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An entropy based theory for the viscosity of strong glasses
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One of the main applications of the stochastic matrix method is the evaluation of the probability of finding boroxol rings and dendrites in a
boron oxide glass. In this work, we calculate the configurational entropy ©fRising this probability and Shannon’s definition of entropy.

The isentropic temperature is evaluated obtaining a very good agreement with experimental data. Entropy is introduced into the Adam-Gibbs
equation to calculate viscosity. The resulting expression fits the complete range of temperatures for the supercooled liquid.

Keywords: Supercooled liquid; glass transition; viscosity; entropy.

Una de las principales aplicaciones dettodo de las matrices esfmticas es la evaludri de la probabilidad de encontrar anillos de
boroxol y dentritas en un vidrio d&xido de boro. En este trabajo se calcula la engadel B,O3 utilizando esta probabilidad y la definbei

de entrofia de Shannon. se eual la temperatura iseijpica obteniendo un muy buen acuerdo con los datos experimentales. Ldas&op
introduce en la ecuan de Adam-Gibbs para calcular la viscosidad. La expresbtenida se ajusta a los valores reportados en le intervalo
completo de temperaturas paraiglido sobreenfriado.

Descriptores: Liquido sobreenfriado; trans@i vitrea; entrofa.

PACS: 61.43.Fs; 64.70.Pf; 65.50.+m

1. Introduction Both Egs. (1) and (2) describe the viscosity of the su-
percooled liquid in the region where very slow diffusional
In the last two decades, a large amount of both theoreticaérocesses occur. These processes have been defired as
and experimental studies have been undertaken in order {@|axation processes. In the past decade, experiments have
describe the relaxation processes and transport propertiesifiyicated the existence of fast relaxation processes in the
glass forming liquids. Two of the most significant featuresvicinity of T, [7-12], referred to ag-relaxation processes,
in these systems are the abrupt increase in viscosity as thgrough evidence of drastic changes in the transport proper-
glass transition temperatuifg is approached, and the slow- tjes of the glass forming liquid, especially the diffusion mech-
ing down of structural relaxation. Different kinds of glass gnisms [13-17], around a cross-over temperafiyravhich
forming liquids have been classified according to the behavyies in the range between 1.75 and 1.28T}, [18-20]. Thus,
ior of viscosity with temperature in terms of the so-called cjagims exist asserting that empirical equations such as the
fragility [1-6]. Strong glass formers, mainly metallic glasses,ARR and VFT equations are not adequate to fit the experi-

such as BOj, follow an Arrhenius type equation, mental data for viscosity in the complete temperature interval
B from T, toT,,,, the melting point temperature.
logn=—-A+ 1) In order to analyze the validity of different empirical

forms for the experimental data of the viscosity in several
while intermediate and fragile liquids are best described bX}IaSS forming liquids, Stickedt al. [21, 22] introduced the
the Vogel-Fulcher-Tammann equation, temperature derivatives method, which has been widely used
to study the behavior of different kinds of glasses [23-28].
Their results indicate that different empirical forms are
needed to fit data in the different temperature intervals that
It is important to point out that in Egs. (1) and (3), appear through the onset of a crossover of two regimes in the
B, Ay pr, and By pr, are adjustable parameters for a givenneighborhood off,.. In the specific case of the strong-glass
fit of experimental data. former boron oxide (BOs;), where T, is approximately

By pr @

1 =-A
ogn VFT+T_TO
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' ' which relies heavily on the concept of configurational en-

tropy, and the second one concerns the concept of configura-
tional entropy itself. We may recall that, in the Adam-Gibbs

