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A series truncation method is proposed to obtain approximate solutions to the flow past a circular cylinder. This procedure is based
change in the radial coordinate)( such that this new coordinate is defined in a finite interval. Solutions are truncated power series in
so that the full Navier-Stokes equations are transformed into three recurrence relations with two independent coefficients. The boun
conditions on the cylinder’s surface are satisfied in trivially way, and the conditions at infinity lead to a system of two non linear ordina
differential equations. These are solved using Fourier series in the angular variable and, for the sake of argument, in a powét.series ir
Results on the convergence of the series, with varying order of truncation, and comparison with earlier results are discussed.

Keywords: low Reynolds nhumber; stationary Navier-Stokes eqn’s; slow viscous flow; series truncation; flow past a cylinder; drag coefficie
Se propone un &todo de soluciones en series, que se truncan para obtener soluciones aproximadas al problema del flujo alrededor ¢
cilindro. El procedimiento eatbasado en una transformaeien la coordenada radial, de manera que la nueva varigtdeéda definida en

un intervalo finito. Las soluciones en series de potencias €an pie a tres relaciones de recurrencia entre sus coeficientes, de los cuale:
sblo dos son independientes. Las condiciones de frontera sobre el cilindro se satisfacen de manera trivial yda ebmdinito resulta en

un sistema de dos ecuaciones diferenciales ordinarias no linealesUsias se resuelven usando series de Fourier, en la variable angular,
y series de potencias d®.; esto con el fin de estudiar algunas cardsti&as generales. Se discuten los resultados al variar el orden en el
que se truncan las series y se comparan con resultados conocidos.

Descriptores: Numero de Reynolds bajo; Egs. de Navier-Stokes estacionarias; flujo viscoso y lento; truncamiento de series; flujo alrede
de un cilindro; coeficiente de arrastre.

PACS: 47.15.GF

1. Introduction This problem has been studied for the past 150 years, and
a solution is yet to be found. Even fdt, < 1, the prob-
The steady viscous flow past a fixed cylinder is perhapsem displays a singular nature, as regular perturbation theory
the simplest classical nontrivial problem in fluid dynamics.becomes singular. That is, it is not possible to find an ap-
When Stokes formulated the general equations for what argroximation for the velocity and pressure fields, as a power
now called Newtonian fluids, he addressed this problem, toseries inR., consistent with the governing equations and the
gether with its three-dimensional analog, the problem of theappropriate boundary conditions; this is known as Stokes’
flow past a sphere [1]. He was unable to find a solution and itparadox. In 1910, Oseen [6,10] pointed out that for the three-
full understanding is still the subject of analytical research, indimensional case, where a zeroth order solution exists and the
spite of the undeniable value of numerical solutions [2-5]. first order correction cannot be found, the neglected terms are
In this work the power series solution method is appliednot everywhere small, and proposed an alternative way to lin-
to the problem of a steady viscous flow past a fixed circu-earize the Navier-Stokes equations. The resulting equations
lar cylinder. This approach to solving differential equationswere solved analytically [12], foR, < 1, but provided no
dates back to Newton, and is still the most commonly useaystematic way or indication as to how to improve the ap-
and successful procedure. Here, we analyze the full Navieproximation.
Stokes equations to study the advantages of suitably built se- The first numerical calculations were performed in the
ries over other different approximations made troughout théate 1930's, for fixed values of?, [13]. In the 1950’s
years [6-9]. the method of matched asymptotic expansions was pro-
Phenomenologically, this flow presents different regimegosed [8, 14,15], and applied to this problem a few years
depending on the value of the Reynolds numbgy(defined  later [7,16,17]. The basic idea of this method is to build con-
here in terms of the cylinder’s radius, As R, is steadily in-  sistent expressions near and far from the body, the inner and
creased from some initial small value, the lack of fore andouter regions, and devise an adequate procedure for matching
aft symmetry slowly becomes apparent, until a value close tsuccessive approximations. The difficulty with this method
2.5 is reached. Afterwards, difficult to resolve at first, a re-is that, in order to obtain valid solutions fé&t, ~ 1, an infi-
circulating region develops on the wake, and attached to theite number of corrections need to be calculated [10, 17]. To
cylinder. Within this region, two standing eddies evolve until this day, many different numerical [2—4, 18—22] and analyti-
the flow, for R, ~ 10, ceases to remain steady, as the eddiesal studies [9, 23] have been carried out for this problem.
detach alternatively and travel down the wake giving rise to  Here, the power series solution method is used on a trans-
a periodic flow [10, 11]. That is, the velocity and pressureformed radial variable, defined in such a way that its domain
fields are time independent providéd < 10. ranges betweef and1 and follows a previous, unpublished
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work [24]. The nonlinear partial differential equations are paper [24]. Let

then mapped into a set of three recurrence relations, for the 1

coefficients of the power series; all coefficients can be writ- x(r)=1- -, (6)

ten in terms of two unknown functions of the angular variable "

and R.. The boundary conditions on the cylinder's surfaces0 that the interva]l, co) is mapped into the intervad, 1].

