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Nambu-Goto action and classical rebits in any signature and in higher dimensions
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We perform an extension of the relation between the Nambu-Goto action and classical rebits. Of course, the Cayley hyperdeterminant is the
key mathematical tool in such generalization. Using the Wick rotation, we find that in four dimensions such a relation can be established
no only with the signature (2+2) but also with any signature. We generalize our result to a curved space-tife3F jalimensions and

(22" *+1+22" 1) dimensions.

Keywords: Nambu-Goto action; rebit theory; general relativity
PACS: 04.60.-m; 04.65.+e; 11.15.-q; 11.30.Ly

1. Introduction rametere takes the values-1 or —1, depending whether the
_ _ signature ofy,,,, is Euclidean or Lorenziana, respectively.
Some years ago, Duff [1] discovers hidden new symme- |t yyms out that by introducing the world-sheet metyié

tries in the Nambu-Goto action [2-3]. It turns out that the one can prove that (1) is equivalent to the action [11] (see also
key mathematical tool in such a discovery is the Cayleyref 12 and references therein)

hyperdeterminant [4]. In this pioneer work, however, the
target space-time turns out to have an associ@ed 2)-
signature, corresponding to two time and two space dimen-
sions. It was proved in Ref. 5 and 6 that the Duff's for-
malism can also be genera“zed (EO-‘,- 4)_dimensions and which iS, of course, the Polyakov action (See Ref. 12 and
(8 + 8)-dimensions. Here, we shall prove that if one intro- references therein). In fact, from the expression

duces a Wick rotations for various coordinates then one can 1

actually extend the Duff's procedure to any signature-n Do Opx¥ myyy — igabgcdacwﬂadxunw =0, 3)
dimensions. Moreover, we also prove that our method can

be ext;ennerled tggg[\/e?' space-timg" +2%")-dimensions  gpained by varying the action (2) with respectgd, it is
and(2 +2°"%)-dimensions. straightforward to show that from (2) one obtains (1) sise

There are a number of physical reasons t_o be inter_este\glersa Hence, the actions (1) and (2) are equivalents.
on these developments, but perhaps the mostimportant is that It is convenient to define the induced world-sheet metric
eventually our work may be useful on a possible generaliza-

tion of the remarkable correspondence between black-holes
and guantum information theory (see Refs. 7 to 10] and ref-
erences therein).

S = / de?\/—edet gg** D2t Oy 1y (2

hat = 02" Op" Nps - (4)

Using this definition, the Nambu-Goto action (1) becomes

2. Mathematical development S = /dg%/e det(hap). (5)
Let us start recalling the Duff’s approach on the relation be- . . . . )
tween the Nambu-Goto action and {f2e-2)-signature. Con- It is not difficult to see that in(2 + 2)-dimensions the
sider the Nambu-Goto action [2,3], expression (4) can be written as
— i kl
= / 4% fedet(0,am Dy, ). (1) fab = OaT™ 00" €k 1, ©)

. . _ wherez? denotes a th x 2- matrix
Here, the space-time coordinates are real function of two

parametersgr, o) = £* andn,, is a flat metric, determin- i ( ot a3 2?4t )
r = .

@)

ing the signature of the target space-time. Moreover, the pa- —x2 4zt ol =28



NAMBU-GOTO ACTION AND CLASSICAL REBITS IN ANY SIGNATURE AND IN HIGHER DIMENSIONS 215

It is important to observe that (7) corresponds to the sein any of the coordinates®, z2, > or z* one can modify
M (2, R) of any 2 x 2-matrix. In fact, by introducing the the signature. For instance, one can achieve(the 3)-

fundamental base matrices signature if one uses the prescriptioh — iz in (6). This
method lead us inevitable to generalize our method to a com-
(10 i 0 1 : : .
0% = 01 ) e = 10 ) plex structure. One simple introduce the complex matrix
8) 29 = 2161 4 226 4 B3 4 AN (18)
77”5(1 o) /\UE(O 1)
0 -1 1.0 where the variables!, 22, 23 andz* are complex numbers.

one observes that (7) can be rewritten as the linear combind "€ expression (6) is generalized accordingly as [13]
tion

2 = 2109 4 226 4 Py 4 N (9) hab = 0az 2" eike . (19)
Let us now introduce the expression Thus, in this case, the Cayley hyperdeterminant becomes
1 ab_cd 1
h = 58 3 hachbd- (10) 'Det(hab) — 5(\,_:abé.cd
If one uses (4) one gets X EikEj1EmrEns0az Oy 0, 2™ 02" (20)
h = det(hap)- (11)

and consequently the Nambu-Goto action must be written us-
ing (20). Of course, the Nambu-Goto action, or the Polyakov

