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Computational mesoscale models have become an important tool for air pollution studies and operational weather analyses. In this work,
we analyze some of these mesoscale models. The results show that some of these models have inconsistencies that limit their use in curre
applications in Mexico. Some modifications are suggested to improve these models.
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Los modelos computacionales de mesoescala se han convertido en una herramienta importante para estudios de la calidad del aire y pe
el aralisis meteordlgico operacional. En este trabajo se analizan algunos modelos usad@sxien.M_os resultados muestran que tales
modelos tienen inconsistencias que limitan su uso en algunas aplicaciones. Se sugieren algunas modificaciones para mejorar los modelos.
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1. Introduction Reference 18 is not the first one that considers the va-
lidity region of Eq. (1). In 1949 MacVitte [19] pointed out
Mesoscale atmospheric flows are described as having a tefghat Eq. (1) is valid on a small regicR(L) of the tangent
poral and horizontal spatial scale smaller than the raWi”'pIanexy, but the region was not estimated. Unfortunately,
sonde network but significantly larger than individual cu- pmacvitte’s work has not been considered in several texts on
mulus clouds. This implies that the horizontal scale is onnesoscale meteorology [1,2,4-7] and the documentation of
the order of a few kilometers to several hundred kilome-ggme computational mesoscale models [8-16]. For instance,
ters [1, p. 1]. It is generally accepted that if the horizontalzeytounian comments in Ref. 2, p. 10, that it is generally ac-
scaleL is on the order of 1dkm or smaller [2, p. 10], atmo-  cepted that if the horizontal scaleis on the order of 10
spheric flows can be located in a system of cartesian coordigy, or smaller, atmospheric flows can be studied with the
nateszyz with the planexy tangent to the earth at a point; ~qordinate systemyz and the approximatiog ~ —gk.
the z axis and its unit vectok are oriented in the opposite pjg|ke [17] analyzed seven computational mesoscale models,
direction from the gravityg. In this reference syste®is  some of which use the coordinate systepy andg ~ —gk
approximated by-gk with g = 9.8 ms? and the resulting  and the models are considered to be valid on a dom4in)
momentum equation used in the mesoscale literature [1-16Jf several hundred kilometers [17, p. 459]. These incon-

is . 1 _ sistencies motives for the analysis of some computational
i —;Vp — gk—2Q x v +f. (1)  mesoscale models.
The simplicity of Eq. (1) has been particularly useful for the- In Sec. 2, we give a short deduction of the correct mo-

oretical analysis [2,3] and several computational mesoscal@€ntum equation in the coordinate systegr and a sum-
models solve it to analyze and simulate problems with comMary of the results of Ref. 18 which show that the ex-
plex topography on a small domaid(L) = 2L x 2L of act g yields a momentum equatlo!"n valid on any domain
the zy plane [1,4-16]. However, some problems have mo-P(L) whereas the Eq. (1) is valid on a domai(L)
tivated the use of computational mesoscale models on ddeunded by 208200 kn?. In Secs. 2.2-4 we analyze the
mains D(L) larger than 10081000 kn?. In fact, some Mesoscale models RAMS [1,8-10], HOTMAC [11-15] and
authors [17] consider that, in order to realistically simulateARPS [16], which have been used for air-quality studies
mesoscale flows, it is necessary to represent the local terrafi'd meteorological research (seey, [1,12-14,17,20-22]).
influences and simultaneously simulate large-scale synoptit€S€ models solve momentum equations obtained from
influences. According to Pielke [17], this motivates the useEd- (1) but some appélcatlons use a domain significantly
of a domain of at least 5000 km on one side, which in turn reJarger thar200 < 200km®.

duces the boundary errors (which are unavoidable in limited- Map projections have been used in atmospheric modeling
area numerical prediction models). Although important the-with the aim of including the earth’s sphericity into model
oretical results have been obtained from Eq. (1), there hasquations [4,7,23,24]. Map projections generate a curvilin-
been a computational abuse of it since the results of a reear coordinate system,y,z, which is formally defined in
cent work [18] show that Eq. (1) is valid on a domdML) Sec. 3, and a deduction of the momentum equations in co-
bounded by 200200 kn. ordinatesr,y,z, is given in Sec. 3.1. In Sec. 3.2 we give a
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summary of the problems generated by the use of map projesvhere the original gradie¥ = X(9/8X") is replaced by

tions to define the topography in models such as ARPS [16y = ?i(a/aw'). The standard literature [1-7] denotAs-

and HOTMAC [15]. In Secs. 3.3-3.5 we analyze some incon-by dVy /dt, although the latter means

sistencies in the models RAMS [10] and MM5 [25-28] with i g

the use of map projections. The model MM5 is of special dVy/dt = V'Y' + VidY'/dt

interest since it was adopted by the Mexican meteorologiwith d¥?/dt = & x Y [Eq. (2)].

cal service to carry out the operational analysis [29,30] and The main coordinate system used in mesoscale meteorol-

it has been used in several meteorological studies in Mexegy [1-7] is a cartesian system with its origin at a point on

ico [31-35]. Section 4 is devoted to some concluding remarksthe earth with latitude. and longitude).. Let us suppose
that the plane:'2? is tangent to the earth éd., ¢..) and the

2. Momentum equations axisx® is opposite tqz at (\., ¢.). The general relation be-
' tween the coordinatég® andz* of an air particle is
Let X denote an inertial cartesian system with its origin at o' =RGY7 — ads (5)

the center of the earth, and the earth’s rotation axis coincides .
with the X3 axis. The momentum equation of an air particle With constantR{;. The orthogonality of the systent im-

is plies that the vectors’ — OR/0z* are orthonormalR® is
av 1 orthogonal andk? = Rijﬂ From this and (2.2,4) we get
o —;VP +g+F the transformation oVy andAy-, namely,

wherep, p, V are the pressure, density and velocity vector of Vy =%'u'=u Ay =%'i'=a

the particleg is the gravity acceleration arfidis a frictional  wjth ¢ = . The gravity acceleration i = %‘¢" with
force. Hereafter we assume that the earth is a sphere with

i 2 —3/ i ]

radiusa; theng is given by 9" =—ga’r"(z" + di3a). (6)
a2 Thus the momentum equation (4) is
= — —R -

BT a=—p 'Vp+ &g —20xu+F @)

whereg = GMa™?, M is the earth masgj is the gravita- it v —
tional constant, an® is the vector from the earth’s center to ;
the air particle; = ||R|| [36]. If X* denote the unit vectors du' _ 109p — gar3(a' +0:30) — 26,5, uF + F', (8)

