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The general relativistic geometry of the Navarro-Frenk-White model
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We derive the space time geometry associated with the Navarro-Frenk-White dark matter galactic halo model. We discuss several prop
of this geometry, paying particular attention to the corresponding Newtonian limit and stressing the qualitative and quantitative nature
the differences between the relativistic and Newtonian descriptions. We also discuss the characteristics of the possible stress energy te
which could produce such a geometry, using Einstein’s equations.
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Obtenemos la geomédren el espacio-tiempo asociada con el modelo materia obscura par el laaliicggbropuesto por Navarro, Frenk

y White. Analizamos algunas de las propiedades del espacio-tiempo obtenido, en especial las relacionadas con su corrdspitadiente
newtoniano, subrayando la naturaleza de las diferencias cuantitativas y cualitativas entre la desevgtciniana y la descrigm dentro de

la teoiia de la relatividad general que presentamos. Tambiscutimos sobre las caradsticas de los posibles tensores de materia-émerg
que, via las ecuaciones de Einstein, padros dar lugar a la geomitipresentada.

Descriptores:Materia obscura; relatividad y gravitéaci; cosmologa

PACS: 95.35+d; 98.62.Ai; 98.80-k; 95.30.Sf

The geometry generated by the galactic halo is generally  Specifically, given the fact that the dark halo in the galax-
thought to be “almost flat”. This assumption is based, first ofies seems to be spherical and at rest, at least on the average
all, on the fact that the galactic dark halo has very low densitywe consider a general spherically symmetric static space-
at most some orders of magnitude above the critical densittime, see Eq. (1) below, and were able to determine, on purely
of the Universe. Secondly, the velocities involved are smallgeometrical ground, an expression for the tangential velocity
compared with the speed of light, and third, the dust treatof objects moving in circular stable geodesics in terms of the
ment gives a description of the dynamics which is in goodmetric coefficients, which turned out to be a very simple one,
agreement with observation. These facts validate the Newtdzg. (9). We then take a sort of inverse point of view. Instead
nian physics as an adequate treatment of the dark halo. of considering such an equation as an expression for the ve-

These very same arguments are used for studying the slpcity, we take it as an expression for the metric coefficient,

lar system, where the geometry is also taken as “almost flardiven the fact that what is being observed is the velocity pro-

Nevertheless, the general relativistic treatment of the Sola!®: thus being able to determine part of the geometry based

system has made it possible to give important corrections tgn!y On observational data, Eg. (10). We determine the other
the Newtonian one and, furthermore, in the general relativisMetric coefficient using the fact that the matter-energy distri-

tic treatment, this "almost not flatness” is precisely what ex-Pution is mostly due to the dark matter density, and then iden-
plains the motion of the planets! tify the M function in the metric coefficient with the mass

. i L . given by the Newtonian model. In this way, we fix the geom-
We consider that using a general relativistic version of theetry and can compute the Einstein tensor and the geometric

galactic dark-matter halo allows one to make a more accuratg:g|ars, Finally, by means of Einstein’s equations, again with
analysis of the dynamics of the objects, including the study,, jnverse point of view, we can determine some properties of
of gravitational lenses, to mention just one application. a given stress-energy tensor, that is, for the matter responsible
In a nutshell: in the present work, we describe how theof the geometry.
observations can be related to part of the geometry; we then In a previous series of works, Matos et al. [1], Guém
use Newtonian limits to propose an expression for the comet al. [2], we discussed the possibility of determining the
plete geometry associated with the Navarro-Frenk-Whitegeometry of the space-time, and then limiting the type of
NFW, model. Next, we describe the properties of this type ofmatter-energy which generates this geometry, based on ob-
geometry and explain why the Newtonian description worksservational data. In particular, we addressed the problem of
so well. Armed with the geometry, we discuss the type ofmaking those determinations based on the observed profile of
matter-energy which generates the geometry, that is, the n#éhe tangential velocities of objects orbiting galaxies.
ture of dark matter, a point upon which the Newtonian anal- In the present work, we present this type of a program
ysis remains silent. applied to the NFW model, Navarret al. [3], which has
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proved to have a remarkable power of prediction and agreeshere the subindex stands for the derivative with respect
very well with observations, particularly with those outsideto r.

the central galactic region. In what follows, we reproduce the  On the other hand, we can rewrite the line element for this
main steps in the reasoning leading to the conditions whiclyeometry, Eq. (1), in terms of the modulus of the spatial ve-
the tangential velocity of circular orbits impose on the metriclocity, normalized with the speed of light, measured by an in-

coefficients for the spherically symmetric static case. ertial observer far from the source, @8’ = —dt? (1 — v?),
We begin with the general line element for this geometry:where
dr? 2
ds* = —a?(r)?dt* + ————— +72dQ0% (1) dr
(1 _2G M(r)) pn 2
c2r 9 1 i 9 dQ)
. . . V=93 + P - (8)
wherec is the speed of light ané the gravitational constant, c?a?(r) ,_ 2G M(r) dt
and 27

dQ? = d6? + sin® 0 dp?

is the solid angle element. From the corresponding LaThis last equation implies that the modulus of the angular ve-
grangian for a test partide in this space, |0City, which is the tangential VE|OCity in the case of circular
orbits, is defined as:

or— (%Y ) .

