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An alternative analytical method of solution to radiative transfer equation in the two-stream approximation is studied. The method is
formulated in terms of theiffusion-type equation for radiative transfassociated with the fluxesradiance§ F; = ' — F~ and

F, = F* + F~, where 't and F~ are defined as the upward and downward fluxes respectively. The diffusion-type equations are
independent and therefore the method of solution is algebraically easier and faster than that used to solve the two coupled differential
equations associated wifit andF~.

Keywords: F* upward flux;F~ downward flux.

Se presenta un @odo alternativo para la soléci arélitica de las ecuaciones que describen la tranémide radiadn en la atrsfera,
mediante la aproximagn de dos flujos. El todo se basa en una formufatideecuaciones de tipo difusivasociadas a los flujosria-
diancia§ F; = F* — F~ yF, = F™ + F~,dondeF™ y F~ se definen como flujos ascendente y descendente respectivamente. Estas
ecuaciones resultan ser independientes y en consecuencia se obtieztledm ade soludin directo.

Descriptores: F* flujo ascendenteF~ flujo descendente.

PACS: 42.68.Db; 42.68Mj

1. Introduction solution for those two coupled differential equations can be
given in a matrix scheme by calculating the eigenvalues and
The multiple scattering process in the atmosphere is the phy#heir corresponding eigenvectors. Our purpose in this work is
ical process by means of which the radiant energy is trando give an alternative method of solution for those two cou-
ferred through the atmosphere, especially when aerosols amded differential equations, based on thiusion-type equa-
clouds are involved. The fundamentals of the multiple scattion for radiative transferLiou, (2002). The method consists
tering process are based on the radiative transfer equatidh transforming the coupled differential equations into a pair
which is a integro-differential equation [1]. The exact so-of independent second order differential equations associated
lution of the radiative transfer equation in a scattering andvith the fluxesf; = F* — F~ andF, = F* 4+ F'~, which
absorbing media is difficult to obtain even for plane-parallelare easer to solve. The solution f6r" and F~ obtained
atmospheres; under these circumstances approximate methy this alternative method can easily be transformed as that
ods are necessary. In the last three decades, special attétsed by Tooret al. (1989) in the study of heating rates and
tion has been paid to find simple and effective methods fophotodissociation rates in homogeneous multiple scattering
solving the radiative transfer equation. The simplest metho@tmospheres. The method can also be applied to solve the
to determine the radiative flux is the two-stream approximatwo-stream approximation method proposed by Shettle and
tion, which has been widely used in radiative flux calcula-Weinman (1970) and used later by RS arezet al. (1993)
tions in climate models, as described in several review pato study the Photolytic rates fé¥O,, O3 and HCHO in the
pers like Meador and Weaver (1980), Shettle and Weinmaatmosphere of Mxico City.
(1970), Zdunkowskiet al. (1980), and King and Harsh-
vardhan (1986), Li and Ramaswamiy , (1995), etc. In these In this work, we first establish the radiative transfer equa-
works, the Eddington approximation, quadrature discrete ortion for plane-parallel atmospheres in the manner of Chan-
dinate method, and hemispheric constant method have beeinasekhar, (1960) and modify a little bit the Meador and
incorporated into a standard solution form with appropriatéMeaver proposal to establish, in the Eddington approxima-
choice of the parameters. The two-stream approximation akion, the two coupled differential equations for the upward
lows the formulation of a coupled pair of differential equa- and downward fluxes. We propose the alternative method of
tion for the upwardF'+ and downwardE'~ fluxes; which  solution based on the diffusion-type equation, and finally give
represents integrals of the intensity over hemispheres. Theur comments.
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2. The radiative transfer equation

The general equation of the radiative transfer equation in a
plane parallel scattering atmosphere can be written (Chan-
drasekhar, 1960) for the diffuse intensity as

dI(T,
" (T, 15 )

I = I(7, p, p) = J (7, 1, ) = Jo (T, pto; ¢o0) , (1)

wherel (T, i1, ) is the diffuse intensityr is the optical depth T
measured along the zenith direction beginning at the top of
the atmospheregy; = cos @, with 6 is the local zenith angle, T -
and ¢ the local azimuth angle. The functiofN(r, i, ¢) is
known as thénternal source functiodue to multiple scatter-
ing, and defined as

2 Earth ground

1
w

J(7 1, 0) = in / / o(u, 0514’ ) FIGURE 1. lllustration of the incident solar flu¥,, on the top of a

-10 plane-parallel atmosphere, at an angjje The parameter™ is the
WI(r 1 VS, (2) total optical depth and represents any point inside the layer.

