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Exciton spectrum of surface-corrugated quantum wells:
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A theory for calculating the relaxation frequencyν and the shiftδω of exciton resonances in quantum wells with finite potential barriers and
adiabatic surface disorder is developed. The adiabaticity implies that the correlation lengthRc for the well width fluctuations is much larger
than the exciton radiusa0 (Rc À a0). Our theory is based on the self-consistent Green’s function method, and therefore takes into account
the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton
resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the
classical limit itself. We present and analyze results forhh-exciton in a GaAs quantum well with Al0.3Ga0.7As barriers. It is established
that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the
values ofν andδω be quite realistic. In particular, the relaxation frequencyν for the ground-state resonance has abroad, almostsymmetric
maximum near the resonance frequencyω0, while the surface-induced resonance shiftδω vanishes nearω0, and has different signs on the
sides of the exciton resonance.
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Se desarrolla una teorı́a para calcular la frecuencia de relajación ν y el corrimientoδω de las resonancias excitónicas en pozos cuánticos
con barreras de potencial finitas y desorden superficial adiabático. La adiabaticidad significa que la longitud de correlación Rc para las
fluctuaciones del ancho del pozo es mucho mayor que el radio excitónicoa0 (Rc À a0). Nuestra teoŕıa se basa en el ḿetodo de la funcíon
autoconsistente de Green y, por lo tanto, toma en cuenta la acción inherente de la dispersión del excit́on sobre śı misma. Se muestra que
la aproximacíon autoconsistente describe cuantitativamente la resonancia excitónica aguda. Adeḿas, da una descripción cualitativamente
correcta de la resonancia durante la transición al ĺımite cĺasico, aśı como dentro del dominio del lı́mite cĺasico mismo. Presentamos y
analizamos resultados para el excitón hh en un pozo cúantico de GaAs con barreras de Al0.3Ga0.7As. Se establece que la autoconsistencia
y la altura finita de las barreras de potencial influyen significativamente sobre la forma de lı́nea de las resonancias excitónicas y hacen que
los valores deν y δω sean bastante realistas. En particular, la frecuencia de relajaciónν para la resonancia del estado base tiene un máximo
ancho, casisimétricocerca de la frecuencia de resonanciaω0, mientras que el corrimientoδω de la resonancia, inducido por la superficie, se
anula cerca deω0 y tiene signos diferentes a los lados de la resonancia excitónica.

Descriptores: Excitones; pozos cúanticos.

PACS: 71.35.-y; 78.67.De

1. Introduction

In the past few years, the intricate behavior of excitons in
surface-disordered semiconductor confined systems (near-
surface potential wells [1, 2], thin films [3–6], quantum-
well [7–27] and quantum-wire [28] structures) has been in-
tensively investigated. In the regime of weak confinement,
the characteristic sized of the system is much larger than the
exciton Bohr radiusa0 (d À a0). Here, the relative motion
of the electron-hole pair is as in the bulk, except for a distor-
tion near sample boundaries at distances of the order ofa0.
In this regime, the quantization of the exciton center-of-mass
motion occurs giving rise to an specific resonance structure in
optical spectra [5,29–31] (absorption, transmission, specular
and diffuse reflection). Surface roughness alters the spectrum
of quantized excitons by increasing the damping factor [6,30]
and shifting the eigenfrequencies [6]. Consequently, the line-
shape and position of exciton resonances in optical spectra

are also modified. In the majority of the investigations, it
has been assumed that the sample surfaces are adiabatically
disordered,i.e. the roughness correlation lengthRc is much
larger than the 3D-exciton radiusa0 [32]:

a0 ¿ Rc. (1)

This assumption has enabled to construct relatively simple,
but rather realistic theories for interpreting optical properties
of excitons in surface-disordered systems within the regime
of weak confinement.

In systems such as quantum wells, having a size (width)
d smaller than the exciton radiusa0 (d . a0), the regime
of strong confinement of excitons is realized. Several phe-
nomenological [21,22,25] and microscopic [10–17,19] theo-
ries have been developed for describing the interaction of ex-
citons with the inherently rough surfaces of quantum wells.
Microscopic theories are based on the use of the Schrödinger
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equation for the exciton in-plane center-of-mass motion in a
disordered potential. The problem of scattering of exciton
center-of-mass by the rough quantum-well surfaces becomes
physically more clear, and can be solved analytically within
the adiabatic regime (1) [19]. The microscopic solution of the
scattering problem for an arbitrary relation between the exci-
ton radiusa0 and the roughness correlation lengthRc can be
found either numerically [14, 15], or for the ground-state ex-
citon in quasi-2D quantum wells [26,27].

In the present work, we develop a theory for the exciton-
surface scattering in quasi-2D quantum wells, whose average
well width d satisfies the inequality

σ ¿ d < a0, (2)

whereσ is the r.m.s. roughness height. Due to the right con-
dition in Eq. (2), the Coulomb interaction is suppressed in the
direction perpendicular to the well plane. So, in analyzing the
exciton surface scattering, we consider the individual interac-
tions of the electron and hole with the rough surface in pres-
ence of their in-plane Coulomb coupling. Unlike the majority
of previous studies, the inherent action of the exciton scatter-
ing on itself is taken into account here. Therefore, in order
to manage the exciton-surface scattering problem we have
applied and generalized to the case of two-particle motion,
the self-consistent Green’s function method. This approach
turns out to be the most appropriate for our purposes because
it deals with the original microscopic excitonic Hamiltonian,
and introduces theexciton-surface scattering frequencyν,
and theexciton-resonance shiftδω in a very natural way.

