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Several nonlinear techniques have been applied to analyze DNA sequences. As a result, some mathematical properties that distinguish both
coding and noncoding regions have emerged. We review and apply some of these techniques selecting some examples and comparing our
results with previously published data. We also discuss the main controversies that have been raised in terms of the different taken approaches,
particularly the presence or absence of long-range correlations in coding regions.
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Se han aplicado diversas técnicas no lineales para analizar secuencias de ADN. Como consecuencia, han surgido ciertas propiedades
mateḿaticas que permiten distinguir a las secuencias codificantes de las no codificantes. En este artı́culo se revisan y aplican algunas
de estas t́ecnicas, seleccionando algunos ejemplos y comparando nuestros resultados con datos previamente publicados. Asimismo, se dis-
cuten las principales controversias que han surgido en términos de las diferentes estrategias metodológicas consideradas, en particular, se
discute la presencia o ausencia de correlaciones a largo alcance en regiones codificantes.

Descriptores: Correlaciones a largo alcance; análisis mateḿaticos; DNA; dińamica fractal.

PACS: 87.10.+e; 05.40.+j

1. Introduction

DNA is the molecule in which life organisms store informa-
tion for their biological processes. In a DNA strand, it is pos-
sible to find sequences which can be transcribed to comple-
mentary RNAs, such as tRNAs, rRNAs and mRNAs. These
sequences, also known as genes, are the coding regions in
DNA. Between genes (intergenic regions), we can find regu-
latory sequences for transcription control. In the case of eu-
karyotic cells, besides, the vast majority of genes are not con-
tinuous: not expressed sequences, known as introns, lie be-
tween expression-coding sequences, known as exons. Thus,
both intergenic regions and introns are noncoding DNA.

As a replicating information unit, DNA has fascinated
not just biologist, but also, other scientists, like physicists,
chemists, mathematicians and astrobiologists. The former,
have made a lot of contributions to DNA understanding and,
recently, they have applied several mathematical techniques
for analyzing coding and noncoding regions.

In this paper, we apply, compare, and review some math-
ematical methods, which have been commonly used in order
to reveal signature properties between coding and noncoding
DNA sequences. As there are a lot of controversies among
some of the results, we include numerical experiments and
discuss the different interpretations among them.

2. Biochemistry of DNA

DNA is a double anti-parallel helix builded by concatenating
nucleotide blocks. Each nucleotide has a nitrogenous base,
a deoxyribose and a phosphate group. The bases are inside

the molecule, while the phosphates are in contact with the
hydrophilic medium.

DNA has four nitrogenous bases: adenine (A),
thymine (T), cytosine (C) and guanine (G). There is comple-
mentarity between both DNA strands, as an A on one strand,
always binds with a T on the other, and a C always binds
with a G. The binding between the bases is through hydrogen
bonds: two between A and T and three betwee C and G. Thus,
following some physicochemical properties, DNA bases have
been classified using three different dichotomies:

(a) Purines (R), A and G; or Pyrimidines (Y ), T and C;

(b) Weak (W ), A and T; or Strong (S), C and G; and

(c) Amines (M ), A and C; or Ketones (K), T and G.

As the DNA backbone is constant (i.e. a chain of deoxyri-
boses bound by phosphodiester bonds), its biological proper-
ties reside in the sequence of bases along one strand (as the
other is complementary). In this sense, DNA can be seen as
a four letter alphabet, or could be transformed to a distance
series. In the current paper, we review the main mathemati-
cal techniques used to study DNA sequences, considering the
latter case.

3. DNA mapping

In order to apply signal processing techniques to DNA anal-
ysis, a DNA sequence must be transformed to a distance se-
ries. There have been several approaches to accomplish this.
Herein, we present the main three.
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3.1. Binary representation

The easier approach is to transform a DNA sequence to a bi-
nary sequence using one of the three conventions mentioned
before (e.g. all weak bases -A and T- are changed by 0, and
all strong bases -C and G- are changed by 1). The obtained
series could now be subject to further mathematical analy-
sis [22].

3.2. DNA random walk

This technique could be seen as a particular case of a binary
representation. Consider a conventional one-dimensional
random walk model, in which a theoretical walker crosses
a DNA strand [37]. The walker starts at positionn = 0 and
gives one step up[u(n) = +1] with each pyrimidine, and
one step down[u(n) = −1] with each purine. To graphically
represent the walking, one usually plots the cumulative walk
y(n), against the positionn as shown on Fig. 1a for the first

50,000 nitrogenous bases of the coding genome ofBorrelia
burgderfori.