When! = 0, wy = 1 which represents the normalization

wherew is called as the single-scattering albedo, that is, thef the phase function. When= 1, we have
ratio of the scattering coefficient to the sum of the scattering
and absorption coefficients. The single scattering albedo is, 1 L
in general, a function of the optical depth The function g=—== / p(cosO) cosO dcos O, )
p(u, p; 1, ¢") is the phase function or single-particle scat- 3 2_1
tering law for radiation scattered from the directigi, ')
into the direction(u, ¢). which is referred to aasymmetry factgrand is the first mo-

The functionJ; is known as thexternal source function MenNt of the phase function. It is an important parameter in
due to single scattering of the direct solar beam, it is definediddiative transfer because it characterizes the scattering pat-
as tern of a particle. Substituting Eqg. (5) into Eq. (4), we have

for the phase function

w —T
JO(T7 MOaSOO) = E@(/Jw(p; _M07(¢00)F® € /1o ) (3) p(ﬂ,sp;,u/’sp')
N

such thatF, is the incident solar flux on the top of the atmo- = > wiPlpg + (1= )2 (1= p?) 2 cos(p — ¢)] . (8)

sphere at anglé,, such thaj:y, = — cos §, (see Fig. 1). 1=0
We can express the phase function in terms of Legendrgxpanding this function for its argument and using the ad-
polynomialsP; to solve Eq. (1), in the following way dition theorem of spherical harmonics [1], it can be shown
that
N
p(cos©) =Y wP(cosO), (4) N
; ol i1, =D wi {Pz(u)Pz(u’)
=0
where

l
I —m)! m

23 L ppe ) Py cosme - «p'>} qC)

cos © = ppt’ + (1 — pi*) 2 (1 = )2 cos(p — &), (5) m=1

In the azimuth-independent case, the phase function, accord-

and© being the angle between incident and scattered radiang to Eq.(9), reduces to

tion, w; can be determined from the orthogonal properties of

Legendre Polynomials, such that 1 2
ol ') = o | ol e’ ) do
1 ™
20+1 / N
w=—— [ p(cosO)P;(cosO) dcosO. (6)
2 ) = Y wRWhY), (10)
=0
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sions using some approximations. Firstly, from the normal-

and the intensity (7, 1) is defined as [1]

2T

o [ e do. (1)

I(1,p) =

0

According to Egs. (10) and (11), the azimuthal integration of;
the radiative transfer equation leads to

ization of the phase function given by

27 1 1
1 1
E// o, o5 1, ") dp dw=§/p(u,u’) dp=1, (18)
1 —1

it can be shown thats + v, = 1, where we have assumed

thaty' = pg.
On the other hand, in a similar way as the phase func-

tion, the diffuse intensity may also be expanded in terms of

dI(T, /~L) _ w ’ / /
dr I ) 5/‘,(7’“ ), 1) dp Legendre polynomials such that
-1
_ w (1, —pi0) F, e~ 7/ro (12) N
1 9\ o) Fo : => L(r)P(p) (19)
=0
2.1.  Two-stream method and the Eddington approxima-  The Eddington approximatioris obtained forN = 1 and
tion therefore Egs. (4) and (19) are approximated by

Eg. (12) can be written in terms of the upwdrd and down- I(r,p) = Io(7) + p I (1),
ward F'~ fluxes defined as

L o, ') =1+ 3gup’. (20)

