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On the viscous steady flow around a circular cylinder
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A series truncation method is proposed to obtain approximate solutions to the flow past a circular cylinder. This procedure is based on a
change in the radial coordinate (x), such that this new coordinate is defined in a finite interval. Solutions are truncated power series inx,
so that the full Navier-Stokes equations are transformed into three recurrence relations with two independent coefficients. The boundary
conditions on the cylinder’s surface are satisfied in trivially way, and the conditions at infinity lead to a system of two non linear ordinary
differential equations. These are solved using Fourier series in the angular variable and, for the sake of argument, in a power series inRe.
Results on the convergence of the series, with varying order of truncation, and comparison with earlier results are discussed.
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Se propone un ḿetodo de soluciones en series, que se truncan para obtener soluciones aproximadas al problema del flujo alrededor de un
cilindro. El procedimiento está basado en una transformación en la coordenada radial, de manera que la nueva variable (x) queda definida en
un intervalo finito. Las soluciones en series de potencias enx, dan pie a tres relaciones de recurrencia entre sus coeficientes, de los cuales,
sólo dos son independientes. Las condiciones de frontera sobre el cilindro se satisfacen de manera trivial y la condición al infinito resulta en
un sistema de dos ecuaciones diferenciales ordinarias no lineales. Estasúltimas se resuelven usando series de Fourier, en la variable angular,
y series de potencias enRe; esto con el fin de estudiar algunas caracterı́sticas generales. Se discuten los resultados al variar el orden en el
que se truncan las series y se comparan con resultados conocidos.

Descriptores: Número de Reynolds bajo; Eqs. de Navier-Stokes estacionarias; flujo viscoso y lento; truncamiento de series; flujo alrededor
de un cilindro; coeficiente de arrastre.

PACS: 47.15.GF

1. Introduction

The steady viscous flow past a fixed cylinder is perhaps
the simplest classical nontrivial problem in fluid dynamics.
When Stokes formulated the general equations for what are
now called Newtonian fluids, he addressed this problem, to-
gether with its three-dimensional analog, the problem of the
flow past a sphere [1]. He was unable to find a solution and its
full understanding is still the subject of analytical research, in
spite of the undeniable value of numerical solutions [2–5].

In this work the power series solution method is applied
to the problem of a steady viscous flow past a fixed circu-
lar cylinder. This approach to solving differential equations
dates back to Newton, and is still the most commonly used
and successful procedure. Here, we analyze the full Navier-
Stokes equations to study the advantages of suitably built se-
ries over other different approximations made troughout the
years [6–9].

Phenomenologically, this flow presents different regimes
depending on the value of the Reynolds number (Re), defined
here in terms of the cylinder’s radius,a. As Re is steadily in-
creased from some initial small value, the lack of fore and
aft symmetry slowly becomes apparent, until a value close to
2.5 is reached. Afterwards, difficult to resolve at first, a re-
circulating region develops on the wake, and attached to the
cylinder. Within this region, two standing eddies evolve until
the flow, forRe ∼ 10, ceases to remain steady, as the eddies
detach alternatively and travel down the wake giving rise to
a periodic flow [10, 11]. That is, the velocity and pressure
fields are time independent providedRe ≤ 10.

This problem has been studied for the past 150 years, and
a solution is yet to be found. Even forRe ¿ 1, the prob-
lem displays a singular nature, as regular perturbation theory
becomes singular. That is, it is not possible to find an ap-
proximation for the velocity and pressure fields, as a power
series inRe, consistent with the governing equations and the
appropriate boundary conditions; this is known as Stokes’
paradox. In 1910, Oseen [6,10] pointed out that for the three-
dimensional case, where a zeroth order solution exists and the
first order correction cannot be found, the neglected terms are
not everywhere small, and proposed an alternative way to lin-
earize the Navier-Stokes equations. The resulting equations
were solved analytically [12], forRe ¿ 1, but provided no
systematic way or indication as to how to improve the ap-
proximation.

The first numerical calculations were performed in the
late 1930’s, for fixed values ofRe [13]. In the 1950’s
the method of matched asymptotic expansions was pro-
posed [8,14,15], and applied to this problem a few years
later [7,16,17]. The basic idea of this method is to build con-
sistent expressions near and far from the body, the inner and
outer regions, and devise an adequate procedure for matching
successive approximations. The difficulty with this method
is that, in order to obtain valid solutions forRe ∼ 1, an infi-
nite number of corrections need to be calculated [10, 17]. To
this day, many different numerical [2–4, 18–22] and analyti-
cal studies [9,23] have been carried out for this problem.

Here, the power series solution method is used on a trans-
formed radial variable, defined in such a way that its domain
ranges between0 and1 and follows a previous, unpublished
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work [24]. The nonlinear partial differential equations are
then mapped into a set of three recurrence relations, for the
coefficients of the power series; all coefficients can be writ-
ten in terms of two unknown functions of the angular variable
andRe. The boundary conditions on the cylinder’s surface
are satisfied trivially. The uniform flow condition at infinity
leads to a set of two non-linear ordinary differential equa-
tions, of infinite order and degree. To proceed further, the
power series is truncated at some orderN , and the corre-
sponding pair of equations is then solved analytically. This
is done for increasingly larger values ofN , and with various
degrees of approximation using Mathematica.