nl . theory, the underlying structural relaxation time increases as
- 8 configurational entropy decreases, as Eqg. (3) indicates. How-
Zop - ever some authors [25] argue that this fact is in contradiction
% r 7 with experimental findings, claiming that the critical number
g \\\Q 7 of molecular units, denoted by« in this theory, is usually
il N | too small to be accommodated in pores larger than a certain
| -0 | size [35,36]. This may be true in the case of liquids com-
W Q| posed of large molecules, such as ethylene glycol, salol, and
L ] others, but Adam-Gibbs appears to work for strong glass for-
2 o = s iz 5 mers as pointed out in Ref. 37. Here, however, we are not
T®) dealing with the specific nature of the constéahippearing
FIGURE 1. Experimental data for the viscosity okBs (0) [29], N EQ. (3), butas argued below; it will be taken to be simply an
and the Arrhenius (solid line) and Vogel-Fulcher-Tammann (dashedadjustable parameter not necessarily implying accommoda-
line) proposed by Stickedt al. [22]. tion of molecular units, although indeed relatedto As for

configurational entropy, a word of caution is in order. It hap-

530 K andT,, = 720 K, early studies for the viscosity showed pens that not all authors in this field accept a unique concept
that it was not possible to fit a unique empirical form for the behind this quantity. In this paper, the configurational entropy
viscosity in the supercooled system [29]. Stickehl. pre-  will be taken in its most orthodox interpretation, namely, the
dict that two different equations must be used to reproduceontribution of the entropy arising from the number of ways
the experimental data for viscosity in the supercooled liquidin which the molecules composing the glass forming liquid
an Arrhenius type equation between 533 K and 620 K, an¢an be accommodated in a given lattice-like structure [38].
a Vogel-Fulcher-Tamann type from 620 K up to the meltinglt is this interpretation of5, which will allow us to use the
point, as can be seen in Fig. 1. method outlined in Sec. 2. Wheter the outcome of this cal-

The main trend of thought offered in this work is basedculation agrees or not with other possible interpretations is a
on the fact that one of the most successful theoretical efmatter for future debate.
forts to deal with the description of structural relaxation pro-  To present our results, in Sec. 2 we calculate the configu-
cesses in supercooled liquids was developed by Adam angtional entropy of BOs, in Sec. 3 we evaluate its viscosity,
Gibbs [30] in terms of the configurational entropy & the  and finally in section 4 we present a discussion of our work.
system. Their main result is that either the viscosity or, equiv-
alently, th_e structural relaxation time is related totl&ough 2. Configurational entropy for B,O;
the equation,

_ c 3) In this section we present the calculation of the configura-
2.3037'S.(T) tional entropy for BOs, as defined in the previous section,
whereC' is a constant related to the activation energy, givenutc'ing Shannon’s definition for entropy and the st.ocha.stic ma-

by trix methpd to evaluate the pr.obablllt.y of forming either a
Aus® boroxol ring [26,27] or a dendrite [37] in the system.
C= 7 < In recent theoretical works, the stochastic matrix method
B (SMM) has been used by Kerner [39] to describe the growth
whereAy is largely the potential energy hindering the coop-process of a solid and by Barrat al. [40] to derive the frac-
erative rearrangemens;; is the critical configurational en- tion of boroxol rings in a boron oxide glass. The underly-
tropy [30] and $(T) is the configurational entropy. This ing idea of this method consists in modeling the growth of a
entropy plays a fundamental role, for its specific functionalsolid considering two main ingredients: border and bulk. The
form in different supercooled liquids determines the temperborder (or rim) is composed of all those entities that offer a
ature dependence of the viscosity. Several works have begotential possibility for a new unit to adhere and agglomer-
presented in the literature to find different forms for the con-ate. The bulk consists of all units that have saturated all their
figurational entropy in glass formers [31-34]. bonds. The growth process at the rim is then represented by
In this work, we present an expression for the temperaa matrix whose components are the probabilities of finding a
ture dependence of viscosity 0,83 that describes its be- given site at the rim of a cluster of units of a certain size. The
havior in range from 533 K to the melting point, using a matrix acts on a vector whose components represent the prob-
theoretical model which allows the calculation of configu- abilities of finding a given site on the rim of a cluster. The
rational entropy for the glass former. There are two issues imatrix acting on a vector transforms it into a new one, since
this argumentation that require a careful analysis. The firsthe rim has changed by adding a new atom (or unit). Further,
one concerns the physical nature of the Adam-Gibbs theoryhe probability factors include two contributions, the statisti-

logn
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cal weight for each process and a Boltzmann factor, taking
into account the energy barrier required to form a bond. By
successive application of the matrix to the resulting vectors,
one finds the final configuration characterized by the eigen-
vector of the matrix whose eigenvalue is one which is as-
sumed to exist and is unique. Once the selected eigenvectox

has been obtained, one can find the probability of forming a & *'

