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Nambu-Goto action and classical rebits in any signature and in higher dimensions
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We perform an extension of the relation between the Nambu-Goto action and classical rebits. Of course, the Cayley hyperdeterminant is the
key mathematical tool in such generalization. Using the Wick rotation, we find that in four dimensions such a relation can be established
no only with the signature (2+2) but also with any signature. We generalize our result to a curved space-time of (22n+22n)-dimensions and
(22n+1+22n+1)-dimensions.
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1. Introduction

Some years ago, Duff [1] discovers hidden new symme-
tries in the Nambu-Goto action [2-3]. It turns out that the
key mathematical tool in such a discovery is the Cayley
hyperdeterminant [4]. In this pioneer work, however, the
target space-time turns out to have an associated(2 + 2)-
signature, corresponding to two time and two space dimen-
sions. It was proved in Ref. 5 and 6 that the Duff’s for-
malism can also be generalized to(4 + 4)-dimensions and
(8 + 8)-dimensions. Here, we shall prove that if one intro-
duces a Wick rotations for various coordinates then one can
actually extend the Duff’s procedure to any signature in4-
dimensions. Moreover, we also prove that our method can
be extended to curved space-time in(22n + 22n)-dimensions
and(22n+1 + 22n+1)-dimensions.

There are a number of physical reasons to be interested
on these developments, but perhaps the most important is that
eventually our work may be useful on a possible generaliza-
tion of the remarkable correspondence between black-holes
and quantum information theory (see Refs. 7 to 10] and ref-
erences therein).

2. Mathematical development

Let us start recalling the Duff’s approach on the relation be-
tween the Nambu-Goto action and the(2+2)-signature. Con-
sider the Nambu-Goto action [2,3],

S =
∫

dξ2
√

εdet(∂axµ∂bxνηµν). (1)

Here, the space-time coordinatesxµ are real function of two
parameters(τ, σ) = ξa andηµν is a flat metric, determin-
ing the signature of the target space-time. Moreover, the pa-

rameterε takes the values+1 or−1, depending whether the
signature ofηµν is Euclidean or Lorenziana, respectively.

It turns out that by introducing the world-sheet metricgab

one can prove that (1) is equivalent to the action [11] (see also
Ref. 12 and references therein)

S =
∫

dξ2
√
−εdet ggab∂axµ∂bx

νηµν , (2)

which is, of course, the Polyakov action (see Ref. 12 and
references therein). In fact, from the expression

∂axµ∂bx
νηµν − 1

2
gabg

cd∂cx
µ∂dx

νηµν = 0, (3)

obtained by varying the action (2) with respect togab, it is
straightforward to show that from (2) one obtains (1) andvise
versa. Hence, the actions (1) and (2) are equivalents.

It is convenient to define the induced world-sheet metric

hab ≡ ∂axµ∂bx
νηµν . (4)

Using this definition, the Nambu-Goto action (1) becomes

S =
∫

dξ2
√

ε det(hab). (5)

It is not difficult to see that in(2 + 2)-dimensions the
expression (4) can be written as

hab = ∂axij∂bx
klεikεjl, (6)

wherexij denotes a the2× 2- matrix

xij =
(

x1 + x3 x2 + x4

−x2 + x4 x1 − x3

)
. (7)
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It is important to observe that (7) corresponds to the set
M(2, R) of any 2 × 2-matrix. In fact, by introducing the
fundamental base matrices

δij ≡
(

1 0
0 1

)
, εij ≡

(
0 1
−1 0

)
,

ηij ≡
(

1 0
0 −1

)
, λij ≡

(
0 1
1 0

)
.

(8)

one observes that (7) can be rewritten as the linear combina-
tion

xij = x1δij + x2εij + x3ηij + x4λij . (9)

Let us now introduce the expression

h =
1
2!

εabεcdhachbd. (10)

If one uses (4) one gets

h = det(hab). (11)

However, if one considers (6) one obtains

h = Det(hab), (12)

whereDet(hab) denotes the Cayley hyperdeterminant ofhab,
namely

Det(hab) =
1
2!

εabεcd

× εikεjlεmrεns∂axij∂cx
kl∂bx

mn∂dx
rs. (13)

Of course, (11) and (12) imply that

det(hab) = Det(hab). (14)

In turn, (14) means that in(2 + 2)-dimensions the Nambu-
Goto action (5) can also be written as

S =
∫

dξ2
√
Det(hab). (15)

Note that, since in this case one is considering the(2 + 2)-
signature one must setε = +1 in (5).

In (4 + 4)-dimensions the key formula (6) can be gener-
alized as

hab = ∂axijm∂bx
klsεikεjlηms. (16)

While in (8 + 8)-dimensions one has

hab = ∂axijmn∂bx
klsrεikεjlεmsεnr. (17)

(see Refs. 5 and 6 for details). So by considering the real
variablesxi1...in and properly considering the matricesεij

andηij the previous formalism can be generalized to higher
dimensions. Of course, in such cases the Cayley hyperdeter-
minantDet(hab) must be modified accordingly.