In Sec. 2, the general problem is formulated and the pro-
cedure is described. Section 3 includes the proper calcula-
tions, using Fourier series for the angular variable and, for
the sake of explicit expressions, a power series inRe is intro-
duced. Section 4 present some results, a discussion on con-
vergence, and some perspectives for future analyzes within
this framework. The appendix illustrates the method as an
example for the simplest non-trivial case and the numerical
procedure is discussed.

2. Problem and procedure

The problem of the steady viscous flow around a fixed circu-
lar cylinder is described by the following system of dimen-
sionless partial differential equations:

Re(~u · ∇)~u = −∇P +∇2~u, (1)

∇ · ~u = 0; (2)

where~u = ~u(r, θ) andP = P (r, θ) are the velocity and pres-
sure fields,r andθ are the radial and angular cylindrical co-
ordinates, andRe = aU/ν is the Reynolds number,U andν
being the velocity at infinity and the kinematic viscosity co-
efficient, respectively. The boundary conditions correspond
to the stick boundary condition on the surface of the cylinder
and a uniform flow with constant pressure far away from the
cylinder:

~u = 0 if r = 1, (3)

~u = Û and, (4)

P ∗ → 0 if r →∞, (5)

whereÛ is a unitary vector in the direction of the uniform
flow, P ∗ = P − P0, P0 is the pressure at infinity. Equa-
tions (1) and (2) establish the conservation of momentum and
mass [25–27]. The density and temperature, and hence the
internal energy, are assumed to be constant over the entire
domain; a common assumption, though debatable.

The first issue is that, taking into account that the region
of non uniformity is in the neighborhood of the point at infin-
ity or, equivalently, that the singular character of a straightfor-
ward perturbation theory arises from the nature of the infinite
domain [10], a new variable may be introduced that is every-
where finite. Here we follow closely a previous, unpublished

paper [24]. Let

x(r) = 1− 1
r
, (6)

so that the interval[1,∞) is mapped into the interval[0, 1].
The Navier-Stokes equations (1) and (2), in cylindrical coor-
dinates, now read

Re

[
(1− x)ux

∂ux

∂x
+ uθ

∂ux

∂θ
− u2

θ

]
=

−(1− x)
∂P ∗

∂x
+ (1− x)3

∂2ux

∂x2
+ (1− x)

∂2ux

∂θ2

−(1− x)2
∂ux

∂x
− 2(1− x)ux, (7)

Re

[
(1− x)ux

∂uθ

∂x
+ uθ

∂uθ

∂θ
+ uxuθ

]
= −∂P ∗

∂θ

+(1− x)3
∂2uθ

∂x2
+ (1− x)

∂2uθ

∂θ2
− (1− x)2

∂uθ

∂x

+2(1− x)
∂ux

∂θ
− (1− x)uθ, (8)

(1− x)
∂ux

∂x
+

∂uθ

∂θ
+ ux = 0, (9)

Clearly, the boundary conditions in the new set of variables
(x, θ) are

ux(0, θ) = 0, (10)

uθ(0, θ) = 0, (11)

ux(1, θ) = cos θ, (12)

uθ(1, θ) = − sin θ, (13)

P ∗(1, θ) → 0, (14)

where equations (10) and (11) correspond to the non-slip
boundary condition on the cylinder’s surface (x = 0), and
equations (12), (13), and (14) are the conditions of uniform
flow field and constant pressure at infinity.

The solutions for the velocity and pressure fields are as-
sumed to have the form

ux(x, θ;Re) =
∞∑

n=0

an(θ;Re)xn, (15)

uθ(x, θ;Re) =
∞∑

n=0

bn(θ;Re)xn, (16)

P ∗(x, θ; Re) =
∞∑

n=0

cn(θ;Re)xn, (17)

where the coefficientsan, bn andcn must to be periodic, with
period2π. To satisfy conditions (10) and (11), it suffices to
set the coefficientsa0 andb0 equal to zero.

Substituting expressions (15-17) into equations (7-9), and
collecting equal powers ofx, results in a set of three coupled
recurrence relations:
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an =
1
n

[
(n− 2)an−1 − b′n−1

]
, (18)

bn =
1

n(n− 1)

{
2a′n−3 − 2a′n−2 + b′′n−3 − b′′n−2 + (n− 2)(n− 4)bn−3 − (3n2 − 13n + 13)bn−2 + (3n− 5)(n− 1)bn−1

+ c′n−2 + Re

n−3∑
m=1

bm

[
b′n−m−2 − (m− 1)an−m−2 + man−m−1

]}
, (19)

cn =
1
n

{
− a′′n−2 + a′′n−1 − (n− 1)(n− 3)an−2 + (3n2 − 7n + 3)an−1 − n(n− 3)an + n(n + 1)an+1 + 2b′n−2 − 2b′n−1

+ (n− 1)cn−1 + Re

n−2∑
m=1

[
bm(bn−m−1 − a′n−m−1) + mam(an−m−1 − an−m)

]}
, (20)

where the primes denote derivatives with respect toθ; these
relations are valid forn > 0. Computing the first few coef-
ficients, it is readily found that there are only two indepen-
dent coefficients,c0(θ; Re) andb1(θ; Re), hereafter denoted
by ϕ(θ; Re) andη(θ; Re), respectively. The first coefficients,
in terms of the two unknown functions, are

c0(θ) ≡ ϕ(θ),

a1(θ) = 0,

b1(θ) ≡ η(θ),

c1(θ) = −η′,

a2(θ) = −1
2
η′,

b2(θ) =
1
2

[η + ϕ′] ,

c2(θ) = −1
2

[η′ + ϕ′′] ,

a3(θ) = − 1
3!