It should be commented here that the self-consistent
Green’s function method was applied in some previous
works [16–18,26,27]. In two of them [16,17], ashort-range
(δ-like) correlation function for interface fluctuations ofin-
finitely deepwells was assumed. In such a case (Rc → 0),
both the self-consistent approach and the ordinary (not self-
consistent) Born approximation predict qualitatively similar
line-shapes for exciton resonances. The advantages of the
self-consistent method is, however, better exploited with fi-
nite values of the correlation lengthRc [26, 27]. In another
work [18], theground-state excitonlinewidth for a surface-
corrugated quantum well withinfinitebarriers was calculated
by using the Fermi golden rule and the self-consistent Born
approximation. It was shown that the self-consistent ap-
proach gives more reasonable values of the linewidth as they
are compared with the experiment. In Ref. 18, it was also
noted that a better (quantitative) agreement with the exper-
imental results can be achievedonly if the finiteness of the
potential barriers is taken into account. Where applicable,
the results of Ref. 18 agree with Refs. 26 and 27, as well as
with our present research.

The present theory will be qualitatively restricted to the
common situation of adiabatically disordered surfaces (1).
As will be shown, in the adiabatic regime, the relaxation
frequencyν and the resonance shiftδω of any exciton (not
only the ground-state one, but also next excited states) in re-
alistic quantum wells,i.e. with finite potential barriers and

anisotropic effective masses of the electron and hole, can
be calculated by using relatively simple equations, which are
easily analyzable and display explicitly the dependencies ofν
andδω upon the parameters of the exciton, interface rough-
ness, and exciton-resonance detuning. From the analysis per-
formed below, one can come to an interesting conclusion:
The type of excitonic resonance and its line-shape are mainly
determined by the competition between the correlation prop-
erties of surface disorder and the finiteness of potential barri-
ers of a quantum well. The increase of the correlation radius
leads towards the broad resonance. Otherwise, the less height
of potential barriers the sharper and more asymmetric the res-
onance.

The formulation of the problem and the details of self-
consistent Green’s function method applied to the electron-
hole motion in quasi-2D quantum wells are exhibited in
Secs. 2 and 3. A general expression with its brief anal-
ysis for the exciton self-energy, whose real and imaginary
parts determine respectively the exciton-resonance shiftδω,
and the exciton-surface scattering frequencyν is given in
Sec. 4. Finally, in Sec. 5 we calculate and analyze the fre-
quency dependencies ofν andδω for a GaAs quantum well
with Al0.3Ga0.7As barriers. Here, the predictions of the self-
consistent approach and the ordinary Born approximation are
compared. The short report preceding this comprehensive pa-
per has been published in Ref. 33.

2. Problem Statement

We consider a quantum well of average widthd, being con-
fined within the region

ξ(~re,h) ≤ ze,h ≤ d. (3)

Here, coordinatesze,h specify the transverse to the well (i.e.
along the growth direction of the well), motion of the elec-
tron (e), or the hole (h), respectively. The surface roughness
is described by a random functionξ(~r) of the in-plane (elec-
tron or hole) position vector~r. The functionξ(~r) is assumed
to be a statistically homogeneous and isotropic random pro-
cess with zero average, which is characterized by standard
properties [34],

〈ξ(~r)〉 = 0, 〈ξ(~r)ξ(~r′)〉 = σ2W(|~r − ~r′|). (4)

The angular brackets stand for statistical averaging over the
ensemble of realizations of the rough-surface-profile func-
tion ξ(~r). The symbolσ denotes the root-mean-square
(r.m.s.) roughness height. The binary coefficient of corre-
lationW(|~r|) has the unit amplitude,W(0) = 1, and a typi-
cal scale of decreaseRc (the correlation radius), which is of
the order of the mean length of surface irregularities. So, our
consideration supposes that the reliefz = ξ(~r) of the lower
boundary is randomly corrugated while the upper interface,
z = d, is, for simplicity, flat. However, such a system is phys-
ically equivalent to a well with both boundaries being rough,
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statistically identical, and not intercorrelated [34]. Moreover,
our method can be easily generalized to systems with arbi-
trary statistical properties of both quantum-well interfaces.

Due to the definition (2) of a quantum well, the excitonic
HamiltonianĤQW can be suitably written in the following
form

ĤQW =Egap− ~2

2M

∂2

∂ ~R2
− ~

2

2µ

∂2

∂~ρ2
− e2

ε0ρ
− ~2

2mez

∂2

∂z2
e

− ~2

2mhz

∂2

∂z2
h

+Ue(ze, ~re)+Uh(zh, ~rh)−i~ν0. (5)

HereEgap is the energy gap between the conduction and va-
lence bands of semiconductor,mez (mhz) is thez-axis elec-
tron (hole) effective mass. The second term in the Hamil-
tonian (5) is the operator of kinetic energy of the exciton
center-of-mass motion, which is described by thex-y plane
total massM = me|| + mh||, and the in-plane radius vec-
tor ~R. The third term represents the kinetic energy of the rel-
ative electron-hole motion, and is specified by thex-y plane
reduced massµ = me||mh||/M , and the internal in-plane
vector ~ρ. The relations connecting the introduced in-plane
vectors are

~re,h = ~R± µ~ρ/me||,h||, ~ρ = ~re − ~rh. (6)

To a good approximation, the electron-hole Coulomb interac-
tion is described by the two-dimensional Coulomb potential
(the fourth term), withε0 being the dielectric constant of the
excitonic medium. Indeed, as was noted in Ref. 35, the effect
of the finite well widthd is negligible whend < a0 (2), since

the corrections to the exciton eigenenergies are of the order
of (d/a0)2 ¿ 1. The fifth and sixth terms are responsible for
the individual transverse motion of the electron or the hole,
respectively. The quantitiesUe(ze, ~re) andUh(zh, ~rh) are the
confining potentials of the quantum well for the electron and
the hole,

Ue,h(ze,h, ~re,h) = Ue,h

×
[
Θ(ξ(~R± µ

me||,h||
~ρ)− ze,h) + Θ(ze,h − d)

]
. (7)

HereUe,h is the finite height of the potential barrier for the
electron (e) and the hole (h), Θ(x) is the Heaviside unit-step
function. In the Hamiltonian (5), we have introduced a homo-
geneous exciton-bulk dampingν0 > 0 to take into account its
effect on the exciton-surface scattering.