are satisfied trivially. The uniform flow condition at infinity The Navier-Stokes equations (1) and (2), in cylindrical coor-
leads to a set of two non-linear ordinary differential equa-dinates, now read

tions, of infinite order and degree. To proceed further, the O, O,
power series is truncated at some ordér and the corre- R, [(1 - x)uz% + ug 20 U?)} =
sponding pair of equations is then solved analytically. This
is done for increasingly larger values &f, and with various (1 —a) opr* 41— x)g% (1—a) %u,
degrees of approximation using Mathematica. ox Ox? 062

In Sec. 2, the general problem is formulated and the pro- A,
cedure is described. Section 3 includes the proper calcula- —(1-x) o 2(1 = z)us, (7)
tions, using Fourier series for the angular variable and, for g o op*
the sake of explicit expressions, a power serieR s intro- R, {(1 — Uy =2 4 upg—2 + uxu@} -
duced. Section 4 present some results, a discussion on con- " or 90 90
vergence, and some perspectives for future analyzes within 30%ug 8%y 23u9
this framework. The appendix illustrates the method as an +(1-=) ) + (1= x)w —(l-=) or
example for the simplest non-trivial case and the numerical ou
procedure is discussed. +2(1 — ) 891 — (1 —2x)ug, (8)

Oug 8u9

2. Problem and procedure (I-2)5=+ 55 +u: =0, ©)

The problem of the steady viscous flow around a fixed circuClearly, the boundary conditions in the new set of variables
lar cylinder is described by the following system of dimen- (z, 0) are
sionless partial differential equations:

u.(0,6) =0, (10)
R.(ii- V)i = —VP + Vi, (1)
ug(0,6) =0, (11)
Vi = 0; 2
uz(1,60) = cos b, (12)
wherei = @(r,0) andP = P(r, 0) are the velocity and pres- )
sure fieldsy and@ are the radial and angular cylindrical co- ug(1,0) = —sinb, (13)
ordinates, and?. = aU /v is the Reynolds numbel] andv P*(1,0) — 0 (14)

being the velocity at infinity and the kinematic viscosity co-

efficient, respectively. The boundary conditions correspondvhere equations (10) and (11) correspond to the non-slip
to the stick boundary condition on the surface of the cylindetboundary condition on the cylinder’s surface £ 0), and

and a uniform flow with constant pressure far away from theequations (12), (13), and (14) are the conditions of uniform
cylinder: flow field and constant pressure at infinity.

The solutions for the velocity and pressure fields are as-

@=0ifr=1, ) sumed to have the form
@=U and (4)
_ (z,0; R.) Zan 0; R.) (15)
P*—0 if r— oo, (5) oy
whereU is a unitary vector in the direction of the uniform
flow, P* = P — Py, P, is the pressure at infinity. Equa- (z,0; Re) Zb (6; Re) (16)
tions (1) and (2) establish the conservation of momentum and n=0
mass [25-27]. The density and temperature, and hence the o
internal energy, are assumed to be constant over the entire P*(2,0; Re) = Z cn(0; Re)z™, (17)
domain; a common assumption, though debatable. n=0

The first issue is that, taking into account that the regiorwhere the coefficients,,, b,, andc,, must to be periodic, with
of non uniformity is in the neighborhood of the point at infin- period27. To satisfy conditions (10) and (11), it suffices to
ity or, equivalently, that the singular character of a straightforset the coefficients, andb, equal to zero.
ward perturbation theory arises from the nature of the infinite  Substituting expressions (15-17) into equations (7-9), and
domain [10], a new variable may be introduced that is every¢ollecting equal powers aof, results in a set of three coupled
where finite. Here we follow closely a previous, unpublishedrecurrence relations:
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[(n - 2)an—1 - :z—l] )

3=

1

(18)

by, = ){Qa%_S —2al, o4+ b+ (n—2)(n—4)b,_3 — (3n% —13n+ 13)b,_2 + (3n — 5)(n — 1)b,_1

nin—1

n—3
+ch_o+ Re Z b [bry 2 — (M = 1) ap—m—2 + My 1] }, (19)
m=1

1

Cn = { —al_,4+adl_ —(n—1)(n—3)ano+ 3n* —Tn+3)an_1 —n(n —3)a, +n(n+Da, 1 + 20, o — 20,

n

n—2
+(n—1)cp—1 + Re Z [bm
m=1

where the primes denote derivatives with respedt, tthese
relations are valid fon > 0. Computing the first few coef-

(s =)+ s = 0]} (20)

ficients, it is readily found that there are only two indepen-tions (12) and (13), they become

dent coefficientseg (¢; R.) andby (6; R.), hereafter denoted
by »(0; R.) andn(6; R, ), respectively. The first coefficients,
in terms of the two unknown functions, are

co(0) = (),
a1(9) = 0,
b:(6) = 0(6),
a(0) =,
wx(6) =51
b6) = 5 [+,

1
2(f) = —3 [+ "],

1
az(0) = e 27 + "],
1 /! !
b3 (0) = —3 27" — 3n — 4¢'],
1
c3(0) = 30 (0" =20 —3¢" + 2R.n?],
1
as(6) = 5 (20" =T —64"],

1
by(0) = _5[127;” —12n + 29" —19¢" — Remf'],

1
ca(0) = E[()’n'” — 61 4+ W —11¢" + R.(6n¢’

4 27777// _ 477/2 + 12”2)];

the dependence oR. has been omitted. After expres-

N
Z an(8; Re) = cos b, (21)
n=1
N
bn(0; Re) = —sin 0, (22)
n=1

for N — oo.

