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An entropy based theory for the viscosity of strong glasses
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One of the main applications of the stochastic matrix method is the evaluation of the probability of finding boroxol rings and dendrites in a
boron oxide glass. In this work, we calculate the configurational entropy of B2O3 using this probability and Shannon’s definition of entropy.
The isentropic temperature is evaluated obtaining a very good agreement with experimental data. Entropy is introduced into the Adam-Gibbs
equation to calculate viscosity. The resulting expression fits the complete range of temperatures for the supercooled liquid.
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Una de las principales aplicaciones del método de las matrices estocásticas es la evaluación de la probabilidad de encontrar anillos de
boroxol y dentritas en un vidrio déoxido de boro. En este trabajo se calcula la entropı́a del B2O3 utilizando esta probabilidad y la definición
de entroṕıa de Shannon. se evalúa la temperatura isentrópica obteniendo un muy buen acuerdo con los datos experimentales. La entropı́a se
introduce en la ecuación de Adam-Gibbs para calcular la viscosidad. La expresión obtenida se ajusta a los valores reportados en le intervalo
completo de temperaturas para el lı́quido sobreenfriado.

Descriptores: Lı́quido sobreenfriado; transición v́ıtrea; entroṕıa.

PACS: 61.43.Fs; 64.70.Pf; 65.50.+m

1. Introduction

In the last two decades, a large amount of both theoretical
and experimental studies have been undertaken in order to
describe the relaxation processes and transport properties in
glass forming liquids. Two of the most significant features
in these systems are the abrupt increase in viscosity as the
glass transition temperatureTg is approached, and the slow-
ing down of structural relaxation. Different kinds of glass
forming liquids have been classified according to the behav-
ior of viscosity with temperature in terms of the so-called
fragility [1–6]. Strong glass formers, mainly metallic glasses,
such as B2O3, follow an Arrhenius type equation,

log η = −A +
B

T
(1)

while intermediate and fragile liquids are best described by
the Vogel-Fulcher-Tammann equation,

log η = −AV FT +
BV FT

T − T0
(2)

It is important to point out that in Eqs. (1) and (2)A,
B,AV FT , andBV FT , are adjustable parameters for a given
fit of experimental data.

Both Eqs. (1) and (2) describe the viscosity of the su-
percooled liquid in the region where very slow diffusional
processes occur. These processes have been defined asα-
relaxation processes. In the past decade, experiments have
indicated the existence of fast relaxation processes in the
vicinity of Tg [7–12], referred to asβ-relaxation processes,
through evidence of drastic changes in the transport proper-
ties of the glass forming liquid, especially the diffusion mech-
anisms [13–17], around a cross-over temperatureTc which
lies in the range between 1.15Tg and 1.28Tg [18–20]. Thus,
claims exist asserting that empirical equations such as the
ARR and VFT equations are not adequate to fit the experi-
mental data for viscosity in the complete temperature interval
from Tg toTm, the melting point temperature.

In order to analyze the validity of different empirical
forms for the experimental data of the viscosity in several
glass forming liquids, Stickelet al. [21, 22] introduced the
temperature derivatives method, which has been widely used
to study the behavior of different kinds of glasses [23–28].
Their results indicate that different empirical forms are
needed to fit data in the different temperature intervals that
appear through the onset of a crossover of two regimes in the
neighborhood ofTc. In the specific case of the strong-glass
former boron oxide (B2O3), where Tg is approximately
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FIGURE 1. Experimental data for the viscosity of B2O3 (o) [29],
and the Arrhenius (solid line) and Vogel-Fulcher-Tammann (dashed
line) proposed by Stickelet al. [22].

530 K andTm = 720 K, early studies for the viscosity showed
that it was not possible to fit a unique empirical form for the
viscosity in the supercooled system [29]. Stickelet al. pre-
dict that two different equations must be used to reproduce
the experimental data for viscosity in the supercooled liquid:
an Arrhenius type equation between 533 K and 620 K, and
a Vogel-Fulcher-Tamann type from 620 K up to the melting
point, as can be seen in Fig. 1.