To analyze properly excitonic states in a surface-
corrugated quantum well, we shall derive the retarded Green
function G = G(~R, ~R′; ~ρ, ~ρ′; ze, z

′
e; zh, z′h) of the Hamilto-

nian (5). This function obeys the equation

(~ω−ĤQW )G=δ(~R− ~R′)δ(~ρ−~ρ′)δ(ze−z′e)δ(zh−z′h), (8)

whereδ(x) is the Dirac delta-function. For convenience of
the subsequent averaging, the differential Eq. (8) is reduced
to the integral Dyson-type equation that relates the perturbed
by surface disorder Green functionG to the Green func-
tion G0 for the ideal well with flat interfaces (withξ(~r) = 0).
The explicit form of the required integral equation is

G(~R, ~R′; ~ρ, ~ρ′; ze, z
′
e; zh, z′h) = G0(~R− ~R′; ~ρ, ~ρ′; ze, z

′
e; zh, z′h) +

∞∫

−∞
d2R1

∞∫

−∞
d2ρ1

∞∫

−∞
dze1

∞∫

−∞
dzh1

×G0(~R− ~R1; ~ρ, ~ρ1; ze, ze1; zh, zh1)[Ve(~R1, ~ρ1; ze1) + Vh(~R1, ~ρ1; zh1)]G(~R1, ~R′; ~ρ1, ~ρ′; ze1, z
′
e; zh1, z

′
h). (9)

This equation contains the kernelsVe(~R1, ~ρ1; ze1) andVh(~R1, ~ρ1; zh1) that have the meaning of the effective electron-
surface and hole-surface scattering potentials, respectively, and take into account the individual interactions of the electron
and the hole with the rough interface. Evidently, these scattering potentials are given by the difference between the confining
potentials of the corrugatedz = ξ(~r), and ideally flatz = 0 interfaces

Ve,h(~R, ~ρ; ze,h) = Ue,h

[
Θ(ξ(~R± µ

me||,h||
~ρ)− ze,h)−Θ(−ze,h)

]
= Ue,h δ(ze,h) ξ(~R± µ

me||,h||
~ρ). (10)

The delta-functionδ(ze,h) emerges in Eq. (10) due to the conditionσ ¿ d, and shows clearly the surface nature of the
scattering potentialsVe,h.

One of the central points of our approach is that within the adiabatic regime (1) the correlators of the electron-surfaceVe

and hole-surfaceVh scattering operators, having the variation scaleRc, slowly vary over the scaleρ0 = ~2ε0/2e2µ (∼ a0/2)
of the rapid relative electron-hole motion in the 2D Coulomb potential. Therefore, we can neglect their dependence on the
internal vector~ρ. Indeed, in accordance with the definition (10), and the correlation properties (4), these correlators contain the
dependence on~ρ only in the argument of the correlation functionW. Since the variation scaleρ0 ∼ a0/2 is much less than the
correlation radiusRc, we can put~ρ = 0 everywhere in the argument ofW. Therefore, in the adiabatic approximation (1) we
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get

〈Ve,h(~R, ~ρ; ze,h)Ve,h(~R′, ~ρ′; z′e,h)〉 = σ2U2
e,h δ(ze,h)δ(z′e,h)W(|~R− ~R′|); (11)

〈Ve,h(~R, ~ρ; ze,h)Vh,e(~R′, ~ρ′; z′h,e)〉 = σ2UeUh δ(ze,h)δ(z′h,e)W(|~R− ~R′|). (12)

As follows from the statistical homogeneity and isotropy of the scattering potentialsVe andVh with respect to the exciton
center-of-mass position vector~R [see Eqs. (11) and (12)], the average Green function〈G(~R, ~R′; ~ρ, ~ρ′; ze, z

′
e; zh, z′h)〉 also turns

out to be uniform and isotropic in the exciton center-of-mass radius vector~R:

〈G(~R, ~R′; ~ρ, ~ρ′; ze, z
′
e; zh, z′h)〉 = G(~R− ~R′; ~ρ, ~ρ′; ze, z

′
e; zh, z′h). (13)

To derive the equation forG we average the exact Eq. (9) forG. To this end one can use methods developed in the spectral
theory of surface-disordered systems, such as the perturbative diagrammatic method (see,e.g., Refs. 34 and 36), or the tech-
nique proposed in Ref. 37. Both of the methods allow to take adequately into account the effects ofmultiple scatteringof
electron and hole from the corrugated surface. As a result, the integral equation for the averaged Green function within the
self-consistent Born approximation in the perturbation operatorVe + Vh can be explicitly written as

G(~R− ~R′; ~ρ, ~ρ′; ze, z
′
e; zh, z′h) = G0(~R− ~R′; ~ρ, ~ρ′; ze, z

′
e; zh, z′h) +

∞∫

−∞
d2R1

∞∫

−∞
d2R2

∞∫

−∞
d2ρ1

∞∫

−∞
d2ρ2

∞∫

−∞
dze1

×
∞∫

−∞
dze2

∞∫

−∞
dzh1

∞∫

−∞
dzh2G0(~R− ~R1; ~ρ, ~ρ1; ze, ze1; zh, zh1)M(~R1 − ~R2; ~ρ1, ~ρ2; ze1, ze2; zh1, zh2)

×G(~R2 − ~R′; ~ρ2, ~ρ′; ze2, z
′
e; zh2, z

′
h). (14)

Here, the self-energy kernelM has the form

M(~R1 − ~R2; ~ρ1, ~ρ2; ze1, ze2; zh1, zh2) = 〈(V̂e + V̂h)G(V̂e + V̂h)〉 = σ2W(|~R1 − ~R2|) [Ueδ(ze1) + Uhδ(zh1)]

×G(~R1 − ~R2; ~ρ1, ~ρ2; ze1, ze2; zh1, zh2) [Ueδ(ze2) + Uhδ(zh2)] . (15)

Note that within the ordinary Born approximation the self-energy contains the unperturbed Green functionG0, while in the
self-consistent approachG0 is replaced byG.

