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Two stream approximation to radiative transfer equation:
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J.I. Jiḿenez-Aquinoa and J.R. Varelab
aDepartamento de F́ısica,

e-mail: ines@xanum.uam.mx
bDepartamento de Ingenierı́a de Procesos e Hidráulica,
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An alternative analytical method of solution to radiative transfer equation in the two-stream approximation is studied. The method is
formulated in terms of thediffusion-type equation for radiative transferassociated with the fluxes (irradiances) Fd = F+ − F− and
Fs = F+ + F−, whereF+ and F− are defined as the upward and downward fluxes respectively. The diffusion-type equations are
independent and therefore the method of solution is algebraically easier and faster than that used to solve the two coupled differential
equations associated withF+ andF−.

Keywords: F+ upward flux;F− downward flux.

Se presenta un ḿetodo alternativo para la solución ańalitica de las ecuaciones que describen la transmisión de radiacíon en la atḿosfera,
mediante la aproximación de dos flujos. El ḿetodo se basa en una formulación deecuaciones de tipo difusivoasociadas a los flujos (irra-
diancias) Fd = F+ − F− y Fs = F+ + F−, dondeF+ y F− se definen como flujos ascendente y descendente respectivamente. Estas
ecuaciones resultan ser independientes y en consecuencia se obtiene un método de solución directo.

Descriptores: F+ flujo ascendente;F− flujo descendente.

PACS: 42.68.Db; 42.68Mj

1. Introduction

The multiple scattering process in the atmosphere is the phys-
ical process by means of which the radiant energy is trans-
ferred through the atmosphere, especially when aerosols and
clouds are involved. The fundamentals of the multiple scat-
tering process are based on the radiative transfer equation
which is a integro-differential equation [1]. The exact so-
lution of the radiative transfer equation in a scattering and
absorbing media is difficult to obtain even for plane-parallel
atmospheres; under these circumstances approximate meth-
ods are necessary. In the last three decades, special atten-
tion has been paid to find simple and effective methods for
solving the radiative transfer equation. The simplest method
to determine the radiative flux is the two-stream approxima-
tion, which has been widely used in radiative flux calcula-
tions in climate models, as described in several review pa-
pers like Meador and Weaver (1980), Shettle and Weinman
(1970), Zdunkowskiet al. (1980), and King and Harsh-
vardhan (1986), Li and Ramaswamiy , (1995), etc. In these
works, the Eddington approximation, quadrature discrete or-
dinate method, and hemispheric constant method have been
incorporated into a standard solution form with appropriate
choice of the parameters. The two-stream approximation al-
lows the formulation of a coupled pair of differential equa-
tion for the upwardF+ and downwardF− fluxes; which
represents integrals of the intensity over hemispheres. The

solution for those two coupled differential equations can be
given in a matrix scheme by calculating the eigenvalues and
their corresponding eigenvectors. Our purpose in this work is
to give an alternative method of solution for those two cou-
pled differential equations, based on thediffusion-type equa-
tion for radiative transfer, Liou, (2002). The method consists
in transforming the coupled differential equations into a pair
of independent second order differential equations associated
with the fluxesFd = F+ − F− andFs = F+ + F−, which
are easer to solve. The solution forF+ and F− obtained
by this alternative method can easily be transformed as that
used by Toonet al. (1989) in the study of heating rates and
photodissociation rates in homogeneous multiple scattering
atmospheres. The method can also be applied to solve the
two-stream approximation method proposed by Shettle and
Weinman (1970) and used later by Ruı́z-Súarezet al. (1993)
to study the Photolytic rates forNO2, O3 andHCHO in the
atmosphere of Ḿexico City.

In this work, we first establish the radiative transfer equa-
tion for plane-parallel atmospheres in the manner of Chan-
drasekhar, (1960) and modify a little bit the Meador and
Weaver proposal to establish, in the Eddington approxima-
tion, the two coupled differential equations for the upward
and downward fluxes. We propose the alternative method of
solution based on the diffusion-type equation, and finally give
our comments.
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2. The radiative transfer equation

The general equation of the radiative transfer equation in a
plane parallel scattering atmosphere can be written (Chan-
drasekhar, 1960) for the diffuse intensity as

