finiteis well described by the simple formula
ness of potential barriers. In the next section we show by o
numerical simulations the principal difference between our Vmax = —
self-consistent results and those obtained within usual Born h
approximation. We also show that for realistic values of thewhich follows directly from Egs. (31), (36) and (35).
parameters of quantum wells and adiabatic interface roughcurve (b) of Fig. 1 exhibits the corresponding inhomoge-
ness, the broad symmetric resonance is more typical than theeous broadening as a function of the resonance detun-
sharp asymmetric one. ing w — wqo for the case of ideally infinite barriers (here

U T (0)2 + Uy |87 (0)2],  (40)
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wo = w1.1(0) ~ 1.6886 eV). In accordance with the analysis 0.06 L
performed in the previous section, Fig. 1 shows the exciton-
surface scattering frequenay to be much smaller for fi- 0.05+ T
nite barriers (curve (a)) than for infinite ones (curve (b)).
Therefore, in the latter case the inequalityy < vy 0.04 1
is better satisfied and theymmetricexciton resonance is __
much broader. Curve (a) of Fig. 2 shows the behavior of E 0.03 b T
the shift dw = dw; 1(0) for the GaAs quantum well with -
Al sGay 7As barriers. Under the condition of tieoad res- 0.02 + 1
onancewy < vy, the surface-induced resonance shift
vanishes neary, and has different signs on the left and right 0.01 §
sides of the excitonic resonance. Consequently, the main ef- a
fect of dw on the excitonic resonance turns out to be similar 0.00 -
: . : . : : : 0.010 -0.005 0.000 0.005 0.010
0.012 - i i o- o, (eV)
m FIGURE 3. Frequency dependence of the surface-induced inho-
0.010 4 7 mogeneous damping=v,,_ .., (n) for the ground-state hh-exciton
1 : resonancer(.=1, np=1, n=0) of a GaAs quantum well of thick-
0.008 + 7 nessd=60 A with Aly.3Ga.7As barriers. Curves (a) and (b) were
= 1 : 1 calculated by using the self-consistent approach (as in Fig. 1(a))
E 0.006 - 1 and the ordinary Born approximation, respectively.
n ] :
0.004 0.03 I ‘ ! , .
0.002 ~ 0.02 ~
0.000 0.01 4
0.010 -0.005 0.000 0.0'05, 0.010 = 0.00 -
-/ (eV) o1
FIGURE 1. Frequency dependence of the surface-induced inhomo- 3 I
geneous damping = vn, n, (n) for the ground-state hh-exciton 0024
resonancer(. = Linp=1n= 0) of a GaAs quantum well of 0.034
thicknessd = 60 A with (a) Aly.3sGa.7As barriers and (b) ideally |
infinite barriers. -0.04 4
-0.05

0.008 T T T T ! T T T T
0.006—- l
0.004—-
0.002—-

0.000 +

dw (eV)

-0.002

-0.004

T b T T T T T T
-0.010  -0.005  0.000 0.005 0.010 of the order ofuyy < Vmax = vn. Evidently,dw(wy) — 0

T T T T I T T T T
-0.010 -0.005 0.000 0.005 0.010
- o, (eV)

FIGURE 4. Frequency dependence of the surface-induced shift
dw=0wn, n, (n) for the ground-state hh-exciton resonanee£1,
nn=1, n=0) of a GaAs quantum well of thickness=60 A with
Alo.3Gay.7As barriers. Curves (a) and (b) were calculated by using
the self-consistent approach (as in Fig. 2(a)) and the ordinary Born
approximation, respectively.

to that caused by the dampingi.e. the resonance is broad-
ened symmetrically. This effect @tv on v is clearly ob-
served in the curve (a) of Fig. 1 and agrees with the asymp-
totic expressions (36) and (37). Note that the nonzero &bift

at the resonance frequeney is negative with absolute value

® - 0, (V) whenwy, — 0. For comparison purposes, we also present
FIGURE 2. Frequency dependence of the surface-induced shiftCurve () that shows the shiftv for the ideal case of infinite
Sw=6wn, n, (n) for the ground-state hh-exciton resonanee£1, ~ barriers (as in Fig. 1(b) for). Itis seen that the behavior
nn=1, n=0) of a GaAs quantum well of thicknegs= 60 A with of dw near the exciton resonance is practically the same for
(a) Alp.3Ga.7As barriers and (b) ideally infinite barriers. finite and infinite barriers. Only when the magnitude of the
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resonance detuning — wy| is very large, the shiftw is al-  interface roughness. Therefore, for the GaAs quantum well
tered by the height of the potential barriers (see Fig. 2): theonsidered above the spectra:gf; (n) anddw 1 (n) with
resonance shift is reduced in magnitude as the height of the # 0 for the hh-exciton are, respectively, as in curves (a)
potential barrier is diminished. of Figs. 1-4, taking into account that only the quantity