0.2

mol)

ring from one layer to another. For the specific case DB =]
such probabilityP, is given by o
2467 4 16¢ 005 ; ]
a = 2 (4) 1 0 \
84£2 4+ 107€ + 25 H 300 1000 A
‘ I : T ‘
where f = exp (Ez _ El)/kBT [26]. E; and E 00 550 600 Tsag) 700 750 300

are the characteristic energies related to the formatio

of a single B-O-B unit and a boroxol ring respectively, (solid line), with B—E, = -4.927 kcal mot® [37], and the
and £, — Ey =-4.927 cal mpT1[4O]. Recen_tly, the SMM straight line fit (dashed line) represented by Eq. (7), with
has been used to describe the relaxation processes jj=g.19092x 10" kcal /mol K2, b = - 0.261067 kcal/mol K. In
B20O; [26,27]. We may also describe the case in which, in-the insert we exhibit the percentage of the contributions of rings
stead of rings, the links correspond to the formation of den{solid line) and dendrites (dashed line) to the total configurational

rilzlcsuRE 2. Plot of the configurational entropy given by Eg. (6)

drites by means of the probability; P37]. entropy, Eq. (5).
The formation of these two possible structures should be _ _ _ _
a consequence of the way in which the supercoole®;B This configurational entropy may be interpreted as fol-

evolves towards glass. Hence, the final configuration of théows: As the temperature changes, even though the positions
system is exclusively determined by both types of local strucOf the atoms of the system are not affected, the probability of
tures. Thus, configurational entropy may be directly evalu-2ny atom to form either rings or dendrites does change. As
ated from these configurational changes and it will dependf Was explained in Ref. 37, the reason to include the proba-
only on the probabilities of forming either rings or dendrites. bility of dendrite formation in the system is that not all bonds
On this basis, using Shannon’s definition of entropy [41], well & strong glass former necessarily lead to the formation of

may write the configurational entropy for our system, namely!ings. . o _
As we mentioned before, in Fig. 2 we depict the con-

Se = Sea + Sea = —kp(P,In P, + PyIn Py) (5) figurational entropy given by Eq. (6) with the solid line.
This complicated form for the dependence qf\th tem-
with P; the probability observing a dendrite in the system,perature may be almost perfectly (deviation=0.99) fitted to
P; =1 -P,. In Fig. 2 we exhibit the configurational entropy a straight line (dashed line) in the region of the supercooled
in terms of the temperature. In addition, in the insert of thisliquid, given by
figure, we present the relative contributions gf &nd S,. S(T)=mT+b @
As it is easily seen, the main contribution comes from thevvhere
ring formation, which is about 80%. The difference between
both entropies grows as the glass transition temperature is ap- m = 6.19092 x 10 *cal/mol K
proached. This result is in good agreement with experimen-
tal observations with Raman spectroscopy that suggest thgpd
the glass transition in BD3 takes place at the temperature b= —0.261067cal/molK.
where the breakdown of the boroxol rings occurs [42]. Itis
important to remark that, even though Raman intensity datd "us, instead of using the expression forg&ven by Eg. (6),
for molten B,O3 near T, show a rapid breakdown of boroxol which is a rather compllcated_ func'_uon fuse will be mz_slde
rings, around 20 % of the contribution to configurational en-of Ed. (7) to compute the viscosity through Eq. (3) in the
tropy comes from the dendrites and cannot be ignored. ~ témperature range 530'<720. We can observe the exis-
Substituting the probabilities of finding a ring or a den- tence of an isoentropic temperaturg, i the way proposed
drite into Eq. (5), the explicit value for configurational en- Py many authors [32,34,43,44], namely,(&) = 0 whose

tropy is obtained, namely value is 416.7 K, that finally depends on the energy differ-
ence B-E;. The existence of g has been one of the main
24€% + 16¢ 24€% + 16¢ aspects that appear in the studies of the configurational en-
Se = ks {8452 1076 + 25 84€2 + 107€ + 25 tropy in the glass transition. It is important to point out that