The main trend of thought offered in this work is based
on the fact that one of the most successful theoretical ef-
forts to deal with the description of structural relaxation pro-
cesses in supercooled liquids was developed by Adam and
Gibbs [30] in terms of the configurational entropy Sc of the
system. Their main result is that either the viscosity or, equiv-
alently, the structural relaxation time is related to Sc through
the equation,

log η =
C

2.303TSc(T )
(3)

whereC is a constant related to the activation energy, given
by

C =
∆µs∗c
kB

where∆µ is largely the potential energy hindering the coop-
erative rearrangement,s∗c is the critical configurational en-
tropy [30] and Sc(T) is the configurational entropy. This
entropy plays a fundamental role, for its specific functional
form in different supercooled liquids determines the temper-
ature dependence of the viscosity. Several works have been
presented in the literature to find different forms for the con-
figurational entropy in glass formers [31–34].

In this work, we present an expression for the tempera-
ture dependence of viscosity of B2O3 that describes its be-
havior in range from 533 K to the melting point, using a
theoretical model which allows the calculation of configu-
rational entropy for the glass former. There are two issues in
this argumentation that require a careful analysis. The first
one concerns the physical nature of the Adam-Gibbs theory,

which relies heavily on the concept of configurational en-
tropy, and the second one concerns the concept of configura-
tional entropy itself. We may recall that, in the Adam-Gibbs
theory, the underlying structural relaxation time increases as
configurational entropy decreases, as Eq. (3) indicates. How-
ever some authors [25] argue that this fact is in contradiction
with experimental findings, claiming that the critical number
of molecular units, denoted byz∗ in this theory, is usually
too small to be accommodated in pores larger than a certain
size [35, 36]. This may be true in the case of liquids com-
posed of large molecules, such as ethylene glycol, salol, and
others, but Adam-Gibbs appears to work for strong glass for-
mers as pointed out in Ref. 37. Here, however, we are not
dealing with the specific nature of the constantC appearing
in Eq. (3), but as argued below, it will be taken to be simply an
adjustable parameter not necessarily implying accommoda-
tion of molecular units, although indeed related toSc. As for
configurational entropy, a word of caution is in order. It hap-
pens that not all authors in this field accept a unique concept
behind this quantity. In this paper, the configurational entropy
will be taken in its most orthodox interpretation, namely, the
contribution of the entropy arising from the number of ways
in which the molecules composing the glass forming liquid
can be accommodated in a given lattice-like structure [38].
It is this interpretation ofSc which will allow us to use the
method outlined in Sec. 2. Wheter the outcome of this cal-
culation agrees or not with other possible interpretations is a
matter for future debate.

To present our results, in Sec. 2 we calculate the configu-
rational entropy of B2O3, in Sec. 3 we evaluate its viscosity,
and finally in section 4 we present a discussion of our work.

2. Configurational entropy for B2O3

In this section we present the calculation of the configura-
tional entropy for B2O3, as defined in the previous section,
using Shannon’s definition for entropy and the stochastic ma-
trix method to evaluate the probability of forming either a
boroxol ring [26,27] or a dendrite [37] in the system.

In recent theoretical works, the stochastic matrix method
(SMM) has been used by Kerner [39] to describe the growth
process of a solid and by Barrioet al. [40] to derive the frac-
tion of boroxol rings in a boron oxide glass. The underly-
ing idea of this method consists in modeling the growth of a
solid considering two main ingredients: border and bulk. The
border (or rim) is composed of all those entities that offer a
potential possibility for a new unit to adhere and agglomer-
ate. The bulk consists of all units that have saturated all their
bonds. The growth process at the rim is then represented by
a matrix whose components are the probabilities of finding a
given site at the rim of a cluster of units of a certain size. The
matrix acts on a vector whose components represent the prob-
abilities of finding a given site on the rim of a cluster. The
matrix acting on a vector transforms it into a new one, since
the rim has changed by adding a new atom (or unit). Further,
the probability factors include two contributions, the statisti-
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cal weight for each process and a Boltzmann factor, taking
into account the energy barrier required to form a bond. By
successive application of the matrix to the resulting vectors,
one finds the final configuration characterized by the eigen-
vector of the matrix whose eigenvalue is one which is as-
sumed to exist and is unique. Once the selected eigenvector
has been obtained, one can find the probability of forming a
ring from one layer to another. For the specific case of B2O3,
such probabilityPa is given by