%'(0/0z"). In scalar form we have

and X ZA are the coordinates of a particle at timewe have dt p Oz
R = X'X"andV = X'V with V* = X' (= dX'/dt).  wheree;;;, = %* - (%7 x %*). These equations will be re-
Repeated indices in one term indicate summation. ferred to as theexact momentum equatiossice they have

Let Y* denote a cartesian coordinate system fixed to thehe exact components (6) gfwhile the standard mesoscale
earth withY® = X3, andY", Y2 are the axesX', X? ro- |iterature [1-16] uses the approximatign~ —g%> and the
tated, respectively. i are the corresponding unit vectors, resulting momentum equations
then a1 p . i

Y= Py ()% @ G T T pag 90wyt HEL )
where P11 =Pys=cos A, P1o=—Py=sinA, P3;=Pi3=d13  2.1. Validity region of momentum equations
(the Kronecker delta) witih = Qt + Ay, Q is the angular
velocity of the earth and is a constant. 1Y% are the coordi- HereafterD(L) = 2L x 2L denotes a rectangular region of
nates of an air particle at timewe haveR = X’X? = YiYi  the tangent plane'z? with center at the origin’ = 0 and
and using (2) we geY? = P;;(t)X7. This relationship to- ||, |[#?| < L. This section gives a summary of Ref. 18,
gether with Eq. (2) yields where the validity region of Egs. (8) and (9) is estimated. A
= first approach is given by the magnitude of the terms in (9).
V=Vy+OxR Table | yields the magnitude of the terms in thleequation

A% = = ~ from (9) as reported by Atkinson [5], where we have added
ar Ay +20xVy + 0 x (Q x R) a column with the ternga?r 32! [omitted in (9)] for a flow
whereVy andAy- are velocity and acceleration with respect W'th horizontal scalel. (km). We observe that the term of
to the earth, ga’r—3z' is one order of magnitude larger than the largest
i i term of theu!-equation from (9) for, = 102, 10> km. For
Vy =Y'Vy Ay =Y'Vy () flows with L = 10 km, the magnitude ofa?r~3z! is equal

with V{f = vYiand(l = QY3. The centripetal accelera- !0 thatof the Coriolis terms and)* times larger than the dis-
sipative terms. These results suggest that the horizontal com-
ponents ofg cannot be omitted in Eq. (9) for a regi@(L)
larger than 20@ 200 kn? and should be considered fB( L)

Ay = —p 'Vp—ga®rPR-20xVy +F, (4 betweerD(L) 10x10 and 206200 k.

tion(x (O x R)is usually neglected. Thus the momentum
equation is
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TABLE |. Magnitudes in ms? of terms in theu*-equation for flows with horizontal scale(m), U = 10 ms™*, H =10* m, f = 2Qsin ¢,

¢ =145°,g=10ms 2 [5],andz' = L/2, 2> = 2 = 0,7 = 1/ (2)* + a2, a = 6378 km.

2 1

&= o +fv -fw +o0s K- 5 +aor Kn gt -2
L u? AP fU fHU KU KU
L pL L H- L
10° 1074 1073 1073 10°° 10°¢ 10710 1°
10° 1073 1072 1073 1074 10°¢ 1078 107!
10 1072 107! 1073 1073 1076 10°¢ 1072

Let us consider the calculation of the pressure field of arysin(s/a) < 1073 ms~2, and hence,,.x=10"*a=637.8 m
isothermic atmosphere with zero velocity with respect to theand L,,,ox~a sin(Smax/a)=637.8 m.

earth. Using the equation of state= RTp , wherel andR In the next sections we analyze some computational
are temperature and the gas constant, and the pressure at thesoscale models that use the approximate Egs. (9).
earth’s surfacep (ﬂ = 0) = po, the exact Egs. (8) yield These models have been used on dom@ifs) larger than
‘ 100 x 100 km? for the analysis of data provided by meteo-
p(z') = ppetr=e/m) rological networks but no correction of Egs. (9) have been

5 9 reported. This suggests that:
whereb = g/RT andr = [(z!)” + (22)” + (2 + a)?]V/2.

This is the expected pressure field on tire terrestrial () the number of data is not sufficient to appreciate the

sphere, with spherical surfaces having a constant pressure.  error in Eq. (9) generated by the omission of the hori-

In contrast, the approximate Egs. (9) yield zontal components of the exact gravity acceleragipn
and

p° (xz) = po eXp (—bxg) .
(i) the results given by computational models that use

According to this equation, the tangent planéz® is a equations such as (9) should be reanalyzed by solving
constant-pressure surface wijth= py. A simple way of esti- the exact momentum equations.

mating the validity region of Eqgs. (9) is given by the relative

error ofp” (2*) with respect to the exact pressw@’) =po 55 The RAMS model

on the terrestrial spher&p® = |p°/p — 1| x100. Figure 6 of -

Ref. 18 shows the graph ¢f= V2L v.s. Ap°, where¢/2is  Since the primary reference of RAMS [9] is Pilke’s book [1],
the length of the diagonal of a given domaML) = 2Lx2L  we begin with the analysis of momentum equations reported
(see Ref. 18, Fig. 2) and® = —a + \/a? —€2. From iy Ref. 1. A cartesian coordinate system: with the =

this figure we obtaimAp” = 1, 5, 10 % forL ~ 20, 50  axis normal to the earth at a point with latitugeis used.
and 70 km, respectively. The corresponding domains aren this caser = !, y = 22, z = 2%, i=%', j=%2%
D(L) =~ 40x40, 100<100 and 146 140 knt. Ifwe consider  k — %>, the direction ofi, j is not defined explicitly in [1].
that the largest accepted erroryéf(z’) is 5% , the validity ~ The gravity and centripetal accelerations are approximated
domain of Egs. (9) is bounded by 19000 kn?, by g, —gk = G — 0 x (Q % R) ,with g = 9.8 ms~2. Thus,

D(L) 100 x 100 km? the equation of motion is

. . - . . 0] 1 =
Another criterion to estimate the validity domain of (9) is U Vu — ;Vp —gk —20 xu

given by the observed horizontal pressure fluctuation on ot

the terrestrial sphere. It is known that this fluctuation[1 Eq. (2-33)] or in scalar form
is dp/p~103 m?s~2 for a horizontal scaleL, = 10% km

on the sphere (sees.g, [37, Table 2.1]). This yields ou' jaui 1 dp
the estimatep='dp/dzs~10~2 ms~2 used in the standard o~ Yo p Oz
scale analysis of the momentum equations in curvilinear ) ]
spherical coordinates ,=a cos d.(A—.), ys=a(d — d.), [1, Eq. (2-45)]. As_ we saw above, these equations are in-
ze=r—a [2,37]. Let us calculatep=10p°/s where s dependgnt of the direction of the y axes and are va_lld on

is the length of a circular arc that starts at the origin@ domainD(L) bounded byl00 x 100 km?, but there is no