3. Average Green Function

One can see that the self-energyM depends only on the difference~R1 − ~R2 between the exciton center-of-mass position
vectors, and its dependence on the internal exciton vectors~ρ1 and~ρ2, due to the adiabaticity, is contained only inG. This fact
allows to seek the average Green functionG in the form of a Fourier integral over the in-plane exciton center-of-mass wave
vector~kt, and a series over the 2D Coulomb modes,

G(~R− ~R′; ~ρ, ~ρ′; ze, z
′
e; zh, z′h) =

∞∑
n=0

n∑
m=−n

Φnm(~ρ)Φ∗nm(~ρ′)

∞∫

−∞

d2kt

(2π)2
exp[i~kt(~R− ~R′)] G(~kt; n; ze, z

′
e; zh, z′h). (16)

Here,Φnm(~ρ) are the eigenfunctions (2D Coulomb modes) for the exciton intrinsic motion in the 2D Coulomb potential,
with n andm being radial (energy), and azimuth quantum numbers, respectively. The asterisk “∗” stands for the complex
conjugation. Evidently, the unperturbed Green functionG0 can be expressed in the same way as Eq. (16) representation, but
with G0(~kt; n; ze, z

′
e; zh, z′h) instead ofG(~kt;n; ze, z

′
e; zh, z′h).

According to Eq. (14) the average Green functionG is governed by the equation

G(~kt;n; ze, z
′
e; zh, z′h) = G0(~kt;n; ze, z

′
e; zh, z′h) +

∞∫

−∞
dze1

∞∫

−∞
dze2

∞∫

−∞
dzh1

∞∫

−∞
dzh2 G0(~kt; n; ze, ze1; zh, zh1)

×M(~kt; n; ze1, ze2; zh1, zh2)G(~kt;n; ze2, z
′
e; zh2, z

′
h). (17)
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The self-energyM in the{~kt, n, m}-representation is given by

M(~kt; n; ze1, ze2; zh1, zh2) = [Ueδ(ze1) + Uhδ(zh1)] [Ueδ(ze2) + Uhδ(zh2)] σ2

×
∞∫

−∞

d2k′t
(2π)2

W (|~kt − ~k′t|)G(~k′t; n; ze1, ze2; zh1, zh2). (18)

In this expression, we have introduced the Fourier transform
W (|~kt|) of the binary coefficient of correlationW(|~R|),

W (|~kt|) =

∞∫

−∞
d2R exp(−i~kt

~R)W(|~R|)

= 2πR2
c

∞∫

0

xdxW(Rcx)J0(|~kt|Rcx), (19)

whereJ0(x) is the zero-order Bessel function. Note that the
functionW(Rcx) is the dimensionless correlation function
of the dimensionless variablex with the scale of decrease of
the order of unity.

We should note that the average Green function turns
out to be a diagonal matrix in the representation of the 2D
Coulomb modes, and the self-energy (18) does not con-
tain the transitions between different Coulomb modes as it
would take place in a general case. This means that the rel-
ative electron-hole quantum state is conserved at the adia-
batic (with respect to the 2D Coulomb potential) exciton-
surface interaction. This conclusion is in total agreement
with the general theory of adiabatic perturbations [38]. Be-
sides, since the unperturbed exciton states are degenerated
over the discrete Coulomb azimuth quantum numberm,
and the adiabatic exciton-surface scattering does not result
in the transitions between Coulomb modes, we can seri-
ously expect that the perturbed states should also be de-
generated over the azimuth numberm. That is why we
do not write the variablem in the arguments of the mode
Green functionG(~kt; n; ze, z

′
e; zh, z′h) and the self-energy

M(~kt;n; ze1, ze2; zh1, zh2).
In order to solve Eq. (17), we express the

perturbed G(~kt; n; ze, z
′
e; zh, z′h) and unperturbed

G0(~kt;n; ze, z
′
e; zh, z′h) Green functions in the form of a

double series in the complete set of orthonormal confine-
ment eigenfunctionsΨ(e)

ne (ze) andΨ(h)
nh (zh) for the individ-

ual transverse motion of the electron (e) and the hole (h),

G(~kt;n; ze, z
′
e; zh, z′h)=

Ne∑

ne,n′e=1

Ψ(e)
ne

(ze)Ψ
(e)∗
n′e

(z′e)

×
Nh∑

nh,n′h=1

Ψ(h)
nh

(zh)Ψ(h)∗
n′h

(z′h)g(~kt; n; ne, n
′
e; nh, n′h); (20)

G0(~kt; n; ze, z
′
e; zh, z′h)=

Ne∑

ne,n′e=1

Ψ(e)
ne

(ze)Ψ
(e)∗
n′e

(z′e) δnen′e

×
Nh∑

nh,n′h=1

Ψ(h)
nh

(zh)Ψ(h)∗
n′h

(z′h)δnhn′hg0(~kt; n;ne; nh). (21)

Here, we have introduced the Kronecker delta-symbols
δnen′e , δnhn′h and the unperturbed Green function
g0(~kt;n; ne; nh) in the eigenstate representation,

g−1
0 (~kt; n;ne;nh)=~

[
ω − ωnenh

(n)−
(
~k2

t

2M

)
+iν0

]
. (22)

The third term in Eq. (22) is the kinetic energy of the infinite
motion of the exciton center of mass, and~ωnenh

(n) is the
eigenvalue of the total exciton energy~ω,

ωnenh
(n)=

Egap

~
+

E2D(n)
~

+
~k2

ze(ne)
2mez

+
~k2

zh(nh)
2mhz

. (23)

The quantityE2D(n) is the eigenenergy of the exciton intrin-
sic motion originated from the electron-hole Coulomb inter-
action,

E2D(n) = − e4µ

2~2ε2
0(n + 1/2)2

, (24)

which is degenerated over the discrete azimuth quantum
numberm. The third and fourth terms in Eq. (23) denote the
quantized energies of the transverse electron and hole mo-
tions, respectively. The integersNe, Nh are the numbers of
levels of the transverse quantization for the electron and hole.
Note that the Green coefficientg0 does not depend on the
azimuth quantum numberm due to the degeneration of the
exciton eigenenergy over it.