The mathematical techniques reviewed here have been
used in order to differentiate between coding and noncoding
regions. In the current paper, we apply these techniques to:
a whole coding bacterial genome, obtained by concatenating
all the coding genes ofBorrelia burgderfori in its original
order and orientation [31]; the human beta globin chromoso-
mal region (HUMHBB), a mainly non-coding sequence; and
two control sequences: a shuffled version of the original cod-
ing genome ofBorrelia burgderfori, and a synthetic DNA of
one million bases, obtained by randomly sampling with re-
placement the four bases [9]. These control sequences do not
represent intergenic regions; they are just representations of
pure stochastic processes, in order to be able to distinguish
between sequences with information (for protein synthesis),
and corresponding random sequences. Thus, on Fig. 1 the
four DNA walk displacements are shown. Note that both

FIGURE 1. DNA walk displacementy(n) against nucleotide distancen for the first 50000 nitrogenous bases in: (a) coding genome of
Borrelia burgdorferi; (b) HUMHBB (human beta globin chromosomal region); (c) shuffled genome ofBorrelia burgdorferi; and (d) synthetic
genome.

Rev. Mex. F́ıs. 51 (2) (2005) 122–130
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the coding and non-coding sequences presents jagged con-
tours with local regions rich rich in either purines or pyrim-
idines (see Fig. 1a and b), while the control sequences present
less variable displacements (see Fig. 1c and d). This kind of
pattern on DNA could be related to biological structure.

3.3. Actual distance series

An alternative to binary representations is the generation of
actual distance series obtained by calculating the number of
characters between identicaln−tuples (n = mono, du, tri,
etc.) along the whole DNA sequence [31]. For example, to
generate the distance series for the ATG triplet, the actual
position of this sequence is first identified using the three dif-
ferent reading frames, and then the number of bases which
lie between consecutive ATGs is computed. By using this
approach, less information is lost in comparison with the bi-
nary representations, due to an oversimplification process in
the latter.

4. DNA mathematical properties

4.1. Periodicities

Shepherd found purine-pyrimidine rhythms on viral genomes
using actual distance series from binary DNA representa-
tions [33]. He used theRY convention to transform the
original sequence, and then looked for the actual distance
series between different combinations. As an example, the
results for the tripletY RY in the coding genome ofBorrelia
burgdorferiare shown on Fig. 2a.

As shown on Fig. 2a maxima occurs regularly every three
bases. This rhythm was preserved for all the studied combi-
nations with an exception of an irregularity inn = 13 for Y.R
counts [33]. In contrast, there is no pattern found in both the
noncoding sequence (see Fig. 2b), and the control sequences
(see Figs. 2c and d).

It is worth mentioning that by looking at such periodici-
ties, Shepherd found the sequenceRNY as the most preva-
lent of all other sequences, thus he hypothesized that not
only this sequence was an ancestor of the actual universal

FIGURE 2. Distribution of distances. The number of cases of tripletY RY for the first 21 distances are plotted for (a) coding genome of
Borrelia burgdorferi; (b) HUMHBB; (c) shuffled genome ofBorrelia burgdorferi; and (d) synthetic genome.
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code [7, 20], but also that vestiges of this pattern are still de-
tectable on current genomes [34]. Although this hypothe-
sis was challenged by Wong & Cedergren [40], and also by
Jukes [18], several cases have been found withRNY preva-
lence in actual genomes [18].

Arquès and Michel used a similar approach to look for
periodicities in coding and noncoding regions [3]. They stud-
ied sequences from virus, prokaryotes, and eukaryotes, and
looked for thei−motiff mi = Y RY (N)iY RY , with i in the
range [0,99],i.e. two triplets YRY separated by anyi bases.
They found that the motifY RY (N)6Y RY had preferential
occurence on the vast majority of the studied sequences [3].
Also two kinds of periodicities were found, the previously
mentioned periodicity three,P3 (in both coding regions and
also in noncoding regions from virus and mithocondria); and
a periodicity two,P2 was identified in eukaryotic introns.
The last periodicity was attributed to regulatory functions [2].

Although using a mutual information function to distance
series (joint probabilities of finding the symbolAi andk char-
acters downstream the symbolAj) Herzel and Große con-
cluded that the nonuniform codon usage in protein coding se-
quences is responsible for the period-three oscillations [12],
this periodicity has also been found in whole chromosomal
bacterial genomes, with no relation with protein translation
process [16]. Thus, we believe that the periodicity three is an
intrinsic property of coding sequences, independently of the
codon usage.