2t = 0. We haveé=asin(s/a), z°=—a[l — cos(s/a)] ~ COmment about this validity domain in [1].

and 9p°/ds=bp’sin(s/a). The density obtained from The Egs. (10) are written explicitly in chapter 3 of [1]
the equationp=p®/RT, yields p~10p°/ds = gsin(s/a). ~ With the Coriolis force

If we impose the condition thap='dp°/ds cannot be . o o

larger than the observed pressure fluctuation, we get 2{ < u=2Q[i(vsing —wcos¢) — jusing + ku cos ¢]

— 9523 — 2€iijjuk (10)
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[1, p. 31,34]. The direction of the, y axes is not defined but The factorg appears in the pressure gradient (15) as fol-

this form corresponds te 20 x V with lows. Using the components 6f7 [1, Eq. (6-29)] we have
S . . . . o ~3
Q=Q(cosp+ksing) and u=iu+jv+kw s 831'.: 8zr.+895 63? for i = 1,2 17)
0¥ 0xt 01t 03

and therefore the (y) axis is tangent to the parallel circle . .
(meridian) at a point with latitude and is positive eastward Where the chain rule yields
(northward). The pressure gradient is written in terms of the

3
potential temperaturé [1, Eq. (2-21)] and the Exner func- % = %% (18)
tion [1, Sec. 4.4], z 3 Oz
Following Pielke, the hydrostatic approximation
0 =T(po/p)" 7= Cylp/poo)™/, p~10p/0x3=—g and Eq. (11) are used to get

which yield 1op ) P a O /0x=—g/0

p Ozt Oz’ and Eq. (18) becomésr /073 =—g0~ 1023 /073. For the ter-
In order to simplify the treatment of the lower boundary con-rain following-coordinate
ditions, mesoscale models replace the vertical coordinate
by a terrain-following coordinate [1,4-7]. Since the coor- P N k. c1C2Y ) (19)

dinate systenxyo is nonorthogonal, one can use the tensor s —za(r,y)’
formalism to get the dynamic equations in such coordinates. Where s is a constant ande(z,y) is the terrain eleva-
The procedure is given in [1] but we shall give some detanst ion on (z,y), we haveaw/gx y_ —s1 (s — 2¢7) gb1
to show how factory appears in the horizontal momentum 1E 6;'}5!) ! 4017 ] - ¢y
equations via the pressure gradient. [1, Ba. ( Jland (17) is
Consider the transformation equations ~ij Om  Om go—s0z

0% oF 0 s 0x
Thus the exact horizontal momentum Egs. (16) are

(i=1,2).

=3 =3 22=22GN3%) (12

or equivalentlyz® = #3(x!, 2%, 23). The position vectoR

in terms ofz’ andz? yields the covariant vectors and con- out i g on o—50zg
travariant vectors’, ot d T Vg TITS o
_OR _ 027 : . OF +g' = 28000 (i=1,2)
t=Vit =%/ - 13
~ 97 81‘1 " rex oxd (13)

whereg’ are the horizontal components @{14). If the ap-

The contravariant form of exact equations (8) is obtainedyroximationg ~ —gk is usedg* andg? are replaced by 0 to
from the expression of Eq. (7) in terms of thés. From (13)  gptain

we getk! = 7,03 /027 and inserting intgg = ¢’%’ yields B )
g = §'m; with g = ¢707°/0x7. In particular, for (12) the ou' i g om 428 Ozg
horizontal components @ remain unchanged, ot J ozt s Ort

—2890a, (i=1,2). (20)

=3
3 _ 0z

_ Ow? These are basically the equations (6-56,57) reported in [1]
For the pressure gradient we have where the factow appears without the use of the exagt
) » - » Additional references [8,10] of RAMS use the approxima-
— nJ J — (7Y J
Vp =1'0p/0%’ = 7.GY Op/0F tiong ~ —gk to get horizontal momentum equations similar
where G/ is the inverse matrix of the metric tensor © Ed- (20) where the factay appears invp via the chain

Gy = (336;@/35%1-) (axk/afj). In terms of the Exner func- rule and the hydrostatic approximation as above.
tio% we have In agreement with the use of the approximatgpr —gk

in Refs. 1 and 8, the documentation [10, p. 6] of RAMS re-

g =g = —ga*r 32" (i=1,2) ¢, (14)

’VP =76 3 ' (15) ports the momentum equations
Thus, the exact momentum equations (8) with= 0 are d
a ® U g™ L eV K
o i — G 0T g gzl (16) i
=1 —§' = 289°Q 0,
ot oI % = —988—” fu+V-K,Vu
whered’ = u/9' /07 are the contravariant components of
u, 4, is the covariant derivative of’, and();, %; are the dw o' g0,
g - J — =0 . (21)
covariant components 61, u. dt 9z b
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where only the vertical momentum equation has the fagtor with H = H + z,(z,y) [12, Egs. (1,7)], wheréT is the

f = 2Qsin ¢, and we use the notation initial value of H andz,(z, y) is the ground elevation. The
d b o b b horizontal momentum equations in coordinates»z* con-
i TR Yoy Twas tain the factorg, which appears via the pressure gradient as
above. In fact, the horizontal pressure gradient in terms of
V- K,,Vu= 9 (Kmau) + Ll (Km8u> the Exner functionll = C, (P/F,)°, the virtual potential
Ox oz 0y dy temperatur®,, = (Py/P)° T, = C,TI"'T, andz* [12],

0 ou
+ a <K7naz) .

oP oIl 0z* oIl )
. L , ) - | = p0O, — + — for i =1,2.
Since the approximatiorg~—gk is used, the horizon- ox' ), ozt ) ..  Ox' Oz*
tal momentum equations (21) are valid on a domain
D(L) C 100 x 100 km?, but the documentation [10] does The hydrostatic equation
not comment on this aspect.