[2η′ + ϕ′′] ,

b3(θ) = − 1
3!

[2η′′ − 3η − 4ϕ′] ,

c3(θ) =
1
3!

[
η′′′ − 2η′ − 3ϕ′′ + 2Reη

2
]
,

a4(θ) =
1
4!

[2η′′′ − 7η′ − 6ϕ′′] ,

b4(θ) = − 1
4!

[12η′′ − 12η + 2ϕ′′′ − 19ϕ′ −Reηη′],

c4(θ) =
1
4!

[6η′′′ − 6η′ + ϕ(4) − 11ϕ′′ + Re(6ηϕ′

+ 2ηη′′ − 4η′2 + 12η2)];

the dependence onRe has been omitted. After expres-
sions (15) and (16) are substituted into the boundary condi-

tions (12) and (13), they become

N∑
n=1

an(θ; Re) = cos θ, (21)

N∑
n=1

bn(θ; Re) = − sin θ, (22)

for N →∞.

When the coefficientsan, bn andcn are expressed in terms of
ϕ(θ) andη(θ), the above expressions correspond to two non-
linear ordinary differential equations. In order to have sym-
metric solutions, with respect to the transformationθ → −θ,
i.e. the velocity field on the horizontal axis must be radial, the
angular component of the velocity field must be zero atθ = 0
andθ = π, which implies thatbn(0) = bn(π) = 0. There-
fore, from relations (18-20) it follows that the functionsη and
ϕ have to satisfy equations (21) and (22) with the subsidiary
conditions

ϕ(2n+1)(0) = ϕ(2n+1)(π) = 0, (23)

η(2n)(0) = η(2n)(π) = 0, (24)

n = 0, 1, 2, . . .

Since the coefficientsan andbn depend only onη(θ), ϕ′(θ)
and higher derivatives, then, to findϕ(θ), condition (14) must
be used.

To go any further, the series (15-17) must be truncated at
some fixed valueN . Hence, expressions (21) and (22) yield
a system of two equations forη(θ) andϕ′(θ), whose order
and degree depend onN . As N is increased, it is expected
to that the solutions converge to the solutions of the original
equations. This is yet to be proven, although the solutions
found for the values ofN considered here seem to behave
accordingly.
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2.1. The Truncated Equations

For example, expressions (21) and (22) truncated atN = 4
read

2η′′′ − 10ϕ′′ − 27η′ = 24 cos θ, (25)

2ϕ′′′ − 47ϕ′ + 20η′′ − 60η −Reη
′η = 24 sin θ, (26)

which is the first nonlinear problem to be solved. ForN = 5
the equations are

2ϕ(4) + 28η′′′ − 87ϕ′′ − 168η′

−Re[η′′η + η′2] = 120 cos θ, (27)

3η(4) − 32ϕ′′′ − 178η′′ + 342ϕ′+360η

+Re[20η′η + 2ϕ′′η] = −120 sin θ. (28)

Clearly, the complexity of the differential equations increases
rapidly withN ; the order increases asN − 1, while the vari-
ation of the degree of the non-linear terms onN is not clear.

2.1.1. Fourier Series

From the symmetry properties of the ordinary differential
equations for a givenN , it is found that the coefficients asso-
ciated with the velocity and pressure fields have the form

an(θ; Re) =
∞∑

l=0

αnl(Re) cos(lθ), (29)

bn(θ; Re) =
∞∑

l=0

ζnl(Re) sin(lθ), (30)

cn(θ; Re) =
∞∑

l=0

εnl(Re) cos(lθ); (31)

in practice these series must be truncated at some orderM .
After the substitution of the above expansions into the recur-
rence relations (18–20) and using the orthogonality proper-
ties of the trigonometric functions, a new set of recurrence
relations is obtained for the coefficients of the series (29-31)
given by

αnl =
1
n

[(n− 2)αn−1,l − lζn−1,l] , (32)

ζnl =
1

n(n− 1)

{
2l(αn−2,l − αn−3,l) + [(n− 2)(n− 4)− l2]ζn−3,l − [(3n2 − 13n + 13)− l2]ζn−2,l

+ (3n− 5)(n− 1)ζn−1,l − lεn−2,l +
1
2
Re

n−3∑
m=1

M∑

p,k=1

[
ζmp

(
kζn−m−2,k − (m− 1)αn−m−2,k + mαn−m−1,k

)

× (
δp,k+l + δp,l−k − δp,k−l

)]}
, (33)

εnl =
1
n

{
[l2 − (n− 1)(n− 3)]αn−2,l − [l2 − (3n2 − 7n + 3)]αn−1,l − n(3n− 2)αnl + n(n + 1)αn+1,l

− 2l(ζn−1,l − ζn−2,l) + (n− 1)εn−1,l + Re

n−2∑
m=1

M∑

p,k=1

[
ζmp(ζn−m−1,k + kαn−m−1,k)(δp,k+l + δp,k−l − δp,l−k)

+ mαmp(αn−m−1,k − αn−m,k)(δp,k+l + δp,k−l + δp,l−k)
]}

, (34)

αn0 = ζ0l = α0l = 0, (35)

which are valid forn = 1, . . . , N andl = 1, . . . , M , where
δnm is the Kronecker delta. The recurrence relations (32-34)
have2M independent functions ofRe (ζ1l andε0l), which
are the coefficients of the expansions for the functionsη(θ)
andϕ(θ).