277/[ T, ) pdp (13)  Inthis approximation it can be shown that
1
" 2nl(r,kp) = S[2E£30)FF + @F30F )], D)
and therefore
F(r)= 271'/](7', —u) pdp . (14) 1
1
0 2¢/uﬂimdu:4u4i@F++m¥3ﬁ“n.Qa
In this case, the radiative transfer equation (12) can be de- 4
From Eq. (20), we can check thaf{—u, 1) = o(u, —1'),

composed in two differential equations, one for the upward

flux and the other one for the downward flux; that is

1
+
ﬂ:27r/1’(7 W) du

dr
1
/1
21

o, 1')dp dp'’)

:]
O\H

+§’73 Fg e m/Ho, (15)

1
ﬂ:—?ﬂ/I(T —u) dp

dr
1 1
7o //ITM — ' )dp dpt’)
0 —1

— ke e (16)

where

1
1
5/{0 —pto) d, —po) dp. (17)
0

1
1
n=z o=
0

To write the right hand side of Egs. (15) and (16) in terms of =
4

and therefore the integrals of Egs. (15) and (16) reduce to

1 1
™ / / I(r, 1), £p) dpe dp!
0 —1

”)
= S[4£39)F  + (4F39)F ). (23)
The coefficientsy; and~, are approximated by
1 1
V3= 1(2 — 3gp0), Y4 = 1(2 + 3gp0) (24)
where the asymmetry factor reads explicitly as
(25)

1
1
g:§/u@(u,l)du-
—1

Substituting Egs. (22) and (23) into their respective expres-
sions in Egs. (15) and (16), we finally get theo-stream
approximationfor the upward and downward irradiances;

which can be written as [8], [9]

dEt + - ” —7/n
e YEFT(T) = 7 F 7 (T) — 130 Foe °, (26)
dF— N _r
T = 0F (1) =P (1) + e Foe 70, (27)
where
1 _ 1 -
= [T-o(@+39), e =—7[1-w(d-3g)]. (28)

F* andF~, we must evaluate the integrals of such expres-
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2.2. Diffusion-type method of solution and
9 -
The solution of Egs. (26) and (27) can be formulated in a ot — _Ho Wl { 1 + } 42
matrix scheme associated with the eigenvalues and their cor- (kpo)? —1 n fuo)ys + 72| (42)
responding eigenvectors. The alternative method reduces the 2 oF
system (26) and (27) in two independent second order dif- G- = _F070 [(71 +1/p10) 74 + 7273] . (43)
ferential equations: one for the differengg = F+ — F—, (kpo)? —1
and the other for the sufi, = F'* + F~. So, for these two  These solutions foF'+ and F~ can be transformed as that
guantities we have after an immediate algebra used by Tooret al. (1989), if we define the constant
dFy - _ v —k Y2
=% — (41 — y2)Fs — @ Foe™ ™/Ho 29 r=-2-—>=>=_"2_ 44
7 = (M —m)F— 0 Foe (29) v m+k “44)
dFs - - which satisfies becaugé = v? —~2. In this case: andv are
_ + F— _ O Fee~ /B0 30 Rty
dr 1 +92)Fa = (s =70)% Fo (30) related byv = T'u. If we redefine the constants”’; = K;
For these equations we get rapidly anduCy = Ko, we finally get from Egs. (39) and (40) the
following solutions
Py g, ¢ e T/Ho (31)
arz A ’ FT(r) = Kie"™ + TKye ¥ 4 GTe /1m0 (45)
2 - T —RT - =T
Ciz]} =k*F, —ne /M (32) F~(r) =TK1e" + Kpe ™™ + G7e /10 (46)
T

which are the same as those used by Tebral. (1989).