However, if one considers (6) one obtains ,
action, must be real and therefore one must choose any of

h = Det(hay), (12) the coordinates’, 2*, »* andz* in (20) either as pure real or
pure imaginary.
whereDet(h,;) denotes the Cayley hyperdeterminankgf, Similarly, the generalization to a complex structure can
namely be made by introducing the complex variablgs ‘= and
writing

1
Det(hapy) = e
ab_cd

2! 1
Det(hap) = =, ; €i _1i T i €

i 171+ Cin—1Jn—1"linjnkil1...
X €ik€j1EmrEnsOat™ oz Dpr ™ Ogx™.  (13) 2!

. D2 I Gzt In
Of course. (1) and (12) oy that X Ekp_1lp—1Mhnly ~ Oa? z

X Oy 21obn gzttt (21)
det(hqap) = Det(hap). (14)
. . . or
In turn, (14) means that it2 4+ 2)-dimensions the Nambu-
Goto action (5) can also be written as 1 e
®) Det(hab) = 55 be d€i1j1.‘.62'"]'”,6]@111,”6]@”1"
S = /d£2 /Det(hap)- (15) D2 Gt dn Gy Rk g Sl (22)
Note that, since in this case one is considering(the- 2)-  depending whether the signaturg28™ + 227) or (22"+! +
signature one must set= +1 in (5). 22n+1) "respectively.
~In (4 + 4)-dimensions the key formula (6) can be gener-  One can further generalize our procedure by considering
alized as . a target curved space-time. For this purpose let us introduce
hap = 0" Op™ i€ jiNms- (16)  the curved space-time metric

While in (8 + 8)-dimensions one has
5+ ) Juv = €€, 1AB- (23)
hap = aaI”mnabxklsrfikEjlfmsenr~ (17) . L . .
Here,e;j‘ denotes a vielbein field angly 5 is a flat metric.
(see Refs. 5 and 6 for details). So by considering the realhe Polyakov action in a curved target space-time becomes
variablesz’ ‘= and properly considering the matrices
andr);; the previous formalism can be generalized to higher S = /d§2 —edet g™ 0,2t D" gy (24)
dimensions. Of course, in such cases the Cayley hyperdeter-
mmantDetghab) must be modified accordingly. .. Using (23), one sees that this action can be written as
Observing (7) one wonders whether one can consider
in (6) other signatures id-dimensions besides the + 2)- ) b N B
signature. Itis not difficult to see that using the Wick rotation = /df V—edet gg* (Oaa’e,, ) (Opx" e, )an.  (25)
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So, by defining the quantity

Ef = aax“eﬁ, (26)

the action in (25) reads as

S = /d§2 —edet g9 EAEBnAp. (27)

Hence, in a target space-time @+ 2)-dimensions one can
write (27) in the form

S = /d§2 —edetgg“bEéjEflsiksjl, (28)

where
ij

EY = Ogxt'e)] (29)
Here, we considered the fact that one can always write

QEij

ij
€n = iz

p eié” +e + ein“ + eﬁ)\ij. (30)

Observe that in this development one can consider a gener:%

ization of (4) namely

(31

and therefore if2 + 2)-dimensions this expression becomes

hay = E2EPnap
hay = EYEfleinen, (32)

while in (4 + 4)-dimensions and8 + 8)-dimensions one ob-
tains

ijm kl
hay = B Ep' " €ik€51Mmr (33)
and
i j kl
hab = E;jmnEb ngikejlgmrgnM (34)

respectively.

At this stage, it is evident that if one wants to general
ize the procedure to any signature in a curved space-time o
simply substitute in the action (27) either

(35)

_ Qiein oJ1-T
hab - gal gb 7L€ik-~-€i"71jn’71nin‘jn

or
(36)

depending whether the signaturg28™ + 2%7) or (227 +! +
22n+1) " respectively. Here, we used the prescription
Eirin — ghin with £4-+i» 3 complex function.