From Eqs. (21) and (22) the corresponding boundary
conditions determining the value of the coefficientsζnl and
εnl are

N∑
n=1

αnl = δ1l, (36)

N∑
n=1

ζnl = −δ1l. (37)

With relations (32–34), the coefficientsζnl and εnl can be
computed in terms of the independent coefficientsζ1l andε0l.
Thus, Eqs. (36) and (37) result in a system of2M non-linear
algebraic equations for2M unknown functions ofRe (see
Appendix A). Although the non-linear partial differential
equations have been reduced to solve a system of algebraic
equations, the problem is still non-linear.
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2.1.2. The Algebraic Equations

The complexity of Eqs. (36) and (37) depends on the values
of N andM and, in general, they cannot be solved analyti-
cally; an approximate solution is proposed as follows. A first
attempt to solve them is to assume that the unknown coeffi-
cients have expansions in powers ofRe, i.e.

ζ1l(Re) =
M ′∑

j=0

ω1ljR
j
e, (38)

ε0l(Re) =
M ′∑

j=0

γ0ljR
j
e, (39)

where the coefficientsω1lj and γ0lj are pure numbers and
l = 1, 2, . . . , M . In principle, the sums in the above series
run up to infinity, but in order to find solutions these series
must be truncated at some powerM ′. Substituting expres-
sions (38) and (39) into Eqs. (36) and (37), written in terms
of the2M independent coefficients, and collecting terms in
powers ofRe, the problem reduces to a complete system
of 2M linear algebraic equations which can be solved iter-
atively. Therefore, in order to have solutions up to an order
M ′ in Re, M ′ systems of2M linear equations need to be
solved.

To simplify the iterative method for finding approximate
solutions for Eqs. (36) and (37) using power series inRe, one
assumes that the Fourier coefficientsαnl, ζnl andεnl have the
following expansions:

αnl(Re) =
M ′∑

j=0

µnljR
j
e, (40)

ζnl(Re) =
M ′∑

j=0

ωnljR
j
e, (41)

εnl(Re) =
M ′∑

j=0

γnljR
j
e, (42)

and thus the recurrence relations (32-34) can be written in
terms of these coefficients; after collecting terms in powers
of Re, a new set of recurrence relations for the coefficients of
the power series (40-42) is obtained. In this case, the inde-
pendent coefficients areω1lj andγ0lj ; given this set of num-
bers, all the remaining coefficients can be computed. The
above expressions were truncated in order to have relations
with a finite number of terms, otherwise the recurrence rela-
tions involve infinite sums.

When expressions (40-42) are substituted into condi-
tions (36) and (37), and terms with the same power onRe

are collected, the following relations are found

N∑
n=1

µnlj = δ0jδ1l, (43)

N∑
n=1

ωnlj = −δ0jδ1l, (44)

so that, for fixed values ofj and expressing the coefficients
µnlj andωnlj in terms of the independent coefficientsω1lj

andγ0lj , the above expressions result in a complete system
of 2M linear algebraic equations. These equations can be
solved in an iterative manner, though the calculations can be
very large depending on the values ofM andM ′. Hence, the
approximate solutions of (21) and (22) are

η(θ;Re) =
M∑

l=1

sin(lθ)
M ′∑

j=0

ω1ljR
j
e, (45)

ϕ(θ;Re) =
M∑

l=1

cos(lθ)
M ′∑

j=0

γ0ljR
j
e. (46)

Equations (36) and (37) were also solved numerically for
fixed values ofRe. The numerical calculations were made
using Mathematica 4.0, which uses Newton’s method, for dif-
ferent values ofM andN .

2.2. Numerical Solution

In order to study the validity of the approximate solu-
tions (45) and (46), the system of equations given by (21-24)
was solved numerically for a few fixed values ofN andRe.
The method used to make the numerical integration was to
transform the set of boundary conditions (23) and (24) onto
a set of initial conditions, which is described in Appendix B.
The initial value problem was then solved in Mathematica
4.0, based on an algorithm that uses a Runge-Kutta method.

2.3. Stream Function and Drag

Once the coefficientsζ1l andε1l are known for fixed values
of N andM , the coefficientsαnl(Re), ζnl(Re) andεnl(Re)
can be computed; thus

ux(x, θ,Re) =
N∑

n=1

(
M∑

l=1

αnl(Re) cos(lθ)

)
xn, (47)

uθ(x, θ,Re) =
N∑

n=1

(
M∑

l=1

ζnl(Re) sin(lθ)

)
xn, (48)

P ∗(x, θ,Re) =
N∑

n=0

(
M∑

l=0

εnl(Re) cos(lθ)

)
xn. (49)

In the case of the pressure field, the condition at infinity is not
exactly satisfied at any orderN , unlessN →∞. The coeffi-
cientsαnl, ζnl andεnl are given by expressions (40-42).

Rev. Mex. F́ıs. 51 (1) (2005) 87–99
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The stream function, in cylindrical coordinates, is defined
by

ur =
1
r

∂Ψ
∂θ

,

uθ = −∂Ψ
∂r

.