2.3. The HOTMAC model ()1 OP/0z = —[1 = B(O, — (O,))] g,
The HOTMAC model uses the momentum equations |n i ) )
tangent-plane;; coordinates th p/ (p) =1— (0, — (6,)), and the chain rule yields

— — = 0i3 — 2646825 —
ot + T O p(r“)xl ~ 9% T ik juk+vaxﬂax-7

where the approximatiog ~ —gk is used [11]. These equa-
tions are written in terms of the terrain-following vertical co-

ol 0z 3H_H—zg;g
dz* 9z 02  H O,

ordinate where(.) indicates an average over a horizontal plane. This
R zg(2,y) 22) and the Reynold's decompositian = U; + / (U; denotes
H—zy(z,y) ensemble average) yield the horizontal momentum equa-
|  tions [12]

DU 3 H—2* _(@v> 0z4 g 87 2 ] 0 3 DV
A (1 @v)a o ( ) By ( arn ) = zgaz*( W) +Ci Ty
e B (O Dz D OV D (VN A0
= /U-U)+9—x <1 o, > oy "ox ( S ) dy ( yay) T—s 0 V)G @29)

where

I
OH  consider the horizontal components g2 (14) of g or their
9ri linear approximations-gz/a and—gy/a, were used to as-

o ) similate data from an observation network on a dormain
and the geostrophic wind componerit§, V; are given D(L)~ 1600x 1300 kn?.
in [12, Eq. (8)]. Model variables written in upper case

represent ensemble averages. In agreement with the use,
of g ~ —gk, the horizontal components gf are omit-

ted and therefore the validity domain of Egs. (23) isThe ARPS model considers dynamic equations in tangent-

D(L) C 100 x 100 km?. This region is congruent with the plane coordinatesyz, and each meteorological variable is
earliest purpose of studying the airflow on a region ofgecomposed as follows

25x 25 kn? [12]. In other work Yamada and Bunker [13] ne-

glect the termg’; to study atmospheric transport and diffu- U(x,y, 2, t) = o(2) +p(x,y, 2, 1)

sion of airborne over a region of 3B0 kn?. In a subsequent

work [14], the term&>, Cs were replaced bg,, (Uops — U), where ), corresponds to an atmospheric base state which
G, (Vops— V), respectively, to simulate airflow with a four- is horizontally homogeneous and is a perturbation of
dimensional data assimilation technique, whétg G, are v [16, p. 117]. This decomposition shows the local concep-
nudging coefficients an@qps, Vops are observations of/, tion of ARPS, since a base state that depends only isf

V' at each 6 hr observation interval. However, the originalcorrect in a vicinity of the originc = y = 2z = 0. The
small-domain conception of Egs. (23) waxssedsince the ARPS documentation [16] does not point out this local char-
resulting momentum equations [14, Egs. 3,4], which do notacter, instead it asserts that the model is suitable for use on

Ci=g[(0,) (O (H)) ™'~ ((8,) 0,7 ~1) = () 1] 55

The ARPS model

Rev. Mex. 5. 51 (3) (2005) 217-229
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scales ranging from a few meters to hundreds of kilomewherer = ||R||, ¢ is the latitude anc\ the longitude. The
ters [16, p. 113], but the validity domain is small, as is shownprojection of a point(\, ¢,» = a) on the earth is a point

below. (xp,yp) in a cartesian system,y, given by a pair of equa-
Chapter 7 of Ref. 16 describes the map projection optionsions
to define the computational domain and says that “the map 2 = (N, 0) o = Up(A, ). (26)

factors are not included in the dynamic equations of ARPS

version 4.0, but will be in a future release”. “If one choosesThe center(\., ¢.,r = a) of the domainD is projected on
the Lambert conformal projection and uses a relatively smalthe origin of the system,y,, Tp (Ae, ¢c) = yp (Ae, ¢e) = 0.
domain (less that 1000 km), then the effect of the map factf a point has spherical coordinatés, ¢,r), its projection
tor is negligible” (the role of map projections is discussed incoordinategxp, Yp, 7p) are defined by Eq. (26) and

Sec. 3). Accordingly, the model can be applied on a domain

D(L) as large as 10001000 knt. This assertion is incorrect Zp=r—a. (27)
since

Since conformal map projections are used in meteorology,

(i) onadomain larger than 7600 kn¥, the troposphere ) o
Zp, Yp, 2p define an orthogonal curvilinear system.

is below the tangenty plane, and

(i) the approximationg ~ —gk is used in momentum

equations. 3.1. Equations in projection coordinates

In fact, the model solves dynamic equations in terrain follow-In order to obtain dynamic equations in projection coordi-
ing coordinateg = x,n =y, ( = ( (z,y,2) with ¢ (z,y,2)  nates, we first consider some expressions in spherical coordi-

similar to Eq. (19) [16, p. 114, 199] which yield the horizon- nates. Lets' = X, s* = ¢, s* = r. The substitution of Egs.

tal momentum equations [16, p. 119] (25) intoR = Y'Y yields orthonormal vector& = s"/@si
_ - with s’ = 9R/0s* andh,; = ||s’||. The relation betweel’
dU* 8 / Lok 8 / .ok at i
=— | —J3(p) — aDiv") + ——Jo(p| — aDiv") ands® is
dt on ¢ N Ny
B - S = Rinj (28)
- p*fu + v GD’U

whereR is given by

du* 9] 0
= — 7Jf / - D * + 7<] / - .D *
dt g —aDit) £ Fe (= aDivT)| _sin X cos A 0
T . R(\¢)=| —singcosA —singsinA cos¢ (29)
+p _fU — fw| +VGD, (24) cos¢cos A cospsin\  sing

where the horizontal componeng$, ¢ of g are omitted;
Ji = —02)0¢, Jy = —0z/0n, VG = |02/9(|, the notation
u* = p*u with p* = p/G is used andvDiv* is an artifi-

and satisfieR;,R;; = d;;. HenceVy (3) is transformed as
follows:

cial divergence damping term to attenuate acoustic waves. In e YT . . . o
. . V _YJY]_ 5 Y]_ -7.h At __ 14t
fact, Egs. (24) are obtained from the momentum equation for Y = =8 g ¥ T 8 eiS = US
a Boussinesq fluid
o7 , whereu! = &'hy. From the identityVy =V Y =u’g’

o TV VV)=-vZ 4 Bk and Eq. (28) we geVy¥ = Ryul; this and Eq. (28) yield
po Ay = YFVF = 3TR,, (leug + leuls) and therefore
with B = —gp'/p andg ~ —gk [16, p. 350]. As we saw in
Sec. 2.1, the last approximation is valid on a don@iiL.)