Pa =
24ξ2 + 16ξ

84ξ2 + 107ξ + 25
(4)

where ξ = exp (E2 − E1)/kBT [26]. E1 and E2
are the characteristic energies related to the formation
of a single B-O-B unit and a boroxol ring respectively,
and E2 − E1 = -4.927 cal mol−1[40]. Recently, the SMM
has been used to describe the relaxation processes in
B2O3 [26,27]. We may also describe the case in which, in-
stead of rings, the links correspond to the formation of den-
drites by means of the probability Pd [37].

The formation of these two possible structures should be
a consequence of the way in which the supercooled B2O3

evolves towards glass. Hence, the final configuration of the
system is exclusively determined by both types of local struc-
tures. Thus, configurational entropy may be directly evalu-
ated from these configurational changes and it will depend
only on the probabilities of forming either rings or dendrites.
On this basis, using Shannon’s definition of entropy [41], we
may write the configurational entropy for our system, namely,

Sc = Sca + Scd = −kB(Pa ln Pa + Pd ln Pd) (5)

with Pd the probability observing a dendrite in the system,
Pd = 1 – Pa. In Fig. 2 we exhibit the configurational entropy
in terms of the temperature. In addition, in the insert of this
figure, we present the relative contributions of Sca and Scd.
As it is easily seen, the main contribution comes from the
ring formation, which is about 80%. The difference between
both entropies grows as the glass transition temperature is ap-
proached. This result is in good agreement with experimen-
tal observations with Raman spectroscopy that suggest that
the glass transition in B2O3 takes place at the temperature
where the breakdown of the boroxol rings occurs [42]. It is
important to remark that, even though Raman intensity data
for molten B2O3 near Tg show a rapid breakdown of boroxol
rings, around 20 % of the contribution to configurational en-
tropy comes from the dendrites and cannot be ignored.

Substituting the probabilities of finding a ring or a den-
drite into Eq. (5), the explicit value for configurational en-
tropy is obtained, namely

Sc = −kB

{
24ξ2 + 16ξ

84ξ2 + 107ξ + 25
ln

24ξ2 + 16ξ

84ξ2 + 107ξ + 25

+
60ξ2 + 91ξ + 25
84ξ2 + 107ξ + 25

ln
60ξ2 + 91ξ + 25
84ξ2 + 107ξ + 25

}
(6)

FIGURE 2. Plot of the configurational entropy given by Eq. (6)
(solid line), with E2−E1 = -4.927 kcal mol−1 [37], and the
straight line fit (dashed line) represented by Eq. (7), with
m = 6.19092× 104 kcal /mol K2, b = - 0.261067 kcal/mol K. In
the insert we exhibit the percentage of the contributions of rings
(solid line) and dendrites (dashed line) to the total configurational
entropy, Eq. (5).

This configurational entropy may be interpreted as fol-
lows: As the temperature changes, even though the positions
of the atoms of the system are not affected, the probability of
any atom to form either rings or dendrites does change. As
it was explained in Ref. 37, the reason to include the proba-
bility of dendrite formation in the system is that not all bonds
in a strong glass former necessarily lead to the formation of
rings.

As we mentioned before, in Fig. 2 we depict the con-
figurational entropy given by Eq. (6) with the solid line.
This complicated form for the dependence of Sc with tem-
perature may be almost perfectly (deviation=0.99) fitted to
a straight line (dashed line) in the region of the supercooled
liquid, given by

Sc(T ) = mT + b (7)

where

m = 6.19092× 10−4cal/molK2

and

b = −0.261067cal/molK.