Observing (7) one wonders whether one can consider
in (6) other signatures in4-dimensions besides the(2 + 2)-
signature. It is not difficult to see that using the Wick rotation

in any of the coordinatesx1, x2, x3 or x4 one can modify
the signature. For instance, one can achieve the(1 + 3)-
signature if one uses the prescriptionx2 → ix2 in (6). This
method lead us inevitable to generalize our method to a com-
plex structure. One simple introduce the complex matrix

zij = z1δij + z2εij + z3ηij + z4λij , (18)

where the variablesz1, z2, z3 andz4 are complex numbers.
The expression (6) is generalized accordingly as [13]

hab = ∂azij∂bz
klεikεjl. (19)

Thus, in this case, the Cayley hyperdeterminant becomes

Det(hab) =
1
2!

εabεcd

× εikεjlεmrεns∂azij∂bz
kl∂azmn∂bz

rs (20)

and consequently the Nambu-Goto action must be written us-
ing (20). Of course, the Nambu-Goto action, or the Polyakov
action, must be real and therefore one must choose any of
the coordinatesz1, z2, z3 andz4 in (20) either as pure real or
pure imaginary.

Similarly, the generalization to a complex structure can
be made by introducing the complex variableszi1...in and
writing

Det(hab) =
1
2!

εabεcdεi1j1 . . . εin−1jn−1ηinjnεk1l1...

× εkn−1ln−1nknln · ∂azi1...in∂cz
j1...jn

× ∂bz
k1...kn∂dz

l1...ln (21)

or

Det(hab) =
1
2!

εabεcdεi1j1 ...εinjnεk1l1...εknln

· ∂azi1...in∂cz
j1...jn∂bz

k1...kn∂dz
l1...ln , (22)

depending whether the signature is(22n + 22n) or (22n+1 +
22n+1), respectively.

One can further generalize our procedure by considering
a target curved space-time. For this purpose let us introduce
the curved space-time metric

gµν = eA
µ eB

ν ηAB . (23)

Here, eA
µ denotes a vielbein field andηAB is a flat metric.

The Polyakov action in a curved target space-time becomes

S =
∫

dξ2
√
−ε det ggab∂axµ∂bx

νgµν . (24)

Using (23), one sees that this action can be written as

S =
∫

dξ2
√
−εdet ggab(∂axµeA

µ )(∂bx
νeB

ν )ηAB . (25)
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So, by defining the quantity

EA
a ≡ ∂axµeA

µ , (26)

the action in (25) reads as

S =
∫

dξ2
√
−εdet ggabEA

a EB
b ηAB . (27)

Hence, in a target space-time of(2 + 2)-dimensions one can
write (27) in the form

S =
∫

dξ2
√
−ε det ggabEij

a Ekl
b εikεjl, (28)

where
Eij

a ≡ ∂axµeij
µ . (29)

Here, we considered the fact that one can always write

eij
µ = e1

µδij + e2
µεij + e3

µηij + e4
µλij . (30)

Observe that in this development one can consider a general-
ization of (4) namely

hab = EA
a EB

b ηAB (31)

and therefore in(2 + 2)-dimensions this expression becomes

hab = Eij
a Ekl

b εikεjl, (32)

while in (4 + 4)-dimensions and(8 + 8)-dimensions one ob-
tains

hab = Eijm
a Eklr

b εikεjlηmr (33)

and
hab = Eijmn

a Eklrs
b εikεjlεmrεns, (34)

respectively.
At this stage, it is evident that if one wants to general-

ize the procedure to any signature in a curved space-time one
simply substitute in the action (27) either

hab = E i1...in
a Ej1...jn

b εik...εin−1jn−1ηinjn (35)

or
hab = E i1...in

a Ej1...jn

b εik...εin−1jn−1εinjn , (36)

depending whether the signature is(22n + 22n) or (22n+1 +
22n+1), respectively. Here, we used the prescription
Ei1...in

a → E i1...in
a , with E i1...in

a a complex function.
In order to includep-branes in our formalism, one notes

that the expression (35) and (36) can still be used. In such a
case, one allows the indicea in (35) and (36) to run from0 to
p. Braking such kind of indices asa = (â1, â2) for a3-brane,
asa = (â1, â2, â3), for a5-brane and so on one observes that
(35) and (36) can be written as

hâ1...â2b̂1...b̂2
= E i1...ip

â1...â2
Ej1...jp

b̂1...b̂2
εik . . . εip−1jp−1ηipjp (37)

or

hâ1...â2b̂1...b̂2
= E i1...ip

â1...â2
Ej1...jp

b̂1...b̂2
εik...εip−1jp−1εipjp , (38)

respectively. The analogue of Cayley hyperdeterminant in
this case will be

D̂et(hâ1...â2b̂1...b̂2
)