Using the approximate solutions (47) and (48) for the veloc-
ity field, the stream function has the form

Ψ(r, θ) =
N∑

n=1

(1− 1
r
)nr

(
M∑

l=1

αnl(Re)
l

sin(lθ)

)
, (50)

where the coefficientsαnl are given by (40).
The force on the cylinder’s surface is calculated using

~F =
∫

S

τ̃ · n̂dS,

whereτ̃ is the stress tensor and̂n is a unitary vector normal
to the cylinder’s surface (S). Due to the assumed symmetry
of the problem, the direction of the force is the same as the
direction of the uniform flow, far from the body. Thus

F =
∫

S

(τrr cos θ − τrθ sin θ)dS, (51)

where the components of the stress tensor are evaluated at the
cylinder’s surface, and are given by

τrr = −ϕ(θ;Re), (52)

τrθ = η(θ; Re); (53)

the functionsϕ(θ;Re) andη(θ; Re) are thus the dimension-
less pressure and the shear stressτrθ on the cylinder’s sur-
face, respectively. Hereafter, we write the drag coefficient
(CD = F/ρU2a) instead of the drag itself. Substituting ex-
pressions (45), and (46) into expression (51) and integrating
over the cylinder’s surface, it is found that

CD = − π

Re

(
ε01(Re) + ζ11(Re)

)
. (54)

This is the drag coefficient, within this approximation.

3. Results

In this section, results for the functionsϕ(θ) andη(θ) for a
wide range of values ofN , M andM ′, are presented. The
solutions were compared with those obtained with numerical
results for the systems of algebraic Eqs. (43) and (44), and
numerical integration of Eqs. (21) and (22). Both the analyti-
cal and numerical calculations were made with Mathematica
4.0, as this program is capable of handling the equations to be
solved, which are long and complicated. For example, when
N = 10, the differential Eqs. (21) and (22) have 56 and 66
terms, respectively.

The stream function is compared with results obtained
from the solution for Oseen’s equation [28] and using match-
ing asymptotic expansions [7, 8]. Once the components for
the stress tensor were known, the drag coefficient was com-
puted and some properties of convergence were analyzed. Fi-
nally, results were compared with experimental data [29,30],
and with other calculations using different methods [7,8,23].

3.1. Analytical Solutions

The system of linear algebraic Eqs. (43) and (44) were solved
for values ofN , M andM ′ up to30, 21 and30 respectively,
and it is possible to go further, however, the results are only
valid for Re < 1, and therefore it is not useful to increase the
values ofM ′.

The approximate solutions of (21) and (22), givenN and
up toRM ′

e , have the general form

η(N)(θ;Re) =
M∑

l=1




M ′∑

j=l−1

ω1ljR
j
e


 sin(lθ), (55)

ϕ(N)(θ;Re) =
M∑

l=0




M ′∑

j=l−1

γ0ljR
j
e


 cos(lθ), (56)

ωnlj = γnlj = 0, for l andj both even or odd,

where the superscript N denotes the order of truncation.
These solutions show that, if the series in powers ofRe are
truncated so that thatM ′ < M , then the coefficients of the
Fourier series (29-31), forl > M ′ + 1, are all equal zero.
In other words, the Fourier series are automatically truncated
such thatM = M ′+1. Therefore, solutions provided by (55)
and (56) are approximations, up to terms of orderM ′ in Re,
of equations (43) and (44) in the limitM → ∞. On the
other hand, ifM < M ′, the results obtained are solutions of
Eqs. (43) and (44) in the limitM ′ →∞. Preliminary results
show that the Fourier series converge faster than the power
series, i.e, the best way to truncate both series is choosing
M < M ′.

Expressions (55) and (56) are plotted in Figs. 1 and 2 for
different values ofRe andN , with M = 21 andM ′ = 30,
that is21 terms in Fourier series and30 powers inRe. It can
be seen that, forRe < 1, the differences between solutions
with increasing values ofN decrease; whenRe is of order
one, the convergence of the solutions, as function ofN , is
ill-behaved. It is clear that the asymmetry in the curves in-
creases asN is increased, which means that the for and aft
asymmetry is apparent, even forRe ¿ 1. Clearly, asRe is
increased with fixedN , the asymmetry increases too.
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FIGURE 1. Plots ofϕ(N)(θ) andη(N)(θ) for Re = 0.5.

FIGURE 2. Plots ofϕ(N)(θ) andη(N)(θ) for Re = 1.

From the two sets of functions{η(N)(θ;Re)} and
{ϕ(N)(θ; Re)}, the stream lines can be calculated using ex-
pression (50). Some are plotted in Fig. 3 for different values
of N andRe. It is clear how the asymmetry increases, be-
tween up and down stream regions, asN is increased with
fixedRe and vice-versa.

The results for the stream lines, calculated using this
method, were compared with results obtained using Oseen’s
equation and matching asymptotic expansions. Solutions
for the stream function, found by Lamb [10, 12, 28], by
Kaplun [8,10] and with this method forN = 30, are shown in
Fig. 4. ForRe < 0.5, larger differences are observed between
N = 30 and the Oseen approximation, hence, our results
are in good agreement with the fact that Kaplun’s solution
is a better approximation than Lamb’s approximate solution.
It may be seen too, that the differences between solutions
for the stream lines increase far from the cylinder. However,
solutions corresponding to other calculations are only valid

FIGURE 3. Stream lines forRe = 0.5 (top) andRe = 1 (bot-
tom) for N = 20 (continuous),N = 25 (dashed) andN = 30
(dashed-dot). The flow is from left to right.
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FIGURE 4. Stream lines forRe = 0.2 (top) andRe = 0.4 (bot-
tom) forN = 30 (continuous), Oseen approximation (dashed) and
matched asymptotic expansions (dashed-dot).

whenRer ¿ 1, wherer is the usual radial coordinate, and
for the present calculations, the solutions are valid forx ¿ 1.