In order to includep-branes in our formalism, one notes
that the expression (35) and (36) can still be used. In such
case, one allows the indieein (35) and (36) to run fron to
p. Braking such kind of indices as= (a1, a2) for a3-brane,

Qi1 ©J1-dn
hab = Ea 5b Eik€ip_14n-1%inins
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respectively. The analogue of Cayley hyperdeterminant in
this case will be

ﬁet(hal...azin...éz)

a1bqy
: a1...a27hy by

=¢ k- €y 1jp_1Sipip (39)
and therefore the corresponding Nambu-Goto action be-
comes

S = /dfm’l\/G@Et(hal...azélng)- (40)

3. Conclusions and comments

We have generalized the Duff's procedure concerning the
combination of the Nambu-Goto action and the Cayley hy-
perdeterminant in target space-time(@f+ 2)-dimensions.
uch a generalization first corresponds to a curved worlds
ith (227 + 227)-signature or(22"*! + 227+1)-signature.
Using complex structure we may be able to extend the proce-
dure to any signature. Further, we generalize the method to
p-branes.

It turns out that these generalization may be useful in
a number of physical scenario beyond string theory and
branes. In fact, since the quantity* -~ can be identified
with a n-complex rebit one may be interested in the route
leading to oriented matroid theory [14] (see also Ref. 15
and 16). In this direction, using the phirotope concept (see
Ref. 17 and references therein), which is a complex gen-
eralization of the concept of chirotope in oriented matroid
theory, a link between supgrbranes and qubits (in this con-
text) has already been established [17]. Thus, it may be in-
teresting for further developments to explore the connection

rpeetween the results of the present work and supersymmetry

via the Grassmann-Btker relations (see Refs. 8 and 9 and
references therein). It is worth mentioning that such rela-
tions are natural mathematical notions in information theory
linked to n-qubit entanglement. Indeed, in such a case, the
Hilbert space can be broken in the fof™ = CL @ C! with

L =2n—1andl = 2. This allows a geometric interpretation
in terms of the complex Grassmannian variéty(L,!) of
2-planes inC?" via the Plicker embedding. In this context,
the PLicker coordinates of Grassmannians L, [) are natu-

ral invariants of the theory (see Ref. 9 for details). However,
i(IJ‘ has been mentioned in Ref. 18, and proved in Refs. 19
and 20, that for normalized qubits the compikexjubit, 2-
qubit and the3-qubit are deeply related to division algebras

. st S3 S7
asa = (a1, as, a3), for a5-brane and so on one observes thatvia the Hopf mapss® = §2, ST =— §* andS*® —— %,

(35) and (36) can be written as

ity et o o
dr.azbr. by = Cay.ndn by by ik Eipp1 i @37
or
. O 21'Lp ]1]1) ) 3 . -
a1 azb1. by = Can.oin by by Stk Cip1dp—1Cipips (38)

respectively. In order to clarify the possible application of
these observations in the context of our formalism let us con-
sider the general complex state) € €%,

| )

(41)

i109...0n),

1
_ E Ciﬂzmin

i102...1,=0
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where |ijis...in) = |i1) ® |iz) ® ... ® |i,,) correspond to different real forms,Spin(2,2) = SL(2,R) x SL(2, R),

a standard basis of the-qubit, andC*® -~ is a complex  Spin(1,3) = SL(2,C), Spin(4) = SU(2) x SU(2) to ob-
quantity which real and imaginary parts can be identified intain various signatures. However, only(i+ 2)-dimensions
terms of two rebitsq’*i» andb’i-i=) inthe formC%-i» =  one has the three factof&.(2, R) in the same footing and
a’t+in 4 jph-in It is interesting to make the following ob- hence additionalS;. In the case of(4 + 4)-dimensions
servations. First, one finds that3arebit and4-rebit have one may consider the chain of maximal embeddings and
8 and 16 real degrees of freedom, respectively. Thus, onéranches,

learns that the-rebit can be associated with thé degrees

of freedom of a3-qubit. It turns out that this is the kind of
embedding discussed in Ref. 9. Second, one may expect
that the quantum development of the Nambu-Goto action in
n-dimensions leads to consider thé&dimensions of target

so(4,4) D s(2,R) ® so(2, 3)
Dso(l,1)®sl(2,R) ®sl(2,2). (43)

space-time as the maximum dimension required by divisio Llowever, these subgroups are not full symmetry groups and
P . 5 ST s q y herefore itis difficult to reveal hidden discrete symmetries of
algebras via the Hopf mag™> — S®. Finally, the ques-  the Nambu-Goto action in this case. In other cases the analy-

tion arises whether in our generalized formalism one may;js seems even more difficult, but this motivate us to explore
also find hidden symmetries of the Nambu-Goto action in thgn more detail these developments.

sense of Ref. 1. In (2+2)-dimensions the hyperdeterminant
turns out to be invariant under

[SL(2, R) x SL(2, R) x SL(2, R)] x Ss. Acknowledgments
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