= εâ1b̂1 . . . εâpb̂pE i1...ip

â1...â2
Ej1...jp

b̂1...b̂2
εik . . . εip−1jp−1εipjp

(39)

and therefore the corresponding Nambu-Goto action be-
comes

S =
∫

dξp+1
√

εD̂et(hâ1...â2b̂1...b̂2
). (40)

3. Conclusions and comments

We have generalized the Duff’s procedure concerning the
combination of the Nambu-Goto action and the Cayley hy-
perdeterminant in target space-time of(2 + 2)-dimensions.
Such a generalization first corresponds to a curved worlds
with (22n + 22n)-signature or(22n+1 + 22n+1)-signature.
Using complex structure we may be able to extend the proce-
dure to any signature. Further, we generalize the method to
p-branes.

It turns out that these generalization may be useful in
a number of physical scenario beyond string theory andp-
branes. In fact, since the quantityzj1...jn can be identified
with a n-complex rebit one may be interested in the route
leading to oriented matroid theory [14] (see also Ref. 15
and 16). In this direction, using the phirotope concept (see
Ref. 17 and references therein), which is a complex gen-
eralization of the concept of chirotope in oriented matroid
theory, a link between superp-branes and qubits (in this con-
text) has already been established [17]. Thus, it may be in-
teresting for further developments to explore the connection
between the results of the present work and supersymmetry
via the Grassmann-Plücker relations (see Refs. 8 and 9 and
references therein). It is worth mentioning that such rela-
tions are natural mathematical notions in information theory
linked to n-qubit entanglement. Indeed, in such a case, the
Hilbert space can be broken in the formC2n = CL⊗Cl with
L = 2n−1 andl = 2. This allows a geometric interpretation
in terms of the complex Grassmannian varietyGr(L, l) of
2-planes inC2n via the Pl̈ucker embedding. In this context,
the Pl̈ucker coordinates of GrassmanniansGr(L, l) are natu-
ral invariants of the theory (see Ref. 9 for details). However,
it has been mentioned in Ref. 18, and proved in Refs. 19
and 20, that for normalized qubits the complex1-qubit, 2-
qubit and the3-qubit are deeply related to division algebras

via the Hopf maps,S3 S1

−→ S2, S7 S3

−→ S4 andS15 S7

−→ S8,
respectively. In order to clarify the possible application of
these observations in the context of our formalism let us con-
sider the general complex state| ψ〉 ∈ C2n,

| ψ〉 =
1∑

i1i2...in=0

Ci1i2...in |i1i2...in〉, (41)
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where |i1i2...in〉 = |i1〉 ⊗ |i2〉 ⊗ ... ⊗ |in〉 correspond to
a standard basis of then-qubit, andCi1...in is a complex
quantity which real and imaginary parts can be identified in
terms of two rebits (ai1...in andbi1...in ) in the formCi1...in =
ai1...in + ibi1...in . It is interesting to make the following ob-
servations. First, one finds that a3-rebit and4-rebit have
8 and16 real degrees of freedom, respectively. Thus, one
learns that the4-rebit can be associated with the16 degrees
of freedom of a3-qubit. It turns out that this is the kind of
embedding discussed in Ref. 9. Second, one may expect
that the quantum development of the Nambu-Goto action in
n-dimensions leads to consider the16-dimensions of target
space-time as the maximum dimension required by division

algebras via the Hopf mapS15 S7

−→ S8. Finally, the ques-
tion arises whether in our generalized formalism one may
also find hidden symmetries of the Nambu-Goto action in the
sense of Ref. 1. In (2+2)-dimensions the hyperdeterminant
turns out to be invariant under

[SL(2, R)× SL(2, R)× SL(2, R)]× S3. (42)

Here, the firstSL(2, R) is a global subgroup of the world-
sheet diffeomorphism. The second two factors are space-
time Lorentz in(2 + 2)-dimensions, namelySpin(2, 2) ∼=
SL(2, R)×SL(2, R). By complexifying thexµ one may take

different real forms,Spin(2, 2) ∼= SL(2, R) × SL(2, R),
Spin(1, 3) ∼= SL(2, C), Spin(4) ∼= SU(2) × SU(2) to ob-
tain various signatures. However, only in(2+2)-dimensions
one has the three factorsSL(2, R) in the same footing and
hence additionalS3. In the case of(4 + 4)-dimensions
one may consider the chain of maximal embeddings and
branches,

so(4, 4) ⊃ s(2, R)⊕ so(2, 3)

⊃ so(1, 1)⊕ sl(2, R)⊕ sl(2, 2). (43)

However, these subgroups are not full symmetry groups and
therefore it is difficult to reveal hidden discrete symmetries of
the Nambu-Goto action in this case. In other cases the analy-
sis seems even more difficult, but this motivate us to explore
in more detail these developments.
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