Thus, instead of using the expression for Sc given by Eq. (6),
which is a rather complicated function ofξ, use will be made
of Eq. (7) to compute the viscosity through Eq. (3) in the
temperature range 530<T<720. We can observe the exis-
tence of an isoentropic temperature T0, in the way proposed
by many authors [32,34,43,44], namely, Sc(T0) = 0 whose
value is 416.7 K, that finally depends on the energy differ-
ence E2-E1. The existence of T0 has been one of the main
aspects that appear in the studies of the configurational en-
tropy in the glass transition. It is important to point out that
our value for T0 lies within a 3.25% error when compared
to the value reported by Angell and Rao [45] for T0, namely
T0 = 402 K, on a strictly empirical basis.
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3. The viscosity

In spite of the comments given in the introduction, the Adam
Gibbs theory has proved to be a very useful tool for the inter-
pretation and discussion of transport and relaxation processes
in glass forming liquids, both strong and fragile, and a large
number of studies have been performed to test its validity.
Recent literature shows that this theoretical approach is still
influencing many researchers in the field of the glass transi-
tion [32,34,36,46-49]. As we discussed before, some authors
like Ngai [36,50] refer to some inadequacies of this theory,
especially when the constantC in Eq. (3) is interpreted in
terms the size of the cooperatively rearranging regions, as
well as in experiments in nanometric scales and the determi-
nation of configurational entropy, mainly from calorimetric
results [33]. As we have already mentioned, we believe that
in our case these shortcomings could be relevant in complex
glass forming liquids, but at least for strong liquids, previous
results seem to be immune to these problems. We will assume
that this is the case, and we shall use Eq. (3) in its generic
form, that means, ignoring the dependence ofC onz∗.

We may now obtain an explicit expression for the viscos-
ity of B2O3 introducing the configurational entropy given by
Eq. (7) into the Adam-Gibbs form, namely Eq. (3). Thus we
find that

log
η

η0
=

K

aT 2 + T
(8)

whereη0 is a reference viscosity, such thatlog η0 = 2.5419,
a = m/b and K = (2.303)−1Cb−1. The Adam-Gibbs con-
stant C is adjusted as the parameter that best fits experi-
mental data for viscosity, which in our case turns out to be
C = 1043.65 cal/mol . Using the relation

S∗c
Sc(Tg)

=
T0

Tg − T0

obtained elsewhere [51], we find that for B2O3,
s∗c = 0.271 cal/ K mol, a value that is comparable with those

FIGURE 3. Theoretical prediction for logη , Eq. (8), and the cor-
responding experimental data (o)[29].

TABLE I. Experimental data for logη reported by Macedo and
Napolitano [29].

Temperature (K) Logη (η / Poise)

533 14.04

543 13.36

553 12.68

563 12.04

573 11.41

583 10.81

593 10.22

603 9.66

623 8.60

648 7.60

673 6.71

723 5.48

of other glass formers [51]. Moreover, the square temperature
dependence for the viscosity observed in Eq. (8) has been re-
ported for other systems in the literature [52,53]. In Fig. 3
we display a plot of the viscosity predicted by Eq. (8) and the
experimental data [29] for B2O3 reproduced in Table I. It is
seen that the agreement of our equation with the experimen-
tal values for viscosity in the temperature range from Tg to
Tm is satisfactory.

4. Discussion

The Adam-Gibbs equation proves to be a suitable relation be-
tween the viscosity of a supercooled strong glass forming liq-
uid and its configurational entropy as obtained from Eq. (3).
In this work , we have presented an example of this rela-
tionship for the case of a strong glass former, namely B2O3,
through the evaluation of the probabilities of the system to
form either rings or dendrites. It would be straightforward to
apply this method to chalcogenide glasses such as As2Se3.
Contrary to previous statements, this form for Sc enables us
to obtain an expression for the viscosity of the system that fits
the whole temperature range from the glass transition temper-
ature to the melting point. We predict a very good value for
the isentropic temperature without any adjustable parameters,
using only the experimental value forE2−−E1. The method
outlined here, namely the stochastic matrix method, seems to
work well for strong liquids, but its validity in intermediate
and fragile liquids may be questionable because the fragile
glasses are formed by very long chains.
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