When the coefficients,,, b,, andc,, are expressed in terms of
©(6) andn(#), the above expressions correspond to two non-
linear ordinary differential equations. In order to have sym-
metric solutions, with respect to the transformatior> —6,

i.e. the velocity field on the horizontal axis must be radial, the
angular component of the velocity field must be zeré at 0
and¢ = m, which implies thab,,(0) = b,(7) = 0. There-
fore, from relations (18-20) it follows that the functionand

o have to satisfy equations (21) and (22) with the subsidiary
conditions

P2 (0) = D (1) = 0, (23)
7™ (0) = @™ () = 0, (24)
n = O7 17 2’ . e

Since the coefficients,, andb,, depend only om(6), ¢©'(6)
and higher derivatives, then, to fipd6), condition (14) must
be used.

To go any further, the series (15-17) must be truncated at
some fixed valueV. Hence, expressions (21) and (22) yield
a system of two equations fey(#) and¢’(6), whose order
and degree depend a¥i. As N is increased, it is expected
to that the solutions converge to the solutions of the original
equations. This is yet to be proven, although the solutions

sions (15) and (16) are substituted into the boundary condifound for the values ofV considered here seem to behave

accordingly.
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2.1. The Truncated Equations 2.1.1. Fourier Series

For example, expressions (21) and (22) truncatelf at 4  From the symmetry properties of the ordinary differential
read equations for a giveV, it is found that the coefficients asso-

" g , ciated with the velocity and pressure fields have the form
20" — 10" — 27n" =24 cosf, (25)

20" — 479" 4+ 200" — 60n — Ren'n = 24sin6,  (26) Z ani(Re) cos(16), (29)

which is the first nonlinear problem to be solved. Bo= 5
the equations are

Z Cai(Re) sin(16), (30)
204 4 28y — 874" — 1681

—Re[n""n+ 1" = 120 cos b, 27) Z ent(Re) cos(if); (31)
3n™ — 320" — 1781 + 342¢'+360n

FR[200n + 2¢"y] = —120sinf.  (28) in practice thege _series must be truncateq at some drder
After the substitution of the above expansions into the recur-
Clearly, the complexity of the differential equations increasegence relations (18—-20) and using the orthogonality proper-
rapidly with N; the order increases & — 1, while the vari-  ties of the trigonometric functions, a new set of recurrence
ation of the degree of the non-linear terms/gris not clear.  relations is obtained for the coefficients of the series (29-31)

| given by
1
Qpl = ; [(n - 2)an71,l - lCnfl,l} 5 (32)
1
G = n(nl){m(ang,l —ap_31) +[(n—2)(n—4) = 1}]¢u_z1 — [(3n* — 13n + 13) — I*]Co_ay
n—3 M
+ (3TL - )(n - ]-)Cn 1,0 — lEn 2,1 + R Z Z Cmp kCn m—2k — ( - ]-)anfmflk + manfmfl,k)
m=1p,k=1
X (Opsott + Opi—k — Spe—1) ] }» (33)
1
Enl = n{[lg —(n—=1)(n—3)]an—2, — [12 — (3n% —Tn + ]an—1,, — n(3n — 2)an, + n(n + L)ay41,
-2 M
21((71—1.} - Cn—2,l) (n - 1 En 1,1 + Z Z Cmp Cn m—1,k + kan m—1 k)(5p7k+l + 5p,k—l - 6p,l—k)
m=1p,k=1
+ mamp(anfmfl,k - Oénfm,k)((sp,kJrl + 5p,k7l + 5p,l7k)] }7 (34)
ang = Cor = ag =0, (35)
which are valid form = 1,..., N andl = 1,..., M, where

dnm IS the Kronecker delta. The recurrence relations (32-34
have2M independent functions aR. (¢1; ande;), which
are the coefficients of the expansions for the functig(ty Z Cnt = —015. (37)
andep(6). =
From Egs. (21) and (22) the corresponding boundarywith relations (32—34), the coefficients; ande,; can be
conditions determining the value of the coefficiegfs and  computed in terms of the independent coefficigntande ;.
Ep are Thus, Egs. (36) and (37) result in a systen2&f non-linear
N algebraic equations fdM unknown functions ofR. (see
Z P (36) Appendix A). Although the non-linear partial differential
equations have been reduced to solve a system of algebraic
equations, the problem is still non-linear.