After substituting Eqs. (20) and (21) into the adiabatic
Dyson equation (17), we get the new one for the Green ma-
trix g(~kt; n;ne, n

′
e; nh, n′h),

g(~kt; n;ne, n
′
e; nh, n′h)=g0(~kt;n; ne; nh)δnen′eδnhn′h

+g0(~kt;n; ne; nh)
Ne∑

ne1=1

Nh∑
nh1=1

Mnene1;nhnh1(~kt; n)

×g(~kt; n;ne1,n
′
e; nh1, n

′
h), (25)

where the self-energy matrixMnene1;nhnh1(~kt; n) is defined
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by

Mnene1;nhnh1(~kt;n) = σ2

∞∫

−∞

d2k′t
(2π)2

W (|~kt − ~k′t|)

×
Ne∑

ne2,ne3=1

Nh∑
nh2,nh3=1

X∗
(nenh)(ne2nh2)

×g(~k′t; n; ne2, ne3; nh2, nh3)X(ne1nh1)(ne3nh3). (26)

Here, the adiabatic matrix elementX(nenh)(n′en′h) of the
exciton-surface interaction is written as

X(nenh)(n′en′h) = UeΨ(e)
ne

(0)Ψ(e)∗
n′e

(0) δnhn′h

+UhΨ(h)
nh

(0)Ψ(h)∗
n′h

(0) δnen′e . (27)

Note that within the adiabatic regime the matrix ele-
ments (27) turn out to be independent of the Coulomb quan-
tum numbersn,m and the in-plane center-of-mass wave vec-
tor ~kt.

Assuming the exciton-surface scattering to be weak, one can conclude that in the first-order approximation in the small
adiabatic self-energyM the solution of Eq. (25) is represented by the diagonal matrix

g(~kt;n; ne, n
′
e;nh, n′h) =

δnen′eδnhn′h

g−1
0 (~kt; n;ne;nh)−Mnenh

(~kt; n)
, (28)

whereMnenh
(~kt; n) is the diagonal element of the self-energy matrix (26).

Now, we summarize the calculations performed above. In accordance with the Eqs. (16), (20), (28), and (22) we can write
down the adiabatic Green function in the form

G(~R− ~R′; ~ρ, ~ρ′; ze, z
′
e; zh, z′h) =

∞∑
n=0

n∑
m=−n

Φnm(~ρ)Φ∗nm(~ρ′)
Ne∑

ne=1

Ψ(e)
ne

(ze)Ψ(e)∗
ne

(z′e)
Nh∑

nh=1

Ψ(h)
nh

(zh)Ψ(h)∗
nh

(z′h)

×
∞∫

−∞

d2kt

(2π)2
exp[i~kt(~R− ~R′)]

~
[
ω − ωnenh

(n)− (~k2
t /2M) + iν0 −Mnenh

(~kt; n)/~
] . (29)

Within the self-consistent approach, this expression forG(~R− ~R′; ~ρ, ~ρ′; ze, z
′
e; zh, z′h) should be complemented by the equation

for the self-energyMnenh
(~kt; n). Substituting Eqs. (29) and (27) into the definition (26), we obtain

Mnenh
(~kt;n)/~=

σ2

~2

[
Ue|Ψ(e)

ne
(0)|2+Uh|Ψ(h)

nh
(0)|2

]2
∞∫

−∞

d2k′t
(2π)2

W (|~kt−~k′t|)
ω−ωnenh

(n)−(~k′2t /2M)+iν0−Mnenh
(~k′t; n)/~

. (30)

As we expected, the self-energyMnenh
(~kt; n) turns out to

be independent of the azimuth Coulomb quantum number
m. Thus, the adiabatic in the Coulomb potential perturba-
tion does not destroy the Coulomb degeneration of the exci-
ton eigenstates. In addition, in Eq. (30) we have dropped the
summation over electron and hole quantum numbersn′e, n

′
h.

The inequalityd ¿ Rc, which follows from Eqs. (2) and (1)
implies that the exciton-surface scattering is adiabatic not
only with respect to relative electron-hole Coulomb motion,
but also with respect to their individual transverse motion.
Then, the main contribution in the sum overn′e, n

′
h is pro-

vided by the term withn′e = ne andn′h = nh.

So, the average Green function (29) contains only a single
summation over the Coulomb quantum numbersn,m as well
as over the transverse quantum numbersne, nh. Now, we can
conclude that the reason for canceling the second summation
is the adiabaticity of the electron-surface and hole-surface
scattering potentials. The adiabaticity clearly manifests itself
in the equation for the self-energy (30), where the summation
over the adiabatic quantum numbersn,m andne, nh is alto-

gether absent. Indeed, in accordance with the general quan-
tum theory, in the case of adiabatic perturbation the discrete
quantum numbers are conserved and only continuous quan-
tum numbers should change due to scattering [38]. In the
problem of exciton-surface scattering such a quantum num-
ber is the in-plane exciton center-of-mass wave vector~kt.

4. Complex Shift of Excitonic Spectrum

As follows from the expression (29) for the average Green
function, the surface-induced complex correction to the un-
perturbed excitonic spectrum~ω = ~ωnenh

(n) of a quan-
tum well is determined by the self-energyMnenh

(~kt; n). Its
real part is responsible for the shiftδωnenh

(n) of the exci-
tonic resonance frequency while the imaginary part gives the
exciton-surface scattering frequencyνnenh

(n),

δωnenh
(n) =

<Mnenh
(n)

~
,
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νnenh
(n) = −=Mnenh

(n)
~

. (31)

Therefore, to analyze these quantities we should solve the in-
tegral Eq. (30), which is rather complicated for the analysis.
Nevertheless, it can be substantially simplified if the follow-
ing facts are taken into account. In optical applications the
in-plane wave vector~kt turns out to be equal to the longi-
tudinal wave vector of light and hence, its value, in general,
is of the order of the light wave number. Therefore, we can
considerkt as the smallest wave number of our problem. In
particular, we suppose that the following conditions hold

ktRc ¿ 1, ~k2
t /2M ¿ min{ω, ωne,nh

(n)},
~k2

t /2M ¿ max{ν0, |M|/~}. (32)