— &l J =7 TR l
bounded byi00 x 100 km2, Ay =¥ag,  ag = U + R Rygus. (30)

o Let us now consider calculations in projection coordinates
3. Map projections with ), = x,,, #2 = y,,, 3 = z,. The orthogonality of coor-

- . ) dinatesz! means the orthogonality of the unitary vectors
Map projections have been used in numerical weather pre-

diction models to consider the earth’s sphericity [4,7,22,23]. .,

i ] ; i i R |
Map projections generate curvilinear coordinatggy, z, %y = X3 My With x;, = OR /Oy, i = ||, [ (3D)
\(,jvigg:tzsre defined below and will be callpbjection coor- The contravariant vectors in spherical and projection coordi-

J— Vsl [, v '
The spherical coordinates of a point with position vectornatesns Vs’ andn;, = Va,, can be written as follows
R = YY" are defined by o i
. . . . X,
ng:vsﬂzsl W, =Val,= 2. (32)
sJ D

Y'=rcospcosA Y?=rcospsin\ Y3 =rsing (25)
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These indentities and the chain rule yield

)A(;) ; N (3'17; Y, I 6:0;)
hpi P vk oY dsi
_ gt _ ¥ 05
0s1  hg; 0s
or
RE = hyi y_ 8N 0x;, /05,
J
and hence

—-1/2

N2
oz’
_ Z -1
i = - (hsj 8;)

J

For the Egs. (26) and (27) we hade;, /9s® = 6;3 and there-
fore hps = 1,

—-1/2

. 2
1 Oz, .
<hsj 85j> (i=12),

hypi 695;,
hsj 851' ’

iy =

(33)

D

7j=1,2

and

%, =T,;§ withT;; = (34)

without summation in repeated indices in the last equation,

andTs; = T;3 = d3,. We assume thdl = {T;,} defines a
rotation of3! and$?, thenx] x %2 = X3, det(T};) = 1,
and the normalization and orthogonality ®f ands’ yield
T11To0 — T12T51 =1,

TH +Th =T5 +T5y =1 TiyToy + TiaThs = 0. (35)

Hencel| =15 =11, T2 = —15s =15 and

T, T, 0
T=| -1 7. 0 (36)
0 0 1

If b, andb/ denote the physical components of a vedidn
coordinates:! ands’, respectively, that iy = %/,b, = 870,
Eq. (34) yields

bl = Ty;b). (37)

In particular, the physical components ¥f in projection
coordinates are

ull, = Thul+Thu? uf, = —Tul+Tiu® ud=u3 (38)

p
Another expression ofu; is obtained by combining
Vy=Y*Y* with Eq. (31) and the chain rule, namely

(39)

i _p i
Uy, = hpidy,.

If a;', denote the physical components®f- in projection co-
ordinates, Eq. (37) yields, = T;;al. From Eq. (37) we get

223

u] = Ty, u; and inserting it into Eq. (30) fai? yields

) d :
a; =Ty (dtiju;" + RijmTfané)

du?

= dtp + szu;n

(40)

where we usé; T,,; = 6, andQ = TT' +TRR"T. In or-

der to compare the expressions in projection coordinates with
those reported in the literature, the following notation will be
used:

H .1 .2 _ .3
() us =uy, v =us, ws = u3,

(i) \=8/, =821 =283,

— 3
Wp = U

(iii)) up, = uIl,, vp = u? 1

.
(v) %, =%}, 9, =%2,2, =%, and

(V) hy = hplr hy = hp2.

tFrom (35) and (36) we get the antisymmetric ma‘lti’ﬂilt,
RR is obtained from (29) and’ = u’/h;, and using (38)
one gets);,u,"' or in matrix form

Up — (r‘lus tanqb—l—f) vp+r_1upvp
Q Up = (r‘lus tan¢+§) Up +r‘1wpvp
Wp ==t (up +vp)

with ¢ = Ty —TyTy. TO compute the Coriolis force in pro-
jection coordinates we defire= 22 cos ¢ and =2 sin ¢.

In spherical coordinates we ha2€ = e + f and using
Eq. (37) we gep(} = %,eTh + §,eTy + 2, f and

20 x Vy = %, (ewpTy — fop) +§p (—ew,Th + fuy)
+zpe (vpTo —u,Th) .
Using (32) and the chain rule, the pressure gradient takes the
form
N R NN B
P=\*h, 0z, "Vh, 0y, oz, )V
Substituting the above results into the exact momentum equa-

tion (4) with F = 0 and the approximatioga?/r? ~ g
yields

dup 1 8]7 - Us tan¢
dt  hypOx, K (f i r ¢
—ew, Ty — Lp%p
dvy, 1 Op Uug tan ¢
dt  hyp Oy - (f + r +e
+ ew,Ts — i
dw, 1 09p IQ) + vg
—E - = T T 41
dt Jrp@szrg e (upTt = vpT2) + r (41)
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with u, = u, Ty — v, Ty [EQ. (37)],¢ = T4 Ty — Ty T and Tk, Yk, 21, instead,z,, Yk, hyr are considered to be valid

approximations of:., yx, 2k,
d_0 w9 o 0 i S
dt Ot  hyOm, hydy, P9z,

Tpk ~ Tk Ypk ~ Yb  hr ~ 2,
3.2.  Map projections and topography and the set{z,x, y,x, hpr} IS a reliable digital elevation
model of the geoid with respect to thez system; but this

Terrain elevation data are defined with respect to an ellipis not necessarily the case. Since map projections generate a
soidal earth model [38,39], but some models consider that theinimum distortion of the sphei&,, z,, y,, are similar to
data are defined with respect to a sphere without considering,,, y;, over a wide domairD(L). For instance, Figs. 4,5 of
the method to define such a sphere [10,16,28]. This omisRef. 24 show that the relative err@y,. — yi| /yx is very
sion is unfortunate because an incorrect choice of the spheegnall for |y,| < 1665 km with several map projections.
radius can generate significant errors in the terrain elevatiohe problem lies inz,x; if (2px,ypx) is close to the ori-
data. For instance, the data base GTOPO30 [39] has datn (x =0,y =0,z =0) = (A, ¢, = a), the difference
defined with respect to the ellipsoid WGS84 (World Geode-z,;, — 2| is small but it increases rapidly with,;. or y,y.
tic System 1984) with axes = 6378, b =6357 km [38].  For example, the correct cartesian coordinates of a point on
The relative differencéa — b) /b is small but the difference S, with projection coordinates,, = z,x = 0, ypr, = 650
a — b = 21 km is equal to the average height of the tropo-(km) arez; = 0, yr = 650 & 8, 2, = —33 (km). The data
sphere. A method to define properly a spherical earth model,, reported in GTOPO30 for Mexico have an uncertainty of
with the parameters of an ellipsoid is given in Ref. 24. Thus+30 m [39]; in this case the approximatian ~ h;, is valid
we can consider that the terrain data are defined with respeoh a domairD (L) bounded by Ref. 24
to a sphereS, with radiusa. If hs()\, ¢) denotes the ter-
rain elevation at point\, ¢,r = a) of S,, the set of points Dy, ~ 60 x 60 km?
{\, ¢, hs} defines the true earth surface which is cagiedid o o
In practice the geoid is known on a discrete set of pointé’Vh'Ch is very small for some mesoscale applications, as we
{ Mk, Dk, bt }n_, known as thaigital elevation model shall see below. _ _