Rev. Mex. .51 (1) (2005) 87-99



ON THE VISCOUS STEADY FLOW AROUND A CIRCULAR CYLINDER 91

2.1.2. The Algebraic Equations are collected, the following relations are found

The complexity of Egs. (36) and (37) depends on the values Z tnij = 005011, (43)
of N and M and, in general, they cannot be solved analyti- =

cally; an approximate solution is proposed as follows. A first

attempt to solve them is to assume that the unknown coeffi- anzj = —80;011, (44)
cients have expansions in powershy, i.e.

so that, for fixed values of and expressing the coefficients
Lni; @ndwy; in terms of the independent coefficienis;;
Cu(R Zwll] e (38)  and~q;, the above expressions result in a complete system
of 2M linear algebraic equations. These equations can be
solved in an iterative manner, though the calculations can be
ca(Re) = Z Voszi, (39) very Iar_ge depend?ng on the valuesifandM’. Hence, the
approximate solutions of (21) and (22) are

where the coefficients;;; and y,; are pure numbers and n(0; Re) = ZSin(w) ZWUJRL (45)

I =1,2,...,M. In principle, the sums in the above series j

run up to infinity, but in order to find solutions these series M

must be truncated at some powef’. Substituting expres- o(0; R.) = Zcos(l@) ZVOUR@- (46)
sions (38) and (39) into Egs. (36) and (37), written in terms

of the 20/ independent coefficients, and collecting terms in

powers of R, the problem reduces to a complete syS»[emEquatlons (36) and (37) were also solved numerically for
of 2M linear algebraic equations which can be solved |ter-f'Xed values ofR.. The numerical calculations were made
atively. Therefore, in order to have solutions up to an ordetSing Mathematica 4.0, which uses Newton’s method, for dif-
M’ in R., M’ systems o) linear equations need to be ferentvalues ofi/ andN.

solved. ] ]
N . _ . i 2.2. Numerical Solution
To simplify the iterative method for finding approximate

solutions for Egs. (36) and (37) using power serieBinone  In order to study the validity of the approximate solu-

assumes that the Fourier coefficientg, (,; ande,; have the tions (45) and (46), the system of equations given by (21-24)
following expansions: was solved numerically for a few fixed values §fand R..

The method used to make the numerical integration was to

transform the set of boundary conditions (23) and (24) onto

i a set of initial conditions, which is described in Appendix B.

oni(Fe) = Zu”lj e (40) The initial value problem was then solved in MF;?hematica
4.0, based on an algorithm that uses a Runge-Kutta method.

M’

G (R anzg e (41)  2.3. Stream Function and Drag

o Once the coefficients;; andeq; are known for fixed values

_ 1 of N and M, the coefficientsy,,;(R.), (. (R.) ande,,; (R.)
eni(Fe) ZO%IJRE’ “42)  Canbe computed; thus
M
and thus the recurrence relations (32-34) can be written in us (2,0, Re) Z (Z ani(Re) cos l0)> ;@
terms of these coefficients; after collecting terms in powers n=h =L
of R., a new set of recurrence relations for the coefficients of M
the power series (40-42) is obtained. In this case, the inde- ue(z,0, Re) = Cal(Re)sin(l0) | =™, (48)

pendent coefficients ate;; and~o;;; given this set of num-
bers, all the remaining coefficients can be computed. The
above expressions were truncated in order to have relations P*(z,0, R,)
with a finite number of terms, otherwise the recurrence rela-
tions involve infinite sums.

uMz uMz

(anl ) cos ze)) . (49)

In the case of the pressure field, the condition at infinity is not
When expressions (40-42) are substituted into condiexactly satisfied at any ordé¥, unlessN — oo. The coeffi-
tions (36) and (37), and terms with the same powerQn cientsa,,;, ¢, ande,; are given by expressions (40-42).
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The stream function, in cylindrical coordinates, is defined  The stream function is compared with results obtained
by from the solution for Oseen’s equation [28] and using match-
ing asymptotic expansions [7, 8]. Once the components for

.= 187‘1’7 the stress tensor were known, the drag coefficient was com-
r 90 puted and some properties of convergence were analyzed. Fi-
o — — o nally, results were compared with experimental data [29, 30],
T T or and with other calculations using different methods [7, 8, 23].

Using the approximate solutions (47) and (48) for the veloc-
ity field, the stream function has the form

N 1 Mo (R.) ) )
U(r,0) = Z(lf ;)n,,, (Z ni{{te sin(l@)), (50) 3.1. Analytical Solutions

l
n=1 =1

where the coefficients,,; are given by (40). The system of linear algebraic Egs. (43) and (44) were solved

The force on the cylinder’s surface is calculated using  for values of N, M and M’ up t030, 21 and30 respectively,
and it is possible to go further, however, the results are only

F= / 7 - 7ds, valid for R. < 1, and therefore it is not useful to increase the
s values ofM’.
where7 is the stress tensor aridis a unitary vector normal The approximate solutions of (21) and (22), giv€rand

to the cylinder’s surface9). Due to the assumed symmetry up to RM’, have the general form
of the problem, the direction of the force is the same as the
direction of the uniform flow, far from the body. Thus