The constantd{; and K5 can be calculated by applying the

- boundary conditions for the upward and downward fluxes at

§=0Fo[(n —%2)(vs —74) — 1/ ol (33)  the top and at the bottom of the atmosphere. It is assumed,
- in general, that there is no incident flux at the top of the at-

n=wFobn+92 = (08 = )/uol.- (34) mosphere, in this cas€~ (0) = 0. At the surface, it can be

Clearly Egs. (31) and (32) are the two independent second oassumed that the upward fluxig times the downward flux,

der differential equations, called théfusion-type equations where R, is known as the reflectivity of the bottom, that is

for radiative transfer Ft(rx) = R,F~(rx), wheret* is the total optical depth
Itis easy to see that the solutions to Egs. (31) and (32) aref the layer as shown in Fig.1. By applying these boundary

given by the sum of the homogeneous part plus a particulatonditions we get

solution; thus

wherek? = vf — 42 and the parameters

(RsG~ —GT)e " /#0 £ G—(1 —T'R,)e *

K =
! (1 —TR,)[ekm™ —Te—F"]

Fy(1) = C1e"™ + Cae™ ™ + ae /10| (35) (47)

Fy(1) = C3e*™ 4+ Cye™ 7 4 Be= /1o, (36)

By substituting the particular solution we obtain

[T(R,G—— GH)e™ /o4 G~ (1-TR,)eF]

Ko=—
? (1 —=TR,)[eF™™ — Te=F"]

(48)

p3 OFs 3. Conclusions

o= W [(”Yl —72) (13 — v4) — 1/#0] , (37)
We conclude saying that the method of solution proposed in

pd OF; this work is clearly very easy and fast and no matrix method is

= (kpo)? — 1 {71 +2 = (13— 74)/“0} : (38)  required. It can immediately be extended to solve others cou-
pled differential equations, as for instance that obtained by

The constants”; and C3, C; and C4 are not indepen- . . } . .
dent, in fact it can be shown from Egs. (29) and (30) thatLI and Ramaswamy, (1995) in the four-stream approximation

- - : method. The radiative fluxe8™ (7) and F'~ (1) as functions
t(jlt;[(’g _f|?12|t)|/]:1] Oi”ﬂ?ndr%;_\[,g% _12%]:‘;]103 ,tAclcct)rr]dlr;gl_ of the optical depth can be calculated using the expressions of
0 the detinitions otfq and s, we ge ediately the 1ok 1he constant#(; and K, given in Egs. (47) and (48), respec-

lowing tively, we comment that those radiative fluxes can directly be
FH(7) = uCsel™ + vCye™" + GFe=/ho (39) applied to atmospheric photochemistry [2], [5], [10], [13].
F (1) = vC3" +uCye™ + G7e77/# . (40)  Acknowledgments
where Financial support from Consejo Nacional de Ciencia y Tec-
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u=g it v=g[l-——|, 4D 1790P-E9507.

Rev. Mex. 5. 51 (1) (2005) 82-86



86

—_

Ol = W N

J.I. JIMENEZ-AQUINO AND J.R. VARELA

S. ChandrasekhaRadiative Transfer(Dover publication, Inc.
New York, 1960).

. J.C. Bernarcet al. Atmos. Enviromme8 (2004) 3393.

. K.F. EvansJ. Atmos. Sci50(1993) 111.

. M.D. King and Harshvardhard, Atmos. Sci43(1986) 784.

. B.J. Finlayson-Pitts and James N. Pitts A&tmospheric Chem-

istry: Fundamentals and experimental technigudshn Wiley
& Sons, New York, 1999).

. Liou, K.N., An Introduction to Atmospheric RadiatipfAca-

demic Press, New York, 2002)

. J. Li, and V. Ramaswamy, Atmos. Sci53(1995) 1174.
. W.E. Meador and W.R. Weavel, Atmos., Sci37 (1980) 630.

10.

11.
12.

13.

14.

Owen B. Toon, C.P. Mckay, and T.P. Ackermam. Geoph.
Union (1989) 16287.

Jedis C. Riz-Swarezet al, Atmos. Envirommer27A (1993)
427.

E.P. Shettle and J.A. WeinmdnAtmos. Sci27 (1970) 1048.

K. Stamnes, S. Tay, W. Wiscombe, and K. JayaweAgp!.
Opt.27(1988) 2502.

J.H. Seinfeld and S.N. Pandig\tmospheric Chemistry and
Physics: From air pollution to climate chang@&lohn Wiley &
Sons, 1998).

N.G. Zdunkowski and G. KorB. Atmos. Sci27 (1970) 1048.

Rev. Mex. 5. 51 (1) (2005) 82-86