Some mesoscale models use the following procedure to 1 he ARPS documentation [16] describes three map pro-

define the topography. If a terrain datum has spherical COLections that the user can employ to deﬁn_e the_compqtational
ordinates(\, ¢, = h, + a), a point(z,,y,) is computed domain and the topography. The latter is defined with pro-

with a map projection (26) and it is assumed that the terraifeCtion coordinates, ., y,i., hyx when a terrain datum has
elevation at such a point #s,. Of course,(z,,v,) belongs spherical coordinate\x, ¢, hx). If all calculat!F)ns were
to thex,y, plane in the abstraat,y, 2, space, but of the ter- done in projection coordinates, the use of the “terrain data
rain height at the domain centék., 6., = a) is defined ~ \“vk: Yok, ipr.} would be correct. However, the model ARPS
as the datunh, ()., ¢.), the z,y, plane coincides with the combine the dat@z,x, Yk, hpx }, With dynamic equations in

2y plane tangent to the sphefe at (\., ¢.). Additionally coordinatescyo .. In fact, “the map factors are not included

if the scale of ther, y, z andz,, y,, z, axes is the same, then in the dynamic equations of ARPS version 4.0”, but “If one

every point(z,, y,, z, = h,) defines a point in theyz co- chooses the Lambert conformal projection and uses a rela-
prJdpr~p — ''p . .

ordinate system (see details in Ref. 24). To clarify the gelivély small model domain (less than 1000 km), then the ef-

ometrical meaning ofz,, yy, h,), let us remember that if fect of the map factors is negligible” [16, Sec. 7.1]. This
a point P has spherical coordinatds., ¢, r = h + a), its assertion can lead to an incorrect use of the model because
) ) - S )

unique andcorrect cartesian coordinates y, z are obtained

from Egs. (5) and (25). Thus, if,, yp, hp) has coordinates

(A, ¢, = hs + a), the corresponding cartesian coordinates

are given by (i) the troposphere is below they plane wherD(L) is
larger than 706 700 kn¥, and

(i) the momentum equations use the approximation
g ~ —gk which is valid onD(L) C100x100 kn?,

x (hs + a) cos ¢ cos A
Y =R (A, dc) | (hs+ a)cosgsin A (42) (iii) the data{xz,k, yk, hyk } are areliable estimation of the
z+a (hs + a) sin ¢ geoid on a domai®(L) C60x60 kn?.
whereR (A, ¢.) is given by Eq. (29). This shows thaty, = According to Ref. 15, the model HOTMAC uses the Uni-

andz,, y,, z, are different. In particular, i’ is a pointinthe  versal Transverse Mercator (UTM) projection [38] to define
geoid with coordinate$)\x, ¢x, 7 = hsx + a) and the cor-  the horizontal coordinates and the topography. This means
responding projection coordinatesy, y,., hpr @are seen as that the horizontal coordinates are projection coordinates
the cartesian coordinates of a poift in physical space, it x,,y, defined by the UTM projection. However, in Sec. 2.3
is clear theP’ does not belong to the geoid in general. Thewe saw that the model equations are written and solved in
documentation of HOTMAC [15] and ARPS [16] does not coordinatestyz* (22). Thus, the validity domain of HOT-
report the use of Eq. (42) to obtain the correct coordinate$AC is D;, ~60x60 kn?, since the corresponding terrain
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data{z,, ypk, hpr } @nd the approximatiog ~ —gk are  cal data of the project of Investigation sobre Materia Particu-
valid on such a domain. The domdn, is congruent with the laday Deterioro Atmogfrico - Aerosol and Visibility Evalua-
original conception of HOTMAC, which was developed for tion (IMADA-AVER), which was conducted by the U.S. De-
meteorological simulations on domains that arex25 [12]  partment of Energy and the Instituto Mexicano del Blew
and 30<30 kn? [13]. However, this conception was missed in 1997 [21].

in Ref. 14, where the approximatigh~ —gk and the UTM

system are used to assimilate meteorological data on a d&4. Model MM5 version 2

mainD(L) ~1300x 1600 kn¥. In this domain the separation

between thery plane and the sphet®, reaches up 33 km. Versions 2 and 3 of model MM5 [26,27] have the same choice

In an other application [20] a domain of 12050 kn? was of three map projections for defin!ng the mode.l dom'ain. Th.e
used to analyze air pollution data in Mexico City; in this casedocumentation of Program Terrain [28] describes, in detail,
the separation betweeh, and thery plane reaches 1.6 km. € use of these map projections in defining the topography.
The use of a terrain-following vertical coordinate,, The_ model computes t_he input information in projection co-
which is defined with a terrain elevation, () obtained ~ °'dinatesz,y,, andz, is replaced by the terrain-following

via map projections, introduces the errorgf (x, y) directly coordinate P0(2p) = Prop
into dynamic equations such as (23) and (24) . Of course, the 0= ——"7T """ (43)

*
Tp,
solution of this problem is simple since all that is needed is h . tant f E v Yp) is th
to eliminate the use of map projections to define the topograw erepiop iS @ constanty”™ = ps(zy, yp). ~ Ptop: Ps 1S The
ressure on the topography, apg(z,) is the pressure of

phy (which is a procedure without computational, physical oP . ! .
mathematical advantages) and use a correct coordinate trans- atr_nospherlc reference state which obeys _the hydrostatic
equationdpy/dz, = —gpo(zp), and the equation of state

formation, as is done in Ref. 24. ;
Po = RTopO with To = Too + AlOg(po/poo). From these
3.3. Map projections in RAMS model equations, the expression gf in terms ofo follows, and