M M’
N)(p- — ‘R | si
F= /(TM cos @ — 7.9 sin6)dS, (51) 77( (0; Re) = Z wuj R | sin(16), (55)
Js =1 \j=l-1
where the components of the stress tensor are evaluated at the M M’
cylinder’s surface, and are given by oM (0;R.) = Z Yoi; B2 | cos(16),  (56)
1=0 \j=l-1
Trr = 790(0; Re)a (52)
wnij = Yni; = 0, for I andj both even or odd
g = 1(0; Re); (53)

the functionsp(6; R.) andn(6; R.) are thus the dimension- \here the superscript N denotes the order of truncation.
less pressure and the shear strggson the cylinder's sur-  These solutions show that, if the series in powergpfare
face, respectively. Hereafter, we write the drag coefficientruncated so that that/’ < M, then the coefficients of the
(Cp = F/pU?a) instead of the drag itself. Substituting ex- Fourier series (29-31), fdr > M’ + 1, are all equal zero.
pressions (45), and (46) into expression (51) and integratingy other words, the Fourier series are automatically truncated

over the cylinder's surface, it is found that such thatM = M’+1. Therefore, solutions provided by (55)
- and (56) are approximations, up to terms of ordi€rin R,
Cp = = <501(R6) + Cn(Re)) . (54) of equations (43) and (44) in the lim/ — oo. On the
€ other hand, ifM < M’, the results obtained are solutions of
This is the drag coefficient, within this approximation. Egs. (43) and (44) in the limit/” — oo. Preliminary results

show that the Fourier series converge faster than the power

series, i.e, the best way to truncate both series is choosing
3. Results M < M.

In this section, results for the functiong6) andn(6) for a Expressions (55) and (56) are plotted in Figs. 1 and 2 for
wide range of values oV, M and M’, are presented. The different values ofk, and N, with M = 21 and M’ = 30,
solutions were compared with those obtained with numericathat is21 terms in Fourier series ar) powers inR,. It can
results for the systems of algebraic Eqgs. (43) and (44), ante seen that, foR. < 1, the differences between solutions
numerical integration of Egs. (21) and (22). Both the analyti-with increasing values oN decrease; whei®, is of order

cal and numerical calculations were made with Mathematicane, the convergence of the solutions, as functioivofis
4.0, as this program is capable of handling the equations to bi#-behaved. It is clear that the asymmetry in the curves in-
solved, which are long and complicated. For example, whemreases a#' is increased, which means that the for and aft
N = 10, the differential Egs. (21) and (22) have 56 and 66asymmetry is apparent, even f& < 1. Clearly, asR, is
terms, respectively. increased with fixedV, the asymmetry increases too.
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FIGURE 1. Plots ofo™) (0) andn™) (0) for R. = 0.5.
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FIGURE 2. Plots ofo™) (9) andn™) (6) for R. = 1.

From the two sets of functiondn™)(¢;R.)} and
{o™)(; R.)}, the stream lines can be calculated using ex-
pression (50). Some are plotted in Fig. 3 for different values
of N andR.. Itis clear how the asymmetry increases, be-
tween up and down stream regions, s increased with
fixed R, and vice-versa.

The results for the stream lines, calculated using this
method, were compared with results obtained using Oseen’s
equation and matching asymptotic expansions. Solutions
for the stream function, found by Lamb [10, 12, 28], by
Kaplun [8,10] and with this method fagv = 30, are shownin
Fig. 4. ForR. < 0.5, larger differences are observed between
N = 30 and the Oseen approximation, hence, our results
are in good agreement with the fact that Kaplun’s solution
is a better approximation than Lamb’s approximate solution.
It may be seen too, that the differences between solutions
for the stream lines increase far from the cylinder. However,
solutions corresponding to other calculations are only valid

FIGURE 3. Stream lines forR. = 0.5 (top) andR. = 1 (bot-
tom) for N = 20 (continuous),N = 25 (dashed) andv = 30
(dashed-dot). The flow is from left to right.
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to converge to the solution faV — oo. The results found
using this method seem to be in good agreement with those
found solving Oseen’s equation [12], matching asymptotic
expansions [7,8,10] and the experimental data [29, 30]. Itis
seen that, for a certain range Bf, our curve seems to be a
better approximation to the drag coefficient than earlier theo-
retical results. Kropinskét al.[21] obtained a result for the
drag coefficient using a numerical method which is compared
with the experimental results of Tritton [30] and are qualita-
tively similar to our results.

Table |1 shows a comparison between the solution for
N = 30 and the numerical results made by Hamielec &
Raal [31] and Keller & Takami [5], and the interpolated ex-
perimental data of [29, 30]. Clearly, the present results dif-
fer from these numerical and experimental results, due to the
slow convergence of the power seriescin

TaBLE |. Comparison for the Drag coefficient for two different val-

ues ofR..
Hamielec Keller & Tritton Hunner &
R. N=30 &Raal Takami Hussey
0.5 9.37 10.97 - 10.99 £ 0.27 9.62 £0.10