) ) our value for T lies within a 3.25% error when compared
60<~ + 91 + 25 In 608~ + 916 + 25 } (6) tothe value reported by Angell and Rao [45] fay, hamely
84£2 + 107¢ + 25 84£2 +107€ + 25 T, =402 K, on a strictly empirical basis.
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3. The viscosity

. . . . . TABLE |. Experimental data for logy reported by Macedo and
In spite of the comments given in the introduction, the Adamyapolitano [29].

Gibbs theory has proved to be a very useful tool for the inter

pretation and discussion of transport and relaxation processes____lemperature (K) Log) (n / Poise)
in glass forming liquids, both strong and fragile, and a large 533 14.04
number of studies have been performed to test its validity. 543 13.36
Recent literature shows that this theoretical approach is still 553 12.68
influencing many researchers in the field of the glass transi- 563 12.04
tion [32,34,36,46-49]. As we discussed before, some authors '
like Ngai [36,50] refer to some inadequacies of this theory, o73 1141
especially when the constaétin Eq. (3) is interpreted in 583 10.81
terms the size of the cooperatively rearranging regions, as 593 10.22
well as in experiments in nanometric scales and the determi- 603 9.66
nation of configurational entropy, mainly from calorimetric 623 8.60
results [33]. As we have already mentioned, we believe that '

in our case these shortcomings could be relevant in complex 648 760
glass forming liquids, but at least for strong liquids, previous 673 6.71
results seem to be immune to these problems. We will assume 723 5.48

that this is the case, and we shall use Eq. (3) in its generic
form, that means, ignoring the dependencé€'ain zx.

We may now obtain an explicit expression for the viscos-
ity of BoOs3 introducing the configurational entropy given by
Eq. (7) into the Adam-Gibbs form, namely Eq. (3). Thus we
find that

of other glass formers [51]. Moreover, the square temperature

dependence for the viscosity observed in Eq. (8) has been re-

ported for other systems in the literature [52,53]. In Fig. 3

we display a plot of the viscosity predicted by Eqg. (8) and the
n K experimental data [29] for BD3 reproduced in Table I. It is

‘o nw  al?2+T (8)  seen that the agreement of our equation with the experimen-

tal values for viscosity in the temperature range frogtd

whereny is a reference viscosity, such tHag g = 2.5419, T, is satisfactory.

a = m/band K = (2.303)!Cb~!. The Adam-Gibbs con-
stantC is adjusted as the parameter that best fits experi- _ )
mental data for viscosity, which in our case turns out to bed. Discussion

C =1043.65 cal/mol . Using the relation ) . . ]
The Adam-Gibbs equation proves to be a suitable relation be-

S Ty tween the viscosity of a supercooled strong glass forming lig-
S.(T,) T,-Tp uid and its configurational entropy as obtained from Eg. (3).
: . In this work , we have presented an example of this rela-
OPtamEd elsewhere [51],  we . find that for'Q(Bg,, tionship for the case of apstrong glass formes namel@B
s¢ = 0.271 cal/ K mol, a value that is comparable with thosethrough the evaluation of the probabilities of the system to
form either rings or dendrites. It would be straightforward to
16 ' apply this method to chalcogenide glasses such aSés
Contrary to previous statements, this form forehables us
to obtain an expression for the viscosity of the system that fits
the whole temperature range from the glass transition temper-
ature to the melting point. We predict a very good value for
| the isentropic temperature without any adjustable parameters,
1 using only the experimental value fés — — F;. The method
= outlined here, namely the stochastic matrix method, seems to
] work well for strong liquids, but its validity in intermediate
and fragile liquids may be questionable because the fragile
glasses are formed by very long chains.

log N (Poisc)
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