µ
dI(τ, µ, ϕ)

dτ
= I(τ, µ, ϕ)−J(τ, µ, ϕ)−J0(τ, µ0, φ0) , (1)

whereI(τ, µ, ϕ) is the diffuse intensity,τ is the optical depth
measured along the zenith direction beginning at the top of
the atmosphere,µ = cos θ, with θ is the local zenith angle,
and ϕ the local azimuth angle. The functionJ(τ, µ, ϕ) is
known as theinternal source functiondue to multiple scatter-
ing, and defined as

J(τ, µ, ϕ) =
ω̃

4π

1∫

−1

2π∫

0

℘(µ, ϕ; µ′, ϕ′)

×I(τ, µ′, ϕ′)dϕ′dµ′ , (2)

whereω̃ is called as the single-scattering albedo, that is, the
ratio of the scattering coefficient to the sum of the scattering
and absorption coefficients. The single scattering albedo is,
in general, a function of the optical depthτ . The function
℘(µ, ϕ;µ′, ϕ′) is the phase function or single-particle scat-
tering law for radiation scattered from the direction(µ′, ϕ′)
into the direction(µ, ϕ).

The functionJ0 is known as theexternal source function
due to single scattering of the direct solar beam, it is defined
as

J0(τ, µ0, ϕ0) =
ω̃

4π
℘(µ, ϕ;−µ0, ϕ0)F¯ e−τ/µ0 , (3)

such thatF¯ is the incident solar flux on the top of the atmo-
sphere at angleθ0, such thatµ0 = − cos θ0 (see Fig. 1).

We can express the phase function in terms of Legendre
polynomialsPl to solve Eq. (1), in the following way

℘(cos Θ) =
N∑

l=0

ωlPl(cosΘ) , (4)

where

cosΘ = µµ′ + (1− µ2)1/2(1− µ′2)1/2 cos(ϕ− ϕ′) , (5)

andΘ being the angle between incident and scattered radia-
tion, ωl can be determined from the orthogonal properties of
Legendre Polynomials, such that

ωl =
2l + 1

2

1∫

−1

℘(cosΘ)Pl(cosΘ) d cosΘ . (6)

FIGURE 1. Illustration of the incident solar fluxF¯ on the top of a
plane-parallel atmosphere, at an angleθ0. The parameterτ∗ is the
total optical depth andτ represents any point inside the layer.

Whenl = 0, ω0 = 1 which represents the normalization
of the phase function. Whenl = 1, we have

g =
ω1

3
=

1
2

1∫

−1

℘(cosΘ) cos Θ d cosΘ , (7)

which is referred to asasymmetry factor, and is the first mo-
ment of the phase function. It is an important parameter in
radiative transfer because it characterizes the scattering pat-
tern of a particle. Substituting Eq. (5) into Eq. (4), we have
for the phase function

℘(µ, ϕ;µ′, ϕ′)

=
N∑

l=0

ωlPl[µµ′ + (1− µ2)1/2(1− µ′2)1/2 cos(ϕ− ϕ′)] . (8)

Expanding this function for its argument and using the ad-
dition theorem of spherical harmonics [1], it can be shown
that

℘(µ, ϕ; µ′, ϕ′) =
N∑

l=0

ωl

{
Pl(µ)Pl(µ′)

+2
l∑

m=1

(l −m)!
(l + m)1

Pm
l (µ)Pm

l (µ′) cos m(ϕ− ϕ′)
}

. (9)

In the azimuth-independent case, the phase function, accord-
ing to Eq.(9), reduces to

℘(µ, µ′) =
1
2π

2π∫

0

℘((µ, ϕ; µ′, ϕ′) dϕ

=
N∑

l=0

ωl Pl(µ)Pl(µ′) , (10)
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and the intensityI(τ, µ) is defined as [1]

I(τ, µ) =
1
2π

2π∫

0

I(τ, µ, ϕ) dϕ . (11)

According to Eqs. (10) and (11), the azimuthal integration of
the radiative transfer equation leads to

µ
dI(τ, µ)

dτ
= I(τ, µ)− ω̃

2

1∫

−1

I(τ, µ′)℘(µ, µ′) dµ′

− ω̃

4π
℘(µ,−µ0)F¯e−τ/µ0 . (12)

2.1. Two-stream method and the Eddington approxima-
tion

Eq. (12) can be written in terms of the upwardF+ and down-
wardF− fluxes defined as