1 766 6.83 6.644 7.25+£0.21 6.67=+0.06

CpHR: L
40
30
20
FIGURE 4. Stream lines forR. = 0.2 (top) andR. = 0.4 (bot- 10
tom) for N = 30 (continuous), Oseen approximation (dashed) and
matched asymptotic expansions (dashed-dot). R

whenR.r <1, Wheref is the usual ,rad'al Coorqmate’ and FIGURE 5. Drag coefficient as a function @t., for different values
for the present calculations, the solutions are validifet: 1. of N.
In the case of the drag coefficient, combining expres-

sions (40-42) with (54), it follows that CpHR. L
(V) T 3¢ \\\\‘ : e
C - _ " . . Rj. 57 o Tritton
D Re jgo ((-‘-)11] + 701]) e ( ) 25 \\{\ o N - 30
20 ) N -—-  Lamb
In Figs. 5 and 6, expression (57) is plotted for different values N — Kaplun

of N, and with the earlier results of Lamb [12], Kaplun [8], 15
and the experimental results of Tritton [30] and Huner and
Hussey [29]. The differences betweé*@N’l) andCf:,N) di-
minishes asV increases, wheik, < 1; for values of or- 5
der one, the drag coefficient increases for large valuées.of
Therefore, asV increasesC},N)(Re) improves within a fi- 0.5 1 1.5 2
nite range ofR.. The asymptotic behavior of this decrease

shows that ifR. < 1, the solutions found for a finitd/ seem  FIGURE 6. Drag coefficient.
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3.2. Numerical Solutions: Results On the other hand, iR, increases, the non-linear terms dom-
inate the behavior of the solutions and the numerical method

Here a comparison between numerical results and the solgroposed does not converge.

tions described in the previous section is presented. Namely,

between numerical and approximate analytical solutions of

the system of npn—linear.algebrgic Eqs.. (36) and (37), and th§_3_ The Asymptotic Behavior

system of non linear ordinary differential Egs. (21) and (22).

All the numerical calculations were made using Mathemat- . .
icad.0 g With the solutions (55) and (56), for different values\éf M

and M’, the asymptotic behavior can be analyzed. Figure 7
shows the first two Fourier coefficients of V) (6) as func-
tions of R, for different values ofV. As NN is increased, the

. . difference between coefficients for consecutive valued’of
In order to solve numerically the system of non-linear alge-

braic Egs. (36) and (37)R. and the index\/ were fixed, diminishes for smalR,; for values ofR, of order one these

) . differences increase. It is found too that the Fourier coef-
S0 a system o2M non-linear equations fdzM/ unknowns ficients, forl > 3, increase (decrease) rapidly whéy is
is obtained. When\/ = 2,3 and N = 4,5,6, the corre- ’ ' pidly

sponding equations can be solved analytically foral(see of order one. Then, the convergence of series (38) and (39)

Appendix A). For larger values a¥/, the analytical solu- IS Very slow with a finite convergence ratio, When th_e co
. , . efficientswy;, and -~ are analyzed as functions af, it
tions were not found. Thus Newton’s numerical method was . .

. . X s found that for,l > 1, these coefficients increase A5
used to find numerical solutions of (36) and (37). The largest” . . . S

. 4 Is increased (see Fig. 8). This behavior is due to the non-

values of N and M that were used in the numerical calcula- ~ . . . .
. . . . existence of solutions, in power series Bp, for N — oo
tions were8 and5, respectively. It is worth noting that these

: . andR. — 0. As already mentioned, it is possible to go fur-
equations become very complicated and long, for examplether on the calculations for higher powers®f, but the re-
for N = 8 the differential equations have more trginterms '

each. Thus, when the algebraic equations are computed, tﬁglts found, as functions ¥, indicate that the power series

number of terms increases fast due to the non linear terms. representation is inadequate @ of order one. Therefore,

i ) no attempt was made to estimate the convergence ratio of the
The first few cases that can be solved analytically show b 9

that, givenN and M, the Taylor series iR, for the Fourier series (38) and (39) with more precision.
coefficientsa,;, ¢, ande,;, are the same as those found HNL
solving equations (43) and (44). For larger valuesNof 01
and M, numerical results for equations (36) and (37) show _, -
that, for a finite range of?., the agreement with the power

series solutions is very good. Due to the non-linearity of the — 0.8
system of Egs. (36) and (37) there are many solutions, de-_ 0.9
pending on the degree of the polynomial equations; the ana-

3.2.1. Algebraic Equations

HR.L

lyzed cases show that only one of them is physically mean- -1
ingful.
-1.1

3.2.2. The Non-linear Differential Equations -1.2 Re
A numerical integration of Eqs. (21-24) was performed,
for N up to9 and for different values aR., in order to study
the validity and convergence properties of solutions (55) ‘.II??L HR. L
and (56). 0.5 -— N=10

Comparing numerical and analytical solutions, it is found --- N=15
that, for the first few values o¥, the approximate analytical ~ ©-4 e
solutions (55) and (56) are good approximations for a small 5 _ Eigg B
range of values of?, (see Appendix B). ’ — T e