In the case of the drag coefficient, combining expres-
sions (40-42) with (54), it follows that

C
(N)
D = − π

Re

M ′∑

j=0

(ω11j + γ01j)Rj
e. (57)

In Figs. 5 and 6, expression (57) is plotted for different values
of N , and with the earlier results of Lamb [12], Kaplun [8],
and the experimental results of Tritton [30] and Huner and
Hussey [29]. The differences betweenC

(N−1)
D andC

(N)
D di-

minishes asN increases, whenRe < 1; for values of or-
der one, the drag coefficient increases for large values ofN .
Therefore, asN increases,C(N)

D (Re) improves within a fi-
nite range ofRe. The asymptotic behavior of this decrease
shows that ifRe < 1, the solutions found for a finiteN seem

to converge to the solution forN → ∞. The results found
using this method seem to be in good agreement with those
found solving Oseen’s equation [12], matching asymptotic
expansions [7, 8, 10] and the experimental data [29, 30]. It is
seen that, for a certain range ofRe, our curve seems to be a
better approximation to the drag coefficient than earlier theo-
retical results. Kropinskiet al. [21] obtained a result for the
drag coefficient using a numerical method which is compared
with the experimental results of Tritton [30] and are qualita-
tively similar to our results.

Table I shows a comparison between the solution for
N = 30 and the numerical results made by Hamielec &
Raal [31] and Keller & Takami [5], and the interpolated ex-
perimental data of [29, 30]. Clearly, the present results dif-
fer from these numerical and experimental results, due to the
slow convergence of the power series inx.

TABLE I. Comparison for the Drag coefficient for two different val-
ues ofRe.

Hamielec Keller & Tritton Hunner &
Re N=30 & Raal Takami Hussey

0.5 9.37 10.97 – 10.99± 0.27 9.62± 0.10

1 7.66 6.83 6.644 7.25± 0.21 6.67± 0.06

FIGURE 5. Drag coefficient as a function ofRe, for different values
of N .

FIGURE 6. Drag coefficient.
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3.2. Numerical Solutions: Results

Here a comparison between numerical results and the solu-
tions described in the previous section is presented. Namely,
between numerical and approximate analytical solutions of
the system of non-linear algebraic Eqs. (36) and (37), and the
system of non linear ordinary differential Eqs. (21) and (22).
All the numerical calculations were made using Mathemat-
ica 4.0.

3.2.1. Algebraic Equations

In order to solve numerically the system of non-linear alge-
braic Eqs. (36) and (37),Re and the indexM were fixed,
so a system of2M non-linear equations for2M unknowns
is obtained. WhenM = 2, 3 andN = 4, 5, 6, the corre-
sponding equations can be solved analytically for allRe (see
Appendix A). For larger values ofM , the analytical solu-
tions were not found. Thus Newton’s numerical method was
used to find numerical solutions of (36) and (37). The largest
values ofN andM that were used in the numerical calcula-
tions were8 and5, respectively. It is worth noting that these
equations become very complicated and long, for example,
for N = 8 the differential equations have more than35 terms
each. Thus, when the algebraic equations are computed, the
number of terms increases fast due to the non linear terms.

The first few cases that can be solved analytically show
that, givenN andM , the Taylor series inRe, for the Fourier
coefficientsαnl, ζnl and εnl, are the same as those found
solving equations (43) and (44). For larger values ofN
andM , numerical results for equations (36) and (37) show
that, for a finite range ofRe, the agreement with the power
series solutions is very good. Due to the non-linearity of the
system of Eqs. (36) and (37) there are many solutions, de-
pending on the degree of the polynomial equations; the ana-
lyzed cases show that only one of them is physically mean-
ingful.

3.2.2. The Non-linear Differential Equations

A numerical integration of Eqs. (21-24) was performed,
for N up to9 and for different values ofRe, in order to study
the validity and convergence properties of solutions (55)
and (56).

Comparing numerical and analytical solutions, it is found
that, for the first few values ofN , the approximate analytical
solutions (55) and (56) are good approximations for a small
range of values ofRe (see Appendix B).

In the numerical calculations, the values ofN were taken
up to 9 and for Re < 2. For larger values ofN and Re

the algorithm used to perform numerical calculations fails,
due to the degree and order of the differential equations. As
was mentioned above, the set of boundary conditions is trans-
formed to a set of initial conditions; thus asN increases the
number of initial conditions and the degree of the differential
equations increases too (see Appendix B for more details).

On the other hand, ifRe increases, the non-linear terms dom-
inate the behavior of the solutions and the numerical method
proposed does not converge.