Under these conditions we can put~kt = 0 in the argument
of the correlatorW and ~kt = ~k′t = 0 in the argument ofM
in the Eq. (30). Then we rewrite the integral over~k′t in po-
lar coordinates{k′t, ϕ}, take the integral overϕ and change
the integration variablek′t with ωt = ~k′2t /2M . Afterwards,
we obtain a simpler (not integral) equation for the adiabatic
self-energyMnenh

(n),

Mnenh
(n)/~ = ν2

N

M

~

×
∞∫

0

dωt

2π

W (
√

2Mωt/~)
ω − ωnenh

(n)− ωt + iν0 −Mnenh
(n)/~

. (33)

Here, the Fourier transformW (
√

2Mωt/~) as a function of
integration variable,ωt has the maximal valueW (0) ∼ R2

c

and the scale of decreaseωW ,

ωW = ~R−2
c /2M. (34)

In Eq. (33) we have introduced the normalization frequency
νN by the expression

νN =
σ

~

[
Ue|Ψ(e)

ne
(0)|2 + Uh|Ψ(h)

nh
(0)|2

]
. (35)

This frequency controls the effect of finiteness of potential
barriers, the effect of transverse electron and hole quantiza-
tion on the inhomogeneous shiftδωnenh

(n), and broadening
νnenh

(n) of excitonic resonances. According to the surface
origin of the exciton scattering potentials (10), the charac-
teristic frequencyνN contains the confinement eigenfunc-
tions Ψ(e,h)

ne,h (0) for the electron (e) and the hole (h) taken
at the unperturbed well interfaceze,h = 0. It is notewor-
thy that for infinitely deep quantum wells whenUe,h = ∞
andΨ(e,h)

ne,h (0) = 0, the productUe,h|Ψ(e,h)
ne,h (0)|2 has finite

value,Ue,h|Ψ(e,h)
ne,h (0)|2 = (2/d)~2(πne,h/d)2/2mez,hz. In

this way, the results (33), and (35) provide the transition from
the finite to the infinite potential barriers.

In what follows, the exciton-surface scattering frequency
νnenh

(n) is assumed to prevail over the homogeneous broad-
eningν0 (ν0 ¿ νnenh

(n)). Evidently, only such a situation

is reasonable when studying the effect of rough interfaces on
the broadening and shift of excitonic resonances in quantum
wells. One can see from Eq. (33) that the line-shape of ex-
citonic resonances inδωnenh

(n) andνnenh
(n) is determined

by the relation between the values ofωW and νN . When
the normalization frequencyνN is less than the scaling fre-
quencyωW (ν2

N ¿ ω2
W ), the excitonic resonance issharp

andasymmetric. Here, at the resonance point

ω = ωnenh
(n) + δωnenh

(n)

the surface scattering frequencyνnenh
(n) has a value of the

order ofν2
N/ωW , and the resonance shift is negative,

δωnenh
(n) ∼ −νnenh

(n) ln(ωW /νnenh
(n)).

As the frequenciesωW andνN approach each other, the ex-
citonic resonance inνnenh

(n) is enhanced, becoming more
symmetric, and the relaxation frequency tends to its maxi-
mal value equal toνN . At the same time, the resonance shift
δωnenh

(n) vanishes.
It should be noted that the self-consistent approximation

is rigorously justified if the resonance term in Eq. (33) is a
sharper function than the Fourier transform of the binary cor-
relator. From the analysis performed above, this suggests that
the conditionνN < ωW should hold. In the opposite case
whenωW ¿ νN , the theory should be constructed within
the so-calledclassical limit. As is known from Refs. 14, 39,
and 40, in this region the resonance isbroadand almostsym-
metric. The surface scattering frequency reaches its largest
value and the imaginary part of the resonant Green-function
coefficient,=g(~kt = 0; n; ne; nh), which determines the op-
tical absorptivity, follows the distribution function of surface
roughness. We should emphasize that the theory of the classi-
cal limit needs further development because the earlier inves-
tigations have been restricted just to the consideration of the
exciton ground statein infinitely deepwells with Gaussian
surface disorder, and the study has been realized bynumeric
simulations. Evidently, this development is a problem of es-
pecial research. Here, we would like to draw attention to the
fact that our self-consistent Eqs. (29), (33), being applied to
the region of broad resonance, give qualitatively correct re-
sults. Indeed, whenωW ¿ νN in the resonance vicinity, the
self-energy (33) and the resonant Green-function coefficient
g(~kt = 0;n; ne; nh) from Eq. (29) are related by the expres-
sion

Mnenh
(n)

~
= ν2

Ng(~kt = 0;n; ne; nh)

=
ω − ωnenh

(n)
2

− i

√
ν2

N − (ω − ωnenh
(n))2

4
. (36)

So that the imaginary part of the Green-function coefficient
turns out to be

=g(~kt=0;n; ne; nh)=−ν−1
N

√
1− (ω−ωnenh

(n))2

4ν2
N

. (37)
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One can see that the line-shape of the excitonic resonance is
symmetric, the real resonance shift is absent and the broad-
ening reaches its maximal value2νN . Therefore, the quan-
tity νN can be regarded as the exciton-surface scattering fre-
quency for the classical limit. It generalizes the correspond-
ing result obtained in Refs. 14, 39, and 40. The only (but
substantial) distinction from the predecessors is that the line-
shape is ellipsoidal instead of coinciding with the line-shape
of the roughness distribution function. So, if one is interested
just in qualitative (rather than exact) description of the exci-
tonic resonance, the self-consistent expressions (29), (33) can
be used independently of the ratio betweenνN andωW .

The qualitative agreement between the rigorous theory
of the classical limit and the corresponding consideration
within the self-consistent Born approximation can be nat-
urally explained in the following way. Within the former
approach, the results are obtained by the exact summation
of all terms in the perturbative expansion for the average
Green function [14] reducing this expansion to a convolu-
tion of the roughness Gaussian probability density and the
unperturbed Green function. Otherwise, the latter approxi-
mation sums up accurately only the “dangerous” (of the high-
est singularity) diagrammatic terms in the series for the self-
energy. Evidently, the contribution of these specific terms is
the main one, and therefore, provides a qualitatively correct
description of the exciton-surface scattering within the clas-
sical limit.