The correct use of map projections consists in transformingl]JSIng the chain rule one gets the relationships

terrain data and each meteorological variable into the space 9N _ (90N odp o
of projection coordinates,y,z,, and solving the dynamic 0y ), -\ 07, , D*Ox, 00
equations in such a space (equations such as (41)). This pro- !

cedure is used in models RAMS and MM5 but there are some (8> — <6) _ 9 9p” 2
inconsistencies, as we shall see below. Wy ) ., Oy /), p*Oyp0o
The horizontal domai®(L) and the terrain elevation of 9 p0g O

model RAMS are defined with a rotated Polar-Stereographic (44)

Projection (PSP) [10, p. 6], “where the pole of projection is

rotated to an area near the center of the domain, thus minwhich has to be used to get the correct momentum equations

imizing the distortion of the projection in the main area of in coordinates:, y,, but to simplify the notation we use the

interest” and “The appropriate map factors are used in all horeft side of Eq. (44).

izontal derivative terms”. Documentation [10] and additional ~ The momentum equations reported in the documentation

references [1,8,9] do not describe the procedure for introducf MM5 version 2 [26] are

ing the “map factors” in horizontal derivatives, butthereisan 4, 1 gp om

inconsistency in the use of the PSP. EWL;%:% (f +up (9y> —CWp—
There are two ways to introduce the map factors into dy- ’

namic equations. The first one consists in using the map pro- 4vp + 19p _ < 8m> _ Wy

o ) . =—up | fH+up, D, (46)

jection equations (26) of the PSP to transform the dynamic dt ~ p Jy, oy

equations in spherical coordinat®gr into equations in pro-

9z,  p* do

UpW

?+D, (45)

jection coordinates,y,z,, as was done in section 3.1. The —P2 4+ -t g=eu,+ + D, (47)
second way consists in using the Egs. (26), (27) and (42) dt — pdz
to transform the equations in coordinates: into equations  with d 9 9 9 P

in coordinatesr,y,z,. In each case, the exact acceleration = = Uy - Uy —— 4 W ——
g = —ga®r—*R has to be used to get momentum equa- dt ot Pox, Ty, "oz

tions in coordinatesr,y,z, that are valid on any domain Where the gradient pressure is written in termszgf,,z;,
D(L). However, in Sec. 2.2 we saw that the documentainstead of using the right side of Eq. (44). In the next sec-
tion [10, p. 6] and complementary Refs. 1 and 8 of RAMStion we show that the correct Egs. (41) can be rewritten with
use the approximatiog ~ —gk. Therefore, independently m = 1/h, =1/h, and

of the method used to introduce the map factors into model
equations, the momentum equations are valid on a domain
D C200x200 kn?. This domain is very small with respect Thus, a comparison with the correct equations (41) shows
to that of 1764 1764 kn? used to analyze the meteorologi- that:

r~lug tan ¢ + € = u,0m/dy, — v,0m/0x,.
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(i) the Egs. (45)-(47) omitn in the horizontal pressure with
gradient and the advection termsdfdt ,
d 0 0 0 0

dt zﬁ—kmupaixp—kmvp —‘r’wpaizp

(i) in Eq. (45) the term—v,0m/dz, is absent andw, oy
p

has to be replaced byw, 11,

(iii) in Eq. (46) the terms-v,0m/0x, andew,T; are ab-  wherem is the map-scale factar,= 2Q cos ¢, f = 2{2sin ¢,
sent, where¢ is the latitudex = A — A\, X is longitude and\. is
(iv) in Eq. (47) the term-cv, T, is absent andu, has to central longitude. These equat_ions are similar to the correct
be replaced by, ;. ones (41) bu.t there are some.dlfferenc.es.
i » . . The Mexican meteorological service uses model MM5
In order to obtain additional information about the the- o sion 3 [29,30] to carry out the operational analysis on a

oretical formulation of MM5 version 2, the equations of jomainD ~3330x3330 kn? defined by a Lambert projec-
Ref. 25 cited in the documentation of MMS5 version 2 werey;, [29]. The projection is [28]

considered. In this reference the hydrostatic approximation
is applied to the vertical momentum equation and the vertical B . B 0
coordinater Eq. (43), is used. The momentum equations are 7 — Ry(¢)sin(ka) yp = —Rs(9) cos(ka) (50)

dp*u _ Op*uu  Op*éu  oR Tp* Op* 09

ot Ox Oz » oz P ox with
+ fp (0 = vg) + p*(Fy + Dy + Py + Co) Ru(6) = (am cos 6k,
32’;1) = _8];‘;1) - 3};*;1; — fp*(u—ug) m = [tan B/ tan Bl]k cos ¢/ cos @,
+p*(Fy + Dy + P, + C) (48) B=271(90° - ¢),
with A, =p*(Fy,+Dy+Py,+C,), Ay=p*(Fy+Dy+P,+C,), By =2"1(90° — ¢y)

whereF’, D, P, C, R are horizontal eddy diffusion, horizon-
tal fourth order smoothing, vertical eddy flux convergence,gng

cumulus transport term, and radiative heating, respectively.

From Eqgs. (48) we get the foIIowi_ng conclusions: (i) The log [cos ¢/ cos ¢a]

absence of the factofs = ||0R/dz} || impliesh; = 1 and k= log [tan (/4 — ¢1/2) / tan (7/4 — ¢2/2)]
therefore the horizontal coordinates are the cartesian coor-

dinateszy of a plane tangent to the sphefg. Thus, the
horizontal components gf are necessaryfor modeling on
a domain larger than 16QL00 kn?. However, (ii) the hor-
izontal components og or their linear approximation are
absent in (48) and therefore the approximatipr —gk is

In this case the Egs. (33) yield,=h,=r/am, T1=cos ka,
To=—sinka, {=—kus/r cos ¢. Some algebraic manipula-
tions andr ~ a yield