4.2. Autocorrelation function (ACF)

ACF allows us to prove the null hypothesis over individual
data independence in a time series. Letx(a) be a time se-
ries, andx(a − τ) the same series with aτ position delay.
The general ACF computes the correlation betweenx(a) and
x(a− τ) using the following equation:

ACF = 〈x(a)x(a− τ)〉 − 〈x(a)〉〈x(a− τ)〉 (1)

In equivalence with the correlation coefficient of Pearson,
a value ofACF = 1 is indicative of a complete positive auto-
correlation between the series; anACF = −1 is indicative of
a complete negative autocorrelation between the series; and
anACF = 0 is indicative of independence between the se-
ries,i.e. it is related with Gaussian white noise.

ACF has been used by Arquès and Michel to study
both theY RY (N)6Y RY preference in different kinds of
genomes with random mutations [4], and to identify subsets
of triplets having a preferential occurrence frame [5]. Fol-
lowing a similar approach, we obtain actual distance series
for the ATG triplet, calculating the number of cases for each
distance, and then computing the ACF. The results are shown
on Fig. 3.

As shown on Fig. 3, while a coding sequence presents an
oscillatory decaying pattern with a clear-cut rhythmical alter-
nation of points, which are at distances of multiples of three
(Fig. 3a), a noncoding sequence has no apparent periodicity
(Fig. 3b), with a pattern similar with stochastic processes (see
Fig. 3c and d). The dynamics observed in the coding DNA
sequence, is typical of an scale-invariant power-law behavior.

4.3. Nearest neighbor nucleotide patterns

Several physicochemical properties of DNA depend on the
interactions between consecutive bases, thus, the identifica-
tion of patterns from nearest neighbor bases could help in the
characterization of nucleotide sequences [22].

Although, the group of Kornberg was the first to measure
nearest neighbor frequencies on DNA [17], it was not until
recently, when some patterns were identified from the analy-
sis of whole genomes [24,25].

Nussinov counted the number of different dinucleotides,
and found two kinds of patterns: (a) unequal frequencies of
appearance of some asymmetric pairs, and (b) preferences
of certain nucleotides with specific nearest neighbors over
equivalent dinucleotides [24]. In the first case, she found that
asymmetries AT> TA; CT > TC; TG> GT; and, GC> CG
occur in all the examined genomes, including both prokarytes
and eukaryotes. On Table I, the counts differences for these
duplets are shown.

As shown on Table I, the highest differences in the
counts were detected on the coding genome (original) of
Borrelia burgdorferi. There is one order of magnitude in
the difference between a coding and a noncoding sequence
(HUMHBB), and three orders of magnitude in the difference
between a coding sequence and its corresponding shuffled
version. Furthermore, in the case of the pure random con-
trol (synthetic genome), a switch in the relative counts was
detected.

TABLE I. Differences in nearest neighbor counts.

Duplet Original genome HUMHBB Shuffled genome Synthetic genome

AT – TA 13557 589 62 -72

CT – TC 2016 616 34 208

TG – GT 15572 1205 94 135

GC – CG 17577 1648 24 -393

average 12180.5 1014.5 53.5 -30.5
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126 J.A. GARĆIA AND M.V. JOSÉ

FIGURE 3. Autocorrelation function analysis (ACF). The ACF is computed from the distribution of ATG (number of cases vs. position) for
(a) coding genome ofBorrelia burgdorferi; (b) HUMHBB; (c) shuffled genome ofBorrelia burgdorferi; and (d) synthetic genome.

4.4. Long-range correlations

A power-law behavior of the formy = f(x) = Axα, where
α is the scaling exponent, andA is the normalization con-
stant, is related with processes exhibiting self-similar prop-
erties (fractal dynamics), such as time series with long-range
correlations [37]. As DNA sequences can be transformed to
distance series, it is feasible to characterize long-range corre-
lations in both coding and noncoding regions.

Using the one-dimensional random walk model, dis-
cussed before, Peng,et al. applied different, but
related techniques to study long-range correlations in
DNA [27,28,35,36]. Their first approach was the use of the
root-mean square fluctuation,F (l) about the average of the
displacement, defined as:

F (n) =
√

[∆y(n)−∆y(n)]2 (2)

where∆y(n) = y(n0 +n)−y(n0), and the bars indicate the
arithmetic mean over all positionsn in the gene. There are
two possible scenarios:

(a) for both pure random process, and for local correla-
tions,F (n) ∼ n1/2; and

(b) for correlations with no characteristic length (long-
range correlations); their fluctuations are described by
the power law,F (n) ∼ nα, with α 6= 1/2.