Let us compare our result, obtained within the self-should be replaced hy; 1(n).
consistent approach (curves (a) in Figs. 1-4), with the pre-
dictions of the ordinary Born approximation for the inhomo- g conclusion

geneous broadening(Fig. 3(b)) and the shifiw (Fig. 4(b))

of the ground-state exciton resonance for the GaAs quana/e have developed a formalism for calculating the relaxation

tum well with Aly 3Gay 7As barriers. Within the ordinary

frequencyr and the shifdw of exciton resonances in quasi-

Born approximation the self-energy is given by Eq. (33) or2D quantum wells with finite potential barriers and adiabatic

Eqg. (39) eliminating the action oM on itself, i.e. with
Mi.n, (n) = 0 in the denominator of the integrand therein.
Hence, in this case, the line-shapes/¢b) anddw(w) are
determined by the relation betweem, andv, alone. For
the chosen parameters hetgy vy and the line-shape
of v(w) is primarily asymmetricand sharp (see Fig. 3(b)),

~
~

surface disorderi.e. with a correlation lengthR. for the
well width fluctuations much larger than the exciton radius
ag (R. > ag). Our formalism was constructed on the basis
of the self-consistent Green’s function method and, conse-
quently, it considers the inherent action of the exciton scatter-
ing on itself. Thanks to the adiabaticity of the surface disor-

unlike to the behavior predicted by the self-consistent apder, we obtained relatively simple equations for the inhomo-

proach (curve (a)). Thasymmetryand sharpnesof reso-

geneous broadeningand shiftjw for all exciton resonances.

nance in the ordinary Born approximation can also be ob\e analyzed qualitatively these equations and discussed the

served in the shiféw (see Fig. 4(b)). Note, as well, that in

condition of the transition from the quantum self-consistent

accordance with the estimation made in the previous sectiofimit to the classical one. Then we solved the equations for
the ordinary Born approach predicts extremely large values anddw numerically for the specific case of a GaAs quan-

for both v anddw near the exciton resonance frequengy

tum well with Aly 3Ga 7As barriers. It was found that the

The latter result is, in practice, unrealistic for the case ofself-consistency alters significantly the line-shape of exciton
weak exciton-surface scattering, and shows clearly the disesonances, as it was compared with the predictions of the
advantage of using the routine Born approach rather than th@utine Born approximation. So, our results show that the re-

self-consistent one.
From the comparison of Fig. 1 (2) with 3 (4), we can

laxation frequency for ground-staté:h-exciton resonance
has abroad almostsymmetrionaximum near the resonance

conclude that the self-consistency leads to more substafirequencyw,, whereas in the usual Born approach the res-
tial changes in the line-shape of the excitonic resonancenance issharp and asymmetric On the other hand, the

than the height of the potential barriers does.
also calculated spectra for and éw for smaller values of
R.(200A < R, < 500A4), when the conditiony < wy is

We haveurface-induced resonance shift vanishes near,, and has

different signs on the sides of the exciton resonance. The
orders of magnitude of anddw obtained within the self-

well satisfied and the surface disorder is still adiabatic. Thesgonsistent approach turned out to be more realistic than those

calculations show that the line-shapes/6f) andéw(w) are
gualitatively the same as in Figs. 1-4.

predicted by the ordinary Born approximation.

Finally, it should be noted that according to the equa-Acknowledgements

tion for the self energyM,,_,, (n) (39), [see also Egs. (30)
and (33)], the dependencies of the broadening,, (n) and
shift dw,,, »n, (n) on the resonance detuning— wy,, ,, (n)
have the same form for all 2D-excitonth states with iden-
tical numbersn, andny, in a quantum well with adiabatic
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