After analyzing Eq. (33), we come to a very interesting
and non-trivial conclusion: The type of excitonic resonance
and its line-shape are determined by thecompetition between
the adiabaticity of the surface disorder and the finiteness of
potential barriers of the quantum well. The increase of the
adiabaticity (the decrease ofωW ) leads towards the broad and
symmetric resonance. Otherwise, the less height of potential
barriers (the smallerνN ), the sharper and more asymmetric
resonance. That is why the consideration of finite values for
the roughness correlation lengthRc, and for the height of the
potential barriersUe,h is a fundamental requirement to con-
struct an adequate theory of exciton-surface interaction.

It should also be emphasized that the here described fea-
tures of the excitonic resonances are specific predictions of
theself-consistent approach, which takes into account the in-
herent action of exciton-surface scattering on itself. Indeed,
within the usual Born approximation, Eq. (33) goes over into
a similar one, but withMnenh

(n) = 0 in the denominator
of the integrand therein. This fact crucially changes the pa-
rameter controlling the type of the resonance. Now, it is the
ratio betweenωW and the homogeneous bulk broadeningν0

alone. Evidently, this ratio does not depend on the finite-
ness of potential barriers. In the next section we show by
numerical simulations the principal difference between our
self-consistent results and those obtained within usual Born
approximation. We also show that for realistic values of the
parameters of quantum wells and adiabatic interface rough-
ness, the broad symmetric resonance is more typical than the
sharp asymmetric one.

5. Numerical Results and Discussion

Here, in solving Eq. (33) numerically, we shall use a Gaus-
sian correlation functionW(|~r|) = exp(−r2/R2

c), for which

W (|~kt|) = πR2
c exp(−|~kt|2R2

c/4),

W (
√

2Mωt/~) = πR2
c exp(−ωt/4ωW ). (38)

Hence, the Eq. (33) for the self-energy can be rewritten in the
form

Mnenh
(n)/~ =

πν2
N

2ωW

∞∫

0

dωt

2π

× exp(−ωt/4ωW )
ω − ωnenh

(n)− ωt + iν0 −Mnenh
(n)/~

. (39)

We shall present the calculated frequency dependen-
cies of the broadeningνnenh

(n) and shift δωnenh
(n) of

the ground-statehh-exciton resonance (ne = 1, nh = 1,
n = 0) for a GaAs quantum well of thicknessd = 60 Å with
AlxGa1−xAs (x = 0.3) barriers [Curves (a) in Figs. 1–4].
The band gap is calculated by employing the formula
Egap(x) = [1.52 + 1.36x + 0.22x2] eV. The band-gap offset
considered in the calculations is 60% for the conduction band
and 40% for the valence band. In applying the theory, devel-
oped in the preceding sections, we have used identical effec-
tive masses for the quantum well and the barriers [41, 42].
So, the effective electron massmez = me|| = 0.067m0

(herem0 is the free electron mass), thex-y plane heavy-
hole massmhh,|| = 0.1m0, the z-axis heavy-hole mass
mhh,z = 0.45m0. Besides, the rough surface of the quan-
tum well is characterized by a correlation radiusRc = 500 Å,
much larger than the 2D-exciton radiusρ0 (ρ0 ∼ a0/2), and
a small r.m.s. roughness heightσ = 2 Å. We have also used a
homogeneous damping factor~ν0 = 0.1 meV andε0 = 12.5.

As is seen in Fig. 1(curve (a)), the line-shape of the
inhomogeneous broadeningν ≡ ν1,1(0) for the ground-
state exciton resonance is almostsymmetricwith respect to
the resonance frequencyω0 ≡ ω1,1(0) ≈ 1.5886 eV. Be-
sides, the dampingν has abroad maximum at a frequency
very close toω0. As was commented above, such behavior
of ν should be observed when the characteristic scaling fre-
quencyωW (34) of the roughness power spectrum is much
smaller than the normalization frequencyνN (35). It should
be emphasized that this condition is well satisfied by the cho-
sen parameters because hereωW ≈ ν0 and~νN ∼ 3.6 meV.
Therefore, the maximum of the inhomogeneous broadeningν
is well described by the simple formula

νmax =
σ

~

[
Ue|Ψ(e)

1 (0)|2 + Uh|Ψ(h)
1 (0)|2

]
, (40)

which follows directly from Eqs. (31), (36) and (35).
Curve (b) of Fig. 1 exhibits the corresponding inhomoge-
neous broadeningν as a function of the resonance detun-
ing ω − ω0 for the case of ideally infinite barriers (here
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ω0 = ω1,1(0) ≈ 1.6886 eV). In accordance with the analysis
performed in the previous section, Fig. 1 shows the exciton-
surface scattering frequencyν to be much smaller for fi-
nite barriers (curve (a)) than for infinite ones (curve (b)).
Therefore, in the latter case the inequalityωW ¿ νN

is better satisfied and thesymmetricexciton resonance is
much broader. Curve (a) of Fig. 2 shows the behavior of
the shift δω ≡ δω1,1(0) for the GaAs quantum well with
Al0.3Ga0.7As barriers. Under the condition of thebroadres-
onanceωW ¿ νN , the surface-induced resonance shiftδω
vanishes nearω0, and has different signs on the left and right
sides of the excitonic resonance. Consequently, the main ef-
fect of δω on the excitonic resonance turns out to be similar

FIGURE 1. Frequency dependence of the surface-induced inhomo-
geneous dampingν = νne,nh(n) for the ground-state hh-exciton
resonance (ne = 1, nh = 1, n = 0) of a GaAs quantum well of
thicknessd = 60 Å with (a) Al0.3Ga0.7As barriers and (b) ideally
infinite barriers.

FIGURE 2. Frequency dependence of the surface-induced shift
δω=δωne,nh(n) for the ground-state hh-exciton resonance (ne=1,
nh=1, n=0) of a GaAs quantum well of thicknessd = 60 Å with
(a) Al0.3Ga0.7As barriers and (b) ideally infinite barriers.