3.3. The Asymptotic Behavior

With the solutions (55) and (56), for different values ofN , M
andM ′, the asymptotic behavior can be analyzed. Figure 7
shows the first two Fourier coefficients ofϕ(N)(θ) as func-
tions ofRe, for different values ofN . As N is increased, the
difference between coefficients for consecutive values ofN
diminishes for smallRe; for values ofRe of order one these
differences increase. It is found too that the Fourier coef-
ficients, for l > 3, increase (decrease) rapidly whenRe is
of order one. Then, the convergence of series (38) and (39)
is very slow with a finite convergence ratio. When the co-
efficientsω1lk and γ0lk are analyzed as functions ofN , it
is found that for,l > 1, these coefficients increase asN
is increased (see Fig. 8). This behavior is due to the non-
existence of solutions, in power series onRe, for N → ∞
andRe → 0. As already mentioned, it is possible to go fur-
ther on the calculations for higher powers ofRe, but the re-
sults found, as functions ofN , indicate that the power series
representation is inadequate forRe of order one. Therefore,
no attempt was made to estimate the convergence ratio of the
series (38) and (39) with more precision.

FIGURE 7. Plots of the coefficients in Eq. (39) forl = 1 andl = 2

with M ′ = 30.
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FIGURE 8. First two coefficients of the power series of Eq. (38)
and (39) as functions ofN .

Even when the results found show that a power series
representation inRe is ill-behaved for larger values ofN ,
the truncated problem seems to be a fair approximation to
the Navier-Stokes equations which improves whenN is in-
creased. Then, in order to find asymptotic solutions valid for
Re of order one, it is necessary to compute for larger values
of N and to envisage another way of solving the system of
non linear algebraic Eqs. (36) and (37), iteratively.

4. Discussion

The first advantage of this formulation is that the relevant
quantities of the problem can be computed if two components
of the stress tensor over the cylinder’s surface are known.
That is, if ϕ(θ; Re) andη(θ; Re) are given, all the remain-
ing features of the flow can be written as functions of them
and their derivatives.

The procedure involves three independent approxima-
tions: first, by truncating the series in the new radial coor-
dinate (fixing some value forN ); second, by truncating the
Fourier series in the angular variable in order to have an al-
gebraic system involvingRe only; the third and rougheste si
obtained by solving the latter in powers ofRe. For small and
finite Re such representation is expected to illustrate some
features of the previous two expansions.

When the series (15-17) are truncated, the approximate
solutions for different values ofN seem to converge slowly,
as shown in Fig. 1. For a fixed value ofN , and each trun-
cation in the Fourier series, a physically meaningful solution
was always found. In fact, we found solutions in power series
in Re, which are valid when the Reynolds number is small
(0 < Re < 1); in the simplest case (N = 4), and for a few
cases, the calculations could be made analytically (see Ap-
pendix A) and led to rational functions in fractional powers
of Re whose Taylor series coincided with the power series
representation used in Eqs. (40-42). The consequence of
the non-existence of a solution to Stokes’ equations, when
Re = 0, is that at each order of approximation (eachN )
no solution satisfying the boundary conditions can be found.
This is reflected in the poor estimation of the drag coefficient
for Re ¿ 1 which seems to improve whenN is increased
(see Figs. 5 and 6).

Comparing the stream lines, whenRe ¿ 1, the present
results are closer to those of Kaplun [8, 10] than those using
the Oseen approximation [10, 12, 28]. This might be due to
the fact that both approximations are better near the cylinder.
One should point out that, for a given stream line, differences
in fore and aft symmetry become more apparent whenN is
increased, as shown in Fig. 3, as this procedure takes into ac-
count the non-linear terms at each step, through both the dif-
ferential equations and the boundary conditions, as opposed
to other approaches where one or the other is incorporated;
and this, of course, in approximate way.

For a givenN , the velocity field satisfies the Navier-
Stokes equations and the boundary conditions up to orderN
in the radial coordinate, and orderM in the Fourier series. On
the other hand, the pressure field fails to satisfy the boundary
condition (14) for any order. That is, one of the disadvan-
tages of this method is that the pressure field, far form the
object, does not reach a constant value as a consequence of
the truncation in the power series inx. However, it is impor-
tant to notice that both the velocity and pressure fields, are
good approximations only in the neighborhood of the cylin-
der wherex ¿ 1. Comparison between our results for the
pressure,ϕ(θ) in Fig. 2, and other theoretical and numerical
calculations could only be carried out qualitatively, and they
seem to be similar to those of Underwood [23] and Keller &
Takami [5].

For the drag coefficient, asN increases, the results be-
have well for Reynolds numbers up to one, that is, changes
are in the right direction (see Fig. 5). For0.2 < Re < 1, our
results are the best fit for experimental data (see Fig. 6). For
Reynolds numbers larger than one, the Fourier coefficients
become ill-behaved, as well as the drag. To avoid this, a more
suitable representation for the dependence on the Reynolds
number is required. The caseN = 4 is still being studied
in this regard. Based on the structure of the few analytical
solutions that can be found, it seems that Padé approxima-
tions [32] might provide a better representation.

We emphasize that the power series inRe cannot be
used in order to find the asymptotic behavior in the limit
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N → ∞. In this case the problem corresponds to solving
the full Navier-Stokes equations using power series inRe,
where it is known that such solutions do not exist. However,
the power series representation inRe for the truncated case
shows that the power series inx, and the Fourier series in the
angular variable, are suitable representations for the approxi-
mate solutions for the velocity and pressure fields.
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A Appendix: Solution for N = 4

The method described in section 2.1. is illustrated forN = 4,
where some calculations can be performed analytically and
written in a closed form. The system of non linear differen-
tial equations that is to be solved is

2η′′′ − 10ϕ′′ − 27η′ = 24 cos θ, (A.1)

2ϕ′′′ − 47ϕ′ + 2η′′ − 60η −Reη
′η = 24 sin θ. (A.2)

In expressions (29-31), for the casesM = 2, 3 the alge-
braic equations (36) and (37) can be solved analytically using
Mathematica 4.0; in these cases there is only one real solu-
tion. When the Taylor series of such solutions are computed,
the results are the same as those solving the linear algebraic
equations given by (43) and (44).