In the numerical calculations, the values/éfwere taken 0.2 ol -
up to9 and for R, < 2. For larger values ofV and R, _,’_;‘:;’—- T -
the algorithm used to perform numerical calculations fails, 0.1 iz T
due to the degree and order of the differential equations. As N
was mentioned above, the set of boundary conditions is trans: o 2 o 2 0 6 0 s ] Re

formed to a set of initial conditions; thus A increases the
number of initial conditions and the degree of the differential Ficure 7. Plots of the coefficients in Eq. (39) for= 1 andl = 2
equations increases too (see Appendix B for more details)with M’ = 30.
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GHN ' L When the series (15-17) are truncated, the approximate
4 solutions for different values oV seem to converge slowly,

1 . as shown in Fig. 1. For a fixed value of, and each trun-
cation in the Fourier series, a physically meaningful solution
was always found. In fact, we found solutions in power series
N * G = —Wiy in R., which are valid when the Reynolds number is small
(0 < R, < 1); in the simplest case\ = 4), and for a few

G = —Jow cases, the calculations could be made analytically (see Ap-
pendix A) and led to rational functions in fractional powers
0.7 & of R, whose Taylor series coincided with the power series
representation used in Eqs. (40-42). The consequence of
the non-existence of a solution to Stokes’ equations, when
R. = 0, is that at each order of approximation (ealh

no solution satisfying the boundary conditions can be found.
This is reflected in the poor estimation of the drag coefficient
for R, < 1 which seems to improve wheN is increased
(see Figs. 5 and 6).

Comparing the stream lines, whéf)y < 1, the present
0.2 " * G = —Wip results are closer to those of Kaplun [8, 10] than those using
* the Oseen approximation [10, 12, 28]. This might be due to
G = —Jo the fact that both approximations are better near the cylinder.
One should point out that, for a given stream line, differences
in fore and aft symmetry become more apparent wheis
increased, as shown in Fig. 3, as this procedure takes into ac-

2 1 count the non-linear terms at each step, through both the dif-
11 1 1 1 N ferential equations and the boundary conditions, as opposed
30 25 20 15 10 to other approaches where one or the other is incorporated;
and this, of course, in approximate way.

For a givenN, the velocity field satisfies the Navier-
Stokes equations and the boundary conditions up to dvder
__inthe radial coordinate, and ordgf in the Fourier series. On
Even when the results found show that a power S€€he other hand, the pressure field fails to satisfy the boundary

representation irkt, is ill-behaved for Iarger valueg QV_’ condition (14) for any order. That is, one of the disadvan-
the truncated problem seems to be a fair approximation to

h ior-Stok , hich i S | ages of this method is that the pressure field, far form the
the Navier-Stokes equations which improves wiérs in- object, does not reach a constant value as a consequence of

creased. Then, ir] qrder to find asymptotic solutions valid for,[he truncation in the power series:in However, it is impor-
R, of order one,_lt IS hecessary to computg for larger value ant to notice that both the velocity and pressure fields, are
of N_and to envisage another way of sqlvmg_ the system o ood approximations only in the neighborhood of the cylin-
non linear algebraic Egs. (36) and (37), iteratively. der wherexr <« 1. Comparison between our results for the
pressurep(d) in Fig. 2, and other theoretical and numerical
4. Discussion calculations could only be carried out qualitatively, and they
seem to be similar to those of Underwood [23] and Keller &
The first advantage of this formulation is that the relevantTakami [5].
guantities of the problem can be computed if two components For the drag coefficient, a& increases, the results be-
of the stress tensor over the cylinder's surface are knowrhave well for Reynolds numbers up to one, that is, changes
That is, if p(6; R.) andn(0; R.) are given, all the remain- are in the right direction (see Fig. 5). Fa2 < R, < 1, our
ing features of the flow can be written as functions of themresults are the best fit for experimental data (see Fig. 6). For
and their derivatives. Reynolds numbers larger than one, the Fourier coefficients
The procedure involves three independent approximabecome ill-behaved, as well as the drag. To avoid this, a more
tions: first, by truncating the series in the new radial coor-suitable representation for the dependence on the Reynolds
dinate (fixing some value faN); second, by truncating the number is required. The cagé = 4 is still being studied
Fourier series in the angular variable in order to have an alin this regard. Based on the structure of the few analytical
gebraic system involvindz, only; the third and rougheste si solutions that can be found, it seems thaté&agproxima-
obtained by solving the latter in powers Bf. For small and tions [32] might provide a better representation.
finite R, such representation is expected to illustrate some We emphasize that the power series/tn cannot be
features of the previous two expansions. used in order to find the asymptotic behavior in the limit

*»

[an]
=
*+

(@)
(@)
8]
*p

FIGURE 8. First two coefficients of the power series of Eq. (38)
and (39) as functions aV.
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N — oco. In this case the problem corresponds to solvinggive a reasonable approximation. However, as the order of
the full Navier-Stokes equations using power serie®in  truncation is increased\), the radius of convergence dimin-
where it is known that such solutions do not exist. Howeverjshes.

the power series representationiy for the truncated case Though this is a simple case that does not represent a
shows that the power seriesinand the Fourier series in the good description of the flow, it shows that the solutions to
angular variable, are suitable representations for the approxihe algebraic equations can be written in terms of rational

mate solutions for the velocity and pressure fields. polynomials ofR., which are regular functions &, = 0, as
follows:
Acknowledgments
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. . These expressions suggest an alternative representation for
A Appendix: Solution for N = 4 the solutions of the non linear algebraic equations.