FIGURE 3. Frequency dependence of the surface-induced inho-
mogeneous dampingν=νne,nh(n) for the ground-state hh-exciton
resonance (ne=1, nh=1, n=0) of a GaAs quantum well of thick-
nessd=60 Å with Al0.3Ga0.7As barriers. Curves (a) and (b) were
calculated by using the self-consistent approach (as in Fig. 1(a))
and the ordinary Born approximation, respectively.

FIGURE 4. Frequency dependence of the surface-induced shift
δω=δωne,nh(n) for the ground-state hh-exciton resonance (ne=1,
nh=1, n=0) of a GaAs quantum well of thicknessd=60 Å with
Al0.3Ga0.7As barriers. Curves (a) and (b) were calculated by using
the self-consistent approach (as in Fig. 2(a)) and the ordinary Born
approximation, respectively.

to that caused by the dampingν, i.e. the resonance is broad-
ened symmetrically. This effect ofδω on ν is clearly ob-
served in the curve (a) of Fig. 1 and agrees with the asymp-
totic expressions (36) and (37). Note that the nonzero shiftδω
at the resonance frequencyω0 is negative with absolute value
of the order ofωW ¿ νmax = νN . Evidently,δω(ω0) → 0
whenωW → 0. For comparison purposes, we also present
curve (b) that shows the shiftδω for the ideal case of infinite
barriers (as in Fig. 1(b) forν). It is seen that the behavior
of δω near the exciton resonance is practically the same for
finite and infinite barriers. Only when the magnitude of the
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resonance detuning|ω − ω0| is very large, the shiftδω is al-
tered by the height of the potential barriers (see Fig. 2): the
resonance shift is reduced in magnitude as the height of the
potential barrier is diminished.

Let us compare our result, obtained within the self-
consistent approach (curves (a) in Figs. 1–4), with the pre-
dictions of the ordinary Born approximation for the inhomo-
geneous broadeningν (Fig. 3(b)) and the shiftδω (Fig. 4(b))
of the ground-state exciton resonance for the GaAs quan-
tum well with Al0.3Ga0.7As barriers. Within the ordinary
Born approximation the self-energy is given by Eq. (33) or
Eq. (39) eliminating the action ofM on itself, i.e. with
Mnenh

(n) = 0 in the denominator of the integrand therein.
Hence, in this case, the line-shapes ofν(ω) andδω(ω) are
determined by the relation betweenωW andν0 alone. For
the chosen parameters here,ωW ≈ ν0 and the line-shape
of ν(ω) is primarily asymmetricand sharp (see Fig. 3(b)),
unlike to the behavior predicted by the self-consistent ap-
proach (curve (a)). Theasymmetryandsharpnessof reso-
nance in the ordinary Born approximation can also be ob-
served in the shiftδω (see Fig. 4(b)). Note, as well, that in
accordance with the estimation made in the previous section,
the ordinary Born approach predicts extremely large values
for bothν andδω near the exciton resonance frequencyω0.
The latter result is, in practice, unrealistic for the case of
weak exciton-surface scattering, and shows clearly the dis-
advantage of using the routine Born approach rather than the
self-consistent one.

From the comparison of Fig. 1 (2) with 3 (4), we can
conclude that the self-consistency leads to more substan-
tial changes in the line-shape of the excitonic resonance
than the height of the potential barriers does. We have
also calculated spectra forν and δω for smaller values of
Rc(200Å < Rc < 500Å), when the conditionν0 < ωW is
well satisfied and the surface disorder is still adiabatic. These
calculations show that the line-shapes ofν(ω) andδω(ω) are
qualitatively the same as in Figs. 1–4.

Finally, it should be noted that according to the equa-
tion for the self energyMnenh

(n) (39), [see also Eqs. (30)
and (33)], the dependencies of the broadeningνne,nh

(n) and
shift δωne,nh

(n) on the resonance detuningω − ωne,nh
(n)

have the same form for all 2D-excitonn-th states with iden-
tical numbersne andnh in a quantum well with adiabatic

interface roughness. Therefore, for the GaAs quantum well
considered above the spectra ofν1,1(n) and δω1,1(n) with
n 6= 0 for the hh-exciton are, respectively, as in curves (a)
of Figs. 1–4, taking into account that only the quantityω0

should be replaced byω1,1(n).

6. Conclusion

We have developed a formalism for calculating the relaxation
frequencyν and the shiftδω of exciton resonances in quasi-
2D quantum wells with finite potential barriers and adiabatic
surface disorder,i.e. with a correlation lengthRc for the
well width fluctuations much larger than the exciton radius
a0 (Rc À a0). Our formalism was constructed on the basis
of the self-consistent Green’s function method and, conse-
quently, it considers the inherent action of the exciton scatter-
ing on itself. Thanks to the adiabaticity of the surface disor-
der, we obtained relatively simple equations for the inhomo-
geneous broadeningν and shiftδω for all exciton resonances.
We analyzed qualitatively these equations and discussed the
condition of the transition from the quantum self-consistent
limit to the classical one. Then we solved the equations for
ν andδω numerically for the specific case of a GaAs quan-
tum well with Al0.3Ga0.7As barriers. It was found that the
self-consistency alters significantly the line-shape of exciton
resonances, as it was compared with the predictions of the
routine Born approximation. So, our results show that the re-
laxation frequencyν for ground-statehh-exciton resonance
has abroad, almostsymmetricmaximum near the resonance
frequencyω0, whereas in the usual Born approach the res-
onance issharp and asymmetric. On the other hand, the
surface-induced resonance shiftδω vanishes nearω0, and has
different signs on the sides of the exciton resonance. The
orders of magnitude ofν and δω obtained within the self-
consistent approach turned out to be more realistic than those
predicted by the ordinary Born approximation.
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(2001) 3662, and references therein.

32. Here we use the generally accepted concept of adiabaticity
which implies that the interaction potential slowly varies either
in space or in time [19,38,43].

33. N. Atenco-Analco, N.M. Makarov, F. Ṕerez-Rodŕıguez,Super-
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