For example, whenM = 2, the system of non-linear al-
gebraic equations are

10ε01 − 29ζ11 = 24,

4ε02 − 7ζ12 = 0,

98ε01 − ζ11(160−Reζ12) = 48,

280ζ12 − 220ε02 + Reζ
2
11 = 0,

and have the following solutions

ε01 =
1
10

(24 + 29ζ11), (A.3)

ε02 =
7
4
ζ12, (A.4)

ζ11 = 3 · 71/3

(
− 69 · 71/3

Ref(Re)1/3
+

f(Re)1/3

Re

)
, (A.5)

ζ12=
3
35

(
−996

Re
+

33327·71/3

Ref(Re)2/3
+

491/3f(Re)2/3

Re

)
, (A.6)

where

f(Re) = −52 Re +
√

2299563 + 2704R2
e.

These expressions have well-behaved power series expan-
sions for0 ≤ Re ≤ 35; just a few terms are required to

give a reasonable approximation. However, as the order of
truncation is increased (N ), the radius of convergence dimin-
ishes.

Though this is a simple case that does not represent a
good description of the flow, it shows that the solutions to
the algebraic equations can be written in terms of rational
polynomials ofRe, which are regular functions atRe = 0, as
follows:

ε0l = F0(Re)δ0l +
Fl(Re)

Re
, (A.7)

ζ1l =
Gl(Re)

Re
, (A.8)

These expressions suggest an alternative representation for
the solutions of the non linear algebraic equations.

B Appendix: Numerical Method

The procedure for transforming the system of ordinary non-
linear differential equations, with boundary conditions, into
an initial value problem is described for the caseN = 4.

Writing equations (A.1) and (A.2) in terms of the function
φ(θ) = ϕ′(θ) leads to

2η′′′ − 27η′ − 10φ′ = 24 cos θ, (B.1)

−20η′′ + 60η − 2φ′′ + 47φ + Reηη′ = −24 sin θ. (B.2)

The corresponding boundary conditions are

{η(0), η(π), η′′(0)} = 0, (B.3)

{φ(0), φ(π)} = 0. (B.4)

The initial conditions required to solve equations (B.1)
and (B.2) are

{η(0), η′′(0), φ(0)} = 0, (B.5)

η′(0) = x, (B.6)

φ′(0) = y, (B.7)

wherex and y are constants. If the system of differential
equations (B.1) and (B.2) is solved for arbitrary values ofx
andy, then

η(π) = F1(x, y),

φ(π) = F2(x, y).

Therefore, in order to satisfy the boundary conditions (B.3)
and (B.4) the following system of equations has to be solved

F1(x, y) = 0, (B.8)

F2(x, y) = 0. (B.9)
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The solutions of these equations can readily be found by the
iterative gradient method

~rn+1 = ~rn − [grad ~H(~rn)]−1 ~H(~rn),

where

~rn =
(

xn

yn

)
,

~H(~rn) =
(

F1(xn, yn)
F2(xn, yn)

)
,

and

grad ~H(~rn) =




∂F1

∂x

∂F1

∂y
∂F2

∂x

∂F2

∂y


 .

Once the initial conditions are found for different values
of Re, Eqs. (B.1) and (B.2) can be integrated using Math-
ematica 4.0, and the results compared with the analytical so-
lutions. In this example the calculations can be carried out
for Re up to 30; for larger values ofN , the range of accessi-
ble values ofRe drastically decreases. Figure 9 shows a com-
parison between expression (55) and the numerical results for
three different values of bothN andRe. For fixedN , the er-
ror at θ = π increases with the Reynolds number. On the
other hand, ifN increases for fixedRe, differences between
numerical and analytical results also become larger.

For the first few values ofN and forRe < 1, it is possi-
ble to improve the numerical results, finding the optimal size
of the grid implicit in the gradient method, and using expres-
sions (55) and (56) as an initial guess. When eitherN or Re

increases, the system of equations (B.1), (B.2) and (B.5-B.7)
displays a strong sensitivity to the initial conditions, and thus
the iterative procedure for finding the initial conditions fails
to converge; even for small values ofRe.

In the numerical case, whenN > 9, the algorithm used
by Mathematica 4.0 fails, as expressions rapidly become
cumbersome. AsN increases the number of terms in each
differential equation increases very quickly; for example, for

FIGURE 9. Differences between analytical result (55) and numeri-
cal results forN = 5 (top) andN = 6 (bottom).

N = 8 an equation has almost40 terms, so it is difficult to
handle them outside Mathematica.

Clearly, this procedure is not the most efficient way to ob-
tain numerical solutions to the system of non-linear ordinary
differential equations, for larger values of bothN andRe.
But provides a reasonable idea of the validity of the analyt-
ical results, which was the basic motivation for the present
case, as our interest is focused on finding and studying the
functionsη(θ) andϕ(θ).
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