F+(τ) = 2π

1∫

0

I(τ, µ) µ dµ , (13)

F−(τ) = 2π

1∫

0

I(τ,−µ) µ dµ . (14)

In this case, the radiative transfer equation (12) can be de-
composed in two differential equations, one for the upward
flux and the other one for the downward flux; that is

dF+

dτ
= 2π

1∫

0

I(τ, µ) dµ

−πω̃

1∫

0

1∫

−1

I(τ, µ′)℘(µ, µ′)dµ dµ′)

+
ω̃

2
γ3 F¯ e−τ/µ0 , (15)

dF−

dτ
= −2π

1∫

0

I(τ,−µ) dµ

+πω̃

1∫

0

1∫

−1

I(τ, µ′)℘(−µ, µ′)dµ dµ′)

− ω̃

2
γ4F¯ e−τ/µ0 , (16)

where

γ3=
1
2

1∫

0

℘(µ,−µ0) dµ, γ4=
1
2

1∫

0

℘(−µ,−µ0) dµ . (17)

To write the right hand side of Eqs. (15) and (16) in terms of
F+ andF−, we must evaluate the integrals of such expres-

sions using some approximations. Firstly, from the normal-
ization of the phase function given by

1
4π

2π∫

0

1∫

−1

℘(µ, ϕ;µ′, ϕ′) dµ dϕ=
1
2

1∫

−1

℘(µ, µ′) dµ=1, (18)

it can be shown thatγ3 + γ4 = 1, where we have assumed
thatµ′ = µ0.

On the other hand, in a similar way as the phase func-
tion, the diffuse intensity may also be expanded in terms of
Legendre polynomials such that

I(τ, µ) =
N∑

l=0

Il(τ)Pl(µ) . (19)

The Eddington approximationis obtained forN = 1 and
therefore Eqs. (4) and (19) are approximated by

I(τ, µ) = I0(τ) + µ I1(τ),

℘(µ, µ′) = 1 + 3gµµ′. (20)

In this approximation it can be shown that

2πI(τ,±µ) =
1
2
[(2± 3µ)F+ + (2∓ 3µ)F−)] , (21)

and therefore

2π

1∫

0

I(τ,±µ) dµ =
1
4
[(4± 3)F+ + (4∓ 3)F−)] . (22)

From Eq. (20), we can check that℘(−µ, µ′) = ℘(µ,−µ′),
and therefore the integrals of Eqs. (15) and (16) reduce to

πω̃

1∫

0

1∫

−1

I(τ, µ′)℘(µ,±µ′) dµ dµ′

=
ω̃

4
[(4± 3g)F+ + (4∓ 3g)F−] . (23)

The coefficientsγ3 andγ4 are approximated by

γ3 =
1
4
(2− 3gµ0), γ4 =

1
4
(2 + 3gµ0) , (24)

where the asymmetry factor reads explicitly as

g =
1
2

1∫

−1

µ ℘(µ, 1) dµ . (25)

Substituting Eqs. (22) and (23) into their respective expres-
sions in Eqs. (15) and (16), we finally get thetwo-stream
approximationfor the upward and downward irradiances;
which can be written as [8], [9]

dF+

dτ
= γ1F

+(τ)− γ2F
−(τ)− γ3ω̃ F¯e−τ/µ0 , (26)

dF−

dτ
= γ2F

+(τ)− γ1F
−(τ) + γ4ω̃ F¯e−τ/µ0 , (27)

where

γ1 =
1
4
[7− ω̃(4+3g)], γ2 = −1

4
[1− ω̃(4−3g)] . (28)
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2.2. Diffusion-type method of solution

The solution of Eqs. (26) and (27) can be formulated in a
matrix scheme associated with the eigenvalues and their cor-
responding eigenvectors. The alternative method reduces the
system (26) and (27) in two independent second order dif-
ferential equations: one for the differenceFd = F+ − F−,
and the other for the sumFs = F+ + F−. So, for these two
quantities we have after an immediate algebra

dFd

dτ
= (γ1 − γ2)Fs − ω̃ F¯e−τ/µ0 , (29)

dFs

dτ
= (γ1 + γ2)Fd − (γ3 − γ4)ω̃ F¯e−τ/µ0 . (30)

For these equations we get rapidly

d2Fd

dτ2
= k2Fd − ξ e−τ/µ0 , (31)

d2Fs

dτ2
= k2Fs − η e−τ/µ0 , (32)

wherek2 = γ2
1 − γ2

2 and the parameters

ξ = ω̃F¯[(γ1 − γ2)(γ3 − γ4)− 1/µ0] , (33)

η = ω̃F¯[γ1 + γ2 − (γ3 − γ4)/µ0] . (34)

Clearly Eqs. (31) and (32) are the two independent second or-
der differential equations, called thediffusion-type equations
for radiative transfer.