Using this method (known as “min-max”), Peng,et al. found
long-range correlations in noncoding regions, in contrast with
coding regions whereα ≈ 0.5 [27].

The above results have been widely discussed, as some
authors argue that there is no difference between coding and
noncoding regions [39]. One of the main critics, was the
finding that there is heterogeneity in the random walk se-
ries obtained from DNA, thus, it has been claimed that DNA
presents “patchiness” [19]. Patchiness can be clearly detected
on Figs. 1a and b, in which the “walker” moves far away
from the origin (compared with Fig. 1d which resembles a
pure random process). Due to DNA patchiness, methods like
ACF and the root-mean square of fluctuations are not valid,
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as they depend on averages, which in turn, change over the
DNA sequence.

In order to avoid the effect of DNA patchiness, Peng,
et al., improved their method by detrending the fluctuations
over different windows or boxes [28]. This technique was
called detrended fluctuation analysis (DFA).

In DFA, firstly a sequence of lengthN is divided into
N/l nonoverlapping boxes, each containingl nucleotides,
and then the local trend in each box, is calculated. After-
wards, the detrended walk,yl(n) is obtained with the differ-
ence between the original random walky(n), and the local
trend. Next, the variances about the detrended walks are com-
puted; and finally, the averages of these variances over all the
boxes(F 2

d (l)) are calculated [28].
The reported results of Peng,et al., were essentially the

same as before [28],i.e. long-range correlations were de-
tected on noncoding regions. In the case of the analyzed cod-
ing sequence, a crossover in the slope was detected, with an
α = 0.51 for the first part of the curve (in equivalence with
pure random sequences).

There have been other approaches in order to eliminate
local patchiness in DNA. Arneodo,et al., introduced the

use of the wavelet transform modulus maxima (WTMM) to
study long-range correlations in DNA sequences [1]. In the
WTMM the scaling properties of a time series is investi-
gated in terms of their wavelet coefficients. By applying the
WTMM to a DNA random walk series, from both coding and
noncoding sequences, they also found long-range correla-
tions in noncoding sequences and uncorrelated steps indistin-
guishable from the Brownian motion in coding sequences [1].

In contrast with the above results, other authors have
found long-range correlations in coding sequences [6, 30].
In particular, instead of starting with the random walk se-
ries, Voss [39], and Sousa Vieira [38] calculated the power
spectrum into equal-symbol correlation series, whereas Mo-
hanty and Narayana Rao applied factorial moments to se-
ries representing the excess or deficit of purines over pyrim-
idines [23]. In these cases, long-range correlations were iden-
tified in large coding sequences.

In order to illustrate the long-range correlations in DNA
sequences, here, we applied DFA to both, a time series ob-
tained from the one-dimension random walk method, as well
as a time series obtained from the actual distance series of
triplet ATG. The results for the latter, are shown on Fig. 4.

FIGURE 4. Detrended fluctuation analysis (DFA) for actual distance series of triplet ATG in (a) coding genome ofBorrelia burgdorferi;
(b) HUMHBB; (c) shuffled genome ofBorrelia burgdorferi; and (d) synthetic genome. The corresponding scaling exponents are shown on
Table II.
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TABLE II. Calculated scaling exponentsα, for the studied cases.

Genome Random walk ATG distance

α α

Original (coding) 0.62* 0.73

HUMHBB (noncoding) 0.67 0.52

Shuffled 0.50 0.59

Synthetic 0.50 0.51

*Overall α, see text for explanation.

As shown on Fig. 4a, there was not a crossover in the
slope of the curve. On Table II, we present the comparison of
the obtained scaling exponentsα, for both time series.

In accordance with Peng,et al., [28], we detected
crossovers on the coding sequence. In our case, two
crossovers were identified (not shown), thus three differ-
ent scaling exponents could be obtained:α1 = 0.68, with
n = 11, number of points;α2 = 0.52, withn = 29; and,
α3 = 0.80, withn = 36. On Table II, we present the overall
scaling exponent(n = 76).