) : st 0 0
used, although the Eqs. (48) were used in Ref. 25 to simulate U tan ¢ +E&=1up 8m pam (51)
convection on a region with each side measuring 600 km. Tp
3.5. Model MM5 version 3 and the correct Egs. (41) are
The momentum equations of model MM5 version 3 [27] are du, ~m Op it om om
— = =1 Up— — Up—
L Ry AN
dt p oz, " "oy, 0w dv, m Op i Up Wy
upwp E F@ — ewp COS K& — 7@
fewpcosafTJrDu p
p 5 5 5 dvp, n m Op Fo om om
@Wp M OIP _ _ om . om PR Yoy T Por,
dt - p Oyp o <f " upayp vp a$p) P o !
VpW oy T@—ew sin ko — 22
+ ewp, sina — % + D, dt  p Oy P a
dw, 1 0p . dwp [ 10p o ba) T
ditpﬁ-;afzp-i-g:e(upcosa—vpsma) 7 +pazp+g_e(upcoska+vpsmka) i
w2 2 m dp  uf+ v
p " p 4+ ——+ , 52
oty g, (49) P (52)
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where the approximation ~ « is used. According to (49),
with D, = D, = D,, = 0, the MM5 equations are

du, ~ m Opp om om
T e vp | f+up ay L
— ew, cos @ — o
a
dv,  m Opp om om
dt  pp Oy, —up (S ¥ oy " ou
+ ewpsina — ke
a
d 10
;‘;P + FPTZZ + g = e (upcosa — v, sin )
u? + v2
» 1P (53)
a

We can see the following differences:

(i) MM5 equations (53) haveos a and — sin « instead
of the correct coefficientsos ko andsin ka, respec-
tively. Factork appears iff;, T> by means of the Jaco-
bian matrixdz,/0s’ of the projection equations (50),

whereas the MM5 equations omit such a factor. To get

an idea of the magnitude &f we havek = 0.34 for
¢1 = 15°, ¢o = 25° andk = 3.4 for ¢; = 35°,
¢ = 55°.

(if) Although the termsw,, cos o andew,, sin « are small,

their incorrectness increases the error when the equa-

tions (53) are solved numerically.

(iii) The incorrect termseu,, cos o, —ew, sin o are small
with respect tog, but their magnitude is equal to or
larger than that ofw,, /dt. For example, for large scale
synoptic systemsw,,/dt ~ 10~ ms=2, eu, cos a ~
1073 ms~2 for |¢| < 30° and fv, sina ~ 1073 ms~2
for |¢| > 45° [37, Table 2.2]. This invalidates the use
of thew, —equation to compute vertical motions which
are important for the prognostic of rainfall.

The Mercator projection used by MM5 is [28]

(54)

Tp = ao yp =aln[(1+sing)/cos¢].

In this case, the Egs. (33) yield, = h, = r/am with
m=1/cos¢, Ty =1,T, =& = 0 and using: ~ a. Equa-
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dv, ~mOdp, om om
dt  ppOy, up (St y P o
o U
r
dwy 1 Opy o e (55)
dt  pp 0z 9=l ro

According to (49) the equations of MM5 version 3 are

du, ~m Opp om om
dt = p, 0z, op \ S oy P ox
— ew, cos a — 2l
dv,  m Op, om Im
dt  ppOy, up \ oy " ox
+ ewp sina — Ot
a
d 10
% ga—zz + g =e(upcosa —vpsina)
w2 + 2
%_ (56)

There are the following differences:

(i) The Egs. (56) have the coefficientss « andsin « in-
stead of the correct oneg,and0, respectively. We
haveT, = ¢ = 0 since the Jacobian matrixz;, /ds’
of (54) is diagonal.

(i) As above, the incorrect terms in horizontal momentum
equations {ew, cos o and+ew,, sin ) are small but
they increase the numerical errors.

(i) The incorrect termseu, cos @ and —ev, sin« in the
vertical momentum equation invalidate its use in com-
puting w,, (and predicting rainfall) since at least one
term is larger thaww, /dt, as we saw above [37].

The documentation of MM5 version 3 [27, pp. 8-5] com-
ments that Egs. (49) include termsy, andev,) represent-
ing the usually neglected components of the Coriolis force,
but the examples above show that such terms are incorrect in
projection coordinates.

4. Conclusions

There has been an important effort to develop and calibrate

tion (51) holds true and therefore the correct Egs. (41) hav@omputational mesoscale models which use the approxima-

the form
du, =~ mOp, om om
at " p, 0z, " Jup oy oz
— ew, — UpWp

r

tion g ~ —gk [1,4-17]. This approximation yields a sim-
ple momentum equation useful for theoretical analysis [3],
but not for numerical simulations of real atmospheric flows
on a domain larger than 18000 kn?. The estimation of
this validity domain (Sec. 2.1) ignores important aspects of
a real flow such as stratification or time dependence. Since
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these factors can generate qualitatively different flows from The use of mesoscale models irekMco has not consid-
the exact and approximate momentum equations (8) and (®red the solution of operational problems inherent in any me-
because of the nonlinearities of such equations [40], the vaeorological network. For instance, the Mexican meteorolog-
lidity domain of the approximatiog ~ —gk may be signif- ical service uses the model MM5 version 3 to predict mete-
icantly smaller. On the other hand, Pielke [17] suggests thabrological conditions. This model defines the initial condi-
the numerical modeling of some real mesoscale flows magions with data generated by global meteorological models,
require a domain with 5000 km on a side. A partial solutionwhich in turn use the data from the rawisondes in Mexico at
to the conflict is the use of the exact valueggfwhich al- 12 hr observation intervals. The meteorological service has
lows the use of the tangent-plane systegr on a domain the open problem of validating data from rawisonde and sur-
D(L) c700x700 kn?, since the troposphere is below thg  face stations, but this problem is not considered with the use
plane forD(L) 5700x 700 kn¥. Of course, the optimal solu- of MM5. Of course, the reliability of MM5 depends heav-
tion is the development of computational models that explicdily on the data from global models which in turn depend on
itly consider the earth sphericity. The use of map projectionghe quality of data provided by the Mexican meteorological
into the dynamic equations is legitime if the latter are writtenservice. To this we must to add the fact that the estimation
correctly in projection coordinates,y, z,. of meteorological conditions with the data from a network is
The mesoscale models considered in this work have an iren unsolved open problem [41]. This means that the initial
creasing number of users in Mexican institutions devoted ta@onditions used by a model like MM5 are not optimal and
meteorological research [31-35] and operational meteorologherefore the resulting numerical predictions have to be care-
ical analysis [29,30]. This has been motivated by the resultfully validated [42].
found by some users. For instance, some authors [33] claim
that version 2 of MM5 generates the meteorological prod-
ucts that Mexican Institutions should use to prevent disasterz\
caused by severe storms inelico City, but the analysis of cknowledgments
sections 3.4 and 3.5 shows that versions 2 and 3 of MM5
cannot be used to predict rainfall. These incongruences shohhe author wishes to thank Dr. Ernesto Caetano for the
that the data available on Mexican territory are not enough td1acVitte reference, Dra. Rosa M. Velasco for the revision

validate mesoscale models. of the manuscript, and Ma. Trinidad RNez for her support.
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