It is easy to see that the solutions to Eqs. (31) and (32) are
given by the sum of the homogeneous part plus a particular
solution; thus

Fd(τ) = C1ekτ + C2e−kτ + αe−τ/µ0 , (35)

Fs(τ) = C3ekτ + C4e−kτ + βe−τ/µ0 . (36)

By substituting the particular solution we obtain

α =
µ2

0 ω̃F¯
(kµ0)2 − 1

[
(γ1 − γ2)(γ3 − γ4)− 1/µ0

]
, (37)

η =
µ2

0 ω̃F¯
(kµ0)2 − 1

[
γ1 + γ2 − (γ3 − γ4)/µ0

]
. (38)

The constantsC1 and C3, C2 and C4 are not indepen-
dent, in fact it can be shown from Eqs. (29) and (30) that
C1=[(γ1−γ2)/k]C3 andC2=−[(γ1−γ2)/k]C4. According
to the definitions ofFd andFs, we get immediately the fol-
lowing

F+(τ) = uC3ekτ + vC4e−kτ + G+e−τ/µ0 , (39)

F−(τ) = vC3ekτ + uC4e−kτ + G−e−τ/µ0 , (40)

where

u =
1
2

[
1+

(γ1 − γ2)
k

]
, v =

1
2

[
1− (γ1 − γ2)

k

]
, (41)

and

G+ =
µ2

0 ω̃F¯
(kµ0)2 − 1

[
(γ1 − 1/µ0)γ3 + γ2γ4

]
, (42)

G− =
µ2

0 ω̃F¯
(kµ0)2 − 1

[
(γ1 + 1/µ0)γ4 + γ2γ3

]
. (43)

These solutions forF+ andF− can be transformed as that
used by Toonet al. (1989), if we define the constant

Γ =
γ1 − k

γ2
=

γ2

γ1 + k
, (44)

which satisfies becausek2 = γ2
1−γ2

2 . In this caseu andv are
related byv = Γu. If we redefine the constantsuC3 = K1

anduC4 = K2, we finally get from Eqs. (39) and (40) the
following solutions

F+(τ) = K1ekτ + ΓK2e−kτ + G+e−τ/µ0 , (45)

F−(τ) = ΓK1ekτ + K2e−kτ + G−e−τ/µ0 , (46)

which are the same as those used by Toonet al. (1989).
The constantsK1 andK2 can be calculated by applying the
boundary conditions for the upward and downward fluxes at
the top and at the bottom of the atmosphere. It is assumed,
in general, that there is no incident flux at the top of the at-
mosphere, in this caseF−(0) = 0. At the surface, it can be
assumed that the upward flux isRs times the downward flux,
whereRs is known as the reflectivity of the bottom, that is
F+(τ∗) = RsF

−(τ∗), whereτ∗ is the total optical depth
of the layer as shown in Fig.1. By applying these boundary
conditions we get

K1=
(RsG

− −G+)e−τ∗/µ0 + G−(1− ΓRs)e−kτ∗

(1− ΓRs)[ekτ∗ − Γe−kτ∗ ]
(47)

K2=− [Γ(RsG
−−G+)e−τ∗/µ0+G−(1−ΓRs)ekτ∗ ]
(1−ΓRs)[ekτ∗ − Γe−kτ∗ ]

(48)

3. Conclusions

We conclude saying that the method of solution proposed in
this work is clearly very easy and fast and no matrix method is
required. It can immediately be extended to solve others cou-
pled differential equations, as for instance that obtained by
Li and Ramaswamy, (1995) in the four-stream approximation
method. The radiative fluxesF+(τ) andF−(τ) as functions
of the optical depth can be calculated using the expressions of
the constantsK1 andK2 given in Eqs. (47) and (48), respec-
tively, we comment that those radiative fluxes can directly be
applied to atmospheric photochemistry [2], [5], [10], [13].
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