On the other hand, in contradiction with Peng,et al., [28],
we detected long-range correlations in a coding sequence us-
ing both kinds of time series as input. In fact, the highest
value ofα was obtained from the ATG distance series from
the coding genome ofBorrelia burgdorferi. It is worth men-
tioning, that this sequence does not have any intergenic re-
gions, thus is pure coding. We believe that using actual dis-

FIGURE 5. Chaos game representation (CGR) applied to DNA sequences.A shifts to the left upper corner;T shifts to the upper right corner;
C shifts to the lower left corner;G shifts to the lower right corner. CGR was applied to: (a) coding genome ofBorrelia burgdorferi; (b)
HUMHBB; (c) shuffled genome ofBorrelia burgdorferi; and (d) synthetic genome.
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tance series of triplets is a better option than using the one-
dimension random walk method, as no information is lost
(due to binary representations) [31], and is more biological
related (due to translation) [9].

Another approach to look for fractal dynamics on DNA
sequences has been the use of the chaos game representation
(CGR) of gene structure [11, 13, 15, 26]. CGR is a scatter
plot derived from a DNA sequence. First a CGR image is di-
vided into squares in which each corner represents one base.
Starting from a random point (e.g. (0,0)) the next point is
plotted in the mid point from the straight line which connects
the current point with one of the corners, determined by the
DNA sequence. On Fig. 5, we illustrate CGRs from the DNA
sequences discussed in the current paper. As expected, there
is no pattern neither on the synthetic genome (Fig. 5d) nor on
the shuffled genome (Fig. 5c). A fractal dynamics was ob-
served on both the coding (Fig. 5a) and noncoding sequences
(Fig. 5b), although it was more clear on the latter. CGRs
were applied for the first 50,000 bases in the corresponding
sequences.

4.5. Information content

Information can be measured in terms of the number of bi-
nary digits,i.e. by the logarithm of the number of possible
messages [29]. This measure of information is called the
Shannon entropy [32]:

Hn = −
n∑

i=1

pi log2 pi (3)

The term entropy is due to its relation with certain formu-
lations of statistical mechanics wherepi is the probability of
a system being in the celli of its phase space [32].

In the case of two possible outcomes, with probabilities
p andq = 1 − p, the Shannon entropy reaches its maximum
value whenp = q. This result can be generalized for anyn,
number of probabilities, thus,Hn is a maximum when all the
pi are equal, which is the most uncertain situation.

Several authors have used the Shannon entropy to analyze
DNA information content [8, 14, 21]. Here, in order to illus-
trate the information content quantification in different se-
quences, we computed the Shannon entropy for the frequen-
cies of all possible triplets (64), in the previously mentioned
genomes. The results are shown on Table III.

Note that the entropy value from the synthetic genome
had the expected value for a pure random process (Hn ≈ 6).
On the other hand, although the coding genome ofBorrelia
burgdorferihad the minimum entropy (i.e. more information
content), its value was very closed to its shuffled version; this
was unexpected, as the shuffling was made by nucleotides
and not by triplets.

TABLE III. Shannon entropy for triplets frequencies.

Genome Hn

Original (coding) 5.60

HUMHBB (noncoding) 5.82

Shuffled 5.63

Synthetic 5.99

Another alternative to calculate entropies from nonlinear
time series, is the maximum entropy method (MEM), which
is based upon the power spectrum of autocorrelation coef-
ficients [10]. The MEM has been recently used to study
information content in series of amino acids obtained from
translating whole bacterial chromosomes [9]. In this case,
the information content was proportionally related with the
maximum entropy.

5. Concluding remarks

It is important to mathematically distinguish coding DNA se-
quences from non-coding ones, because through these kind of
tools it is possible to identify quickly potential genes in the
genome data bases, saving valuable time for a better exper-
imental design. Furthermore, mathematical characterization
of DNA sequences could help in the understanding of struc-
tural relationships among different genes along the chromo-
somes.

Although there has been controversies among the pres-
ence of long-range correlations in coding DNA, we have
shown that the use of actual distance series between triplets
is a better approach than the random walker DNA representa-
tion, as less information is lost, and a better characterization
is made. When the analyses are carried out based upon the
actual distance series, the presence of long-range correlations
in coding sequences is clear, and its in accordance with the
CGR of the same sequence.

The presence of periodical rhythms in the ACF, long-
range correlation, and more information content in coding
DNA sequences suggests that, although spontaneous muta-
tions and horizontal genetic transfer occurs at random, there
should be some kind of structural rules which favor the natu-
ral selection of sequences in which these properties are main-
tained.
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