The method described in section 2.1. is illustrated¥o« 4,

where some calculations can be performed analytically ang Appendix: Numerical Method
written in a closed form. The system of non linear differen-
tial equations that is to be solved is The procedure for transforming the system of ordinary non-
linear differential equations, with boundary conditions, into
20" — 100" — 27 =24 0 A.l o !
1 14 1 cost, (A1) an initial value problem is described for the cadée= 4.
20" — 470" + 21" — 60n — Ren'n = 24sind.  (A.2) Writing equations (A.1) and (A.2) in terms of the function

) ?(0) = ¢'(0) leads to
In expressions (29-31), for the caskés = 2,3 the alge-

braic equa_tions (36) and (37) can be sol\{ed analytically using 2" — 27y —10¢ = 24cos,  (B.1)
Mathematica 4.0; in these cases there is only one real solu-
tion. When the Taylor series of such solutions are computed, —20n" + 601 — 2¢" + 47¢ + Renn’ = —24sin6. (B.2)
the results are the same as those solving the linear algebraic

equations given by (43) and (44). The corresponding boundary conditions are
For example, whed/ = 2, the system of non-linear al- .
gebraic equations are {n(0),n(m),n"(0)} =0, (B.3)
10£01 — 29C11 = 24, {#(0), ()} = 0. (B.4)
deg2 — 712 =0, The initial conditions required to solve equations (B.1)
98c01 — (11(160 — Rc(i2) = 48, and (B.2) are
280(12 — 220202 + Re(y =0, {n(0),7"(0),6(0)} =0, (B.5)
and have the following solutions 7' (0) ==, (B.6)
1 '(0) = v, B.7
o1 = 15(24 4 29612), (A3) #0)=y (1)
7 wherex andy are constants. If the system of differential
€02 = 1(12, (A.4)  equations (B.1) and (B.2) is solved for arbitrary values:of
60 71/3 R/ andy, then
C11 =3 71/3 <_ : 1/3 + f( 6) ) ) (A-5)
R.f(R.) R, n(m) = Fi(z,y),
3 ( 996  33327-7'/3 4913 f(R.)*/3 o(m) = Fa(z,y)
= -—= = A.6 20 Y)-
C12 35 ( 7. +Ref(Re)2/3+ R. >7 (A.6)
where Therefore, in order to satisfy the boundary conditions (B.3)

and (B.4) the following system of equations has to be solved

f(R.) = =52 R, + /2299563 + 2704 R2.
These expressions have well-behaved power series expan-
sions for0 < R, < 35; just a few terms are required to Fy(z,y) = 0. (B.9)
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The solutions of these equations can readily be found by the
iterative gradient method

h. HgqLH10 ° L

Frt1 =T — [gmdﬁ(ﬁz)]*lﬁ(fn), q

where .

s r
T'n = ) 7 k
y'fL ~ T

N
77— Fl(‘rnvyn) K >;-‘\ 2 ! /
= -2 Al T bl
H(Tn) ( F2(37nayn) ’ « g

and -4 \ Nt
OF, OF
gradH (7,) = 9z dy

0F, OF; L
or Oy h_HgLH10 " L

|
Once the initial conditions are found for different values 8 P I
of R., Egs. (B.1) and (B.2) can be integrated using Math- / Loy
ematica 4.0, and the results compared with the analytical so- :
lutions. In this example the calculations can be carried out / I

for R, up to 30; for larger values aV, the range of accessi- / w
ble values of?, drastically decreases. Figure 9 shows a com- Sy vi s }i ad
i
I
!
I

parison between expression (55) and the numerical results fol S~
three different values of botlV andR,.. For fixed NV, the er-
ror atd = 7 increases with the Reynolds number. On the
other hand, ifN increases for fixed?,., differences between
numerical and analytical results also become larger. FIGURE 9. Differences between analytical result (55) and numeri-

For the first few values oiV and forR. < 1, itis possi-  cal results forV = 5 (top) andN = 6 (bottom).
ble to improve the numerical results, finding the optimal size
of the grid implicit in the gradient method, and using expres- ] o
sions (55) and (56) as an initial guess. When eitNeor R, N = 8an equathn has almosq terms, so it is difficult to
increases, the system of equations (B.1), (B.2) and (B.5-B.7yandle them outside Mathematica.
displays a strong sensitivity to the initial conditions, and thus  Clearly, this procedure is not the most efficient way to ob-
the iterative procedure for finding the initial conditions fails tain numerical solutions to the system of non-linear ordinary
to converge; even for small values Bf. differential equations, for larger values of bath and R..

In the numerical case, wheN > 9, the algorithm used But provides a reasonable idea of the validity of the analyt-
by Mathematica 4.0 fails, as expressions rapidly becomécal results, which was the basic motivation for the present
cumbersome. AgV increases the number of terms in eachcase, as our interest is focused on finding and studying the
differential equation increases very quickly; for example, forfunctionsn(6) andy(6).
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