= dT ) v 2 _ ’[”2 @ _ 1 dl QZ (7)
: , e T 2a2(r) \ dt c2a2(r) \ dt ’

wherer stands for the proper time, we find that the energy,

thus, in terms of the conserved quantities, the angular veloc-

2 24
E=ai(r)ct, ity takes the form:
the p-momentum
v 2 _ 02 0[2(7") L72 (8)
Ly, =17 sin® 0, e r2  E?
and the total angular momentum, Using the expression derived for these conserved quan-
I tities, Eq. (5), we find that the tangential velocity can be
L?> =1Ly + (%)2, expressed in terms of the metric coefficianas
S1n
with Ly = r26, where the dot stands for the derivative with Uth = m 9)
respect to the proper time, are conserved quantities under this a(r)

motion. Notice that we can write the total angular momentum
in terms of the solid angle ag:? = r2 Q2.
With this information, the fact that the four-velocity,
ut = dz*/dr, is normalizedu, v = —1, translates into V2, (r)
a(r) = ex / £ d

This last equation allows us to determine the metric coef-
ficienta(r) in terms of the observed velocity profile:

a radial motion equation: (20)

.2 _

P+ V() =0, 2) This is the key equation of the reasoning: to use the obser-
with the potential/ (r) given by vations, v (r), in order to partially determine the geometry

) ) of the surrounding spacetime.
Vi) = - (1 B QGM(T)> ( I 1) @) Now we combine these results with the Navarro-Frenk-
cr c2a(r) r? White model. This model predicts the density profile [3]
Restricting the radial motion to circular stable orbits im- 00

plies imposing the conditions= 0, andoV /dr = 0, so that PNFW = 1+ )2 (11)

it describes an extremum of the motion, awd/ /or? > 0,
in order for the extremum to be a minimum. These three conwherep, = pe.it dc, 75 IS a scale radius),. is a characteristic
ditions guarantee that the motion will be circular and stable (dimensionless) density, and

They also imply the following expressions for the energy and

total momentum of the particles in such orbits: o 3H?
) 3 Pecrit 87 G
g2 c*a’(r) @)
- oafr) —ra(r),’ is the critical density for closure. The mass function,
3 ar r
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with the integration constant chosen so that o (1)
MNFW(T = 0) = 0,

takes the form

r
Mpr(’r) = 47’1’7‘? Po (hl (1 + :) — 1_;157,) . (12) .99992]

This implies, equating the gravitational force with the cen-
trifugal one, the following profile for the tangential velocity: 0.9999

In(1+.-) 1
2 .2 Ts
Ytgnpw — Y0 ( T - 1+ TL ) (13)

Ts

.99988

wherev? = 47 G pg 2, which is a velocity proportional to
the maximal velocity of the profile. The maximum is lo-
cated atr,,.x = 2.1626 5, and the velocity at this point is .99986]
vg = 2.15v4g, .. Thus, this parameter gives a measure of
the maximal tangential velocity reached by the orbiting parti-
cles. Itis proportional to th&:o value of the velocity at the 99984
virial radius given by NFW, [3].

These expressions are directly predicted by the NFW
model and, except for the central parts of galaxies, it has beer
successfully compared with the actual observations [3].

Using the expression derived for the tangential velocity r
within the NFW model, Eq. (13), in the expression we ob-
tained above, Eq. (9), we obtain a remarkably simple expresgigyre 1. The g, metric coefficient, for valuess — 104,

C

.99982

sion for theg;; coefficient: rs = 10kpe.
_27’8 s Thus, it will coincide with the expression for mass given by
a?(r) = (1 i 7") cr ’ (14) the.NFW mode_l, Eq. (12)_, up to terms _of the ord@(r.uo/c)‘*z
Ts which are negligible. This fact establishes a solid basis for

where we have set the integration constant suchrtigates to  the approximation for the mass functidd(r) given by the
one for large radii, and we have normalized the NFW velocityNFW expression.

with the speed of light. There are several noticeable features Accordingly, the line element of a galaxy with the NFW
in this last expression. First, it is regular everywhere. Thedensity profile takes the form:

divergency problem that the NFW-density has in the central

region, is not reflected in the metric coefficient:

2
1)2 o - v(‘o 77‘5
lin}) a?=¢"F, lim o?=1. (15) ds? = — (1 + 7) : 2 di?
r— 7—00 Ts
Actually, thea-function goes to one for large radii, as can be dr?
seen in the Fig. 1, recovering and validating the Newtonian + " +r2dQ?%, (17)
assumption in that region. 1-2% (“1(“:4-2) _ L )
We can go on and work with the other metric coefficient, © s e
2GM(r), 4
rr — 1- .
grr = ( 2, )

] . ] - which is then the geometry associated with the Navarro-
The unknown functionV/ () can not be directly identified Frenk-White model.

with the mass function. Essentially, this is due to the fact ]
that, in General Relativity, the mass also includes the energy The line element has two free parameters, namglyne
of the system, gravitational, kinetic, or any other form of en-characteristic speed, ang, the characteristic radius.

ergy. Thus, in GRM(r) is given by matter plus energy.  jth respect to the,, metric coefficient, it is also regu-
Explicitly, we find that, in the present case, the matter-energyy, everywhere, we see its behavior in Fig. (2), and it has the
density is given by = pyrw + O(vo/c)*, and theM (r) following limits:

function is given by the Einstein’s equations as

M(r) = /0 pr’dz. (16) lir% grr = lim g = 1. (18)
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g (r) tensor gives three independent, non-zero components:
rr
2
t vp 1 2
1.00004 G, =— i ~ Vg,
r v 1 2 4
G, = —4647“2 o [ulnu (ulnu—2z)+ 2] ~ v,
4
o _ Y 1
1.00003 Ge——wm (ulnu—x)
2 2
X {2u Inu (vg ulnu—2z <u+ vg)>
c c
v2
1.00002 + a2 (7x+4+263)} ~ vg, (20)

where we have defined= r/r,;, andu = 1 4 r/r;.
Being aware of the caveats on promoting this geometry
to a spacetime, we can still say something about the type of

1-0000%) matter which could produce this type of geometry, by means
of the Einstein equations:
87 G
Gl = a T, (21)
o 20 40 60 80 100 where G stands for the gravitational constant, afigl de-
. scribes the tensor of distribution of the matter-energy in the
spacetime.
FIGURE 2. The g« metric coefficient, for valuesj /¢ = 107, It is common to identify thé; component of the matter-
rs = 10kpc. energy tensor with the density of matter, and energy, present
Thus, the line element given by Eq. (17) is regular at allin the spacetimep, that isT} = —c?p. Thus, using the
points and, far from the source, takes the form of flat spaceecorresponding expression for the Einstein tensor, Eq. (20),
time. we obtain the same expression relating mass and density as

However, even though the line element does not show an{hat obtained in the Newtonian theory, Eq. (12). This fact
divergence, we expect to have one, directly inherited from th&UPPOrts the interpretation of the functidd(r) in the line
divergence of the NFW density at the center. Actually, wherglement, Eq. (17), as the mass of the system, as we discussed

one derives the scalar of curvatuf®, it is seen that above.
About the other components of the matter-energy tensor,

2 2 2 by means of the Einstein equations, we can conclude that
R0 ~ 202 o 202 2 < - 02) +O(r), (19)  such matter-energy tensor can not be dust or even a perfect
* s fluid. The reason for these conclusions are clear. Again, if

showing a clear divergence at the center, as expected. Th$® take the matter-energy tensor to be a perfect fluid one

implies that we do not have a solution describing a space- W (2 u "
time; as long as there is a naked singularity, the divergence T = (pc +p) 'y, +poy, (22)

is not covered by any horizon. What we have is a geometry i, , u the four velocity for the spherically symmetric case

that implies a dynamic similar to the one described by the, o 510 dealing with, the matter-energy tensor takes the form
NFW model, so we claim that this geometry will be related ;.. _ diag (—pc2, p, p, p). But, from the Einstein tensor, we

to the exterior part of a complete spacetime with the observegge that clearlys”, andG¢ are non zero and different from
T 6

dynamics. each other. Thus, the matter-energy curving the spacetime to

The metric coefficients differ from the unity by very tiny form the NFW geometry can not be dust or a perfect fluid.
amounts, validating the flat space approximation, that is, the | js important to notice that, as the densigy, is very
Newtonian analysis. However, within the General relativisticsma|l, the pressures are even smaller, and tend very quickly
theory, these tiny amounts of non-flat geometry are the oneg zero. These, again validate the Newtonian treatment tak-
responsible for the observed dynamics! ing the fluid as dust, in an exterior region. Nevertheless, we

Finally, we can construct the Einstein tensor in order tomust recall that this analysis aims at determining the actual
check that our approximation, which produces the space timeature of dark matter, pointing out the physical properties it
givenin Eq. (17), is well defined and consistent. The Einsteirmust have.
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