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Computational mesoscale models have become an important tool for air pollution studies and operational weather analyses. In this work,
we analyze some of these mesoscale models. The results show that some of these models have inconsistencies that limit their use in current
applications in Mexico. Some modifications are suggested to improve these models.
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Los modelos computacionales de mesoescala se han convertido en una herramienta importante para estudios de la calidad del aire y para
el ańalisis meteoroĺogico operacional. En este trabajo se analizan algunos modelos usados en México. Los resultados muestran que tales
modelos tienen inconsistencias que limitan su uso en algunas aplicaciones. Se sugieren algunas modificaciones para mejorar los modelos.
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1. Introduction

Mesoscale atmospheric flows are described as having a tem-
poral and horizontal spatial scale smaller than the rawin-
sonde network but significantly larger than individual cu-
mulus clouds. This implies that the horizontal scale is on
the order of a few kilometers to several hundred kilome-
ters [1, p. 1]. It is generally accepted that if the horizontal
scaleL is on the order of 103 km or smaller [2, p. 10], atmo-
spheric flows can be located in a system of cartesian coordi-
natesxyz with the planexy tangent to the earth at a point;
the z axis and its unit vectork are oriented in the opposite
direction from the gravityg. In this reference systemg is
approximated by−gk with g = 9.8 ms−2 and the resulting
momentum equation used in the mesoscale literature [1-16]
is

dv
dt

= −1
ρ
∇p− gk−2Ω̃× v + f . (1)

The simplicity of Eq. (1) has been particularly useful for the-
oretical analysis [2,3] and several computational mesoscale
models solve it to analyze and simulate problems with com-
plex topography on a small domainD(L) = 2L × 2L of
the xy plane [1,4-16]. However, some problems have mo-
tivated the use of computational mesoscale models on do-
mainsD(L) larger than 1000×1000 km2. In fact, some
authors [17] consider that, in order to realistically simulate
mesoscale flows, it is necessary to represent the local terrain
influences and simultaneously simulate large-scale synoptic
influences. According to Pielke [17], this motivates the use
of a domain of at least 5000 km on one side, which in turn re-
duces the boundary errors (which are unavoidable in limited-
area numerical prediction models). Although important the-
oretical results have been obtained from Eq. (1), there has
been a computational abuse of it since the results of a re-
cent work [18] show that Eq. (1) is valid on a domainD(L)
bounded by 200×200 km2.

Reference 18 is not the first one that considers the va-
lidity region of Eq. (1). In 1949 MacVitte [19] pointed out
that Eq. (1) is valid on a small regionD(L) of the tangent
planexy, but the region was not estimated. Unfortunately,
MacVitte’s work has not been considered in several texts on
mesoscale meteorology [1,2,4-7] and the documentation of
some computational mesoscale models [8-16]. For instance,
Zeytounian comments in Ref. 2, p. 10, that it is generally ac-
cepted that if the horizontal scaleL is on the order of 103

km or smaller, atmospheric flows can be studied with the
coordinate systemxyz and the approximationg ∼ −gk.
Pielke [17] analyzed seven computational mesoscale models,
some of which use the coordinate systemxyz andg ∼ −gk
and the models are considered to be valid on a domainD(L)
of several hundred kilometers [17, p. 459]. These incon-
sistencies motives for the analysis of some computational
mesoscale models.

In Sec. 2, we give a short deduction of the correct mo-
mentum equation in the coordinate systemxyz and a sum-
mary of the results of Ref. 18 which show that the ex-
act g yields a momentum equation valid on any domain
D(L) whereas the Eq. (1) is valid on a domainD(L)
bounded by 200×200 km2. In Secs. 2.2-4 we analyze the
mesoscale models RAMS [1,8-10], HOTMAC [11-15] and
ARPS [16], which have been used for air-quality studies
and meteorological research (see,e.g., [1,12-14,17,20-22]).
These models solve momentum equations obtained from
Eq. (1) but some applications use a domain significantly
larger than200× 200km2.

Map projections have been used in atmospheric modeling
with the aim of including the earth’s sphericity into model
equations [4,7,23,24]. Map projections generate a curvilin-
ear coordinate systemxpypzp which is formally defined in
Sec. 3, and a deduction of the momentum equations in co-
ordinatesxpypzp is given in Sec. 3.1. In Sec. 3.2 we give a
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summary of the problems generated by the use of map projec-
tions to define the topography in models such as ARPS [16]
and HOTMAC [15]. In Secs. 3.3-3.5 we analyze some incon-
sistencies in the models RAMS [10] and MM5 [25-28] with
the use of map projections. The model MM5 is of special
interest since it was adopted by the Mexican meteorologi-
cal service to carry out the operational analysis [29,30] and
it has been used in several meteorological studies in Mex-
ico [31-35]. Section 4 is devoted to some concluding remarks.

2. Momentum equations

Let Xi denote an inertial cartesian system with its origin at
the center of the earth, and the earth’s rotation axis coincides
with theX3 axis. The momentum equation of an air particle
is

dV
dt

= −1
ρ
∇p+ g + F

wherep, ρ, V are the pressure, density and velocity vector of
the particle,g is the gravity acceleration andF is a frictional
force. Hereafter we assume that the earth is a sphere with
radiusa; theng is given by

g = −g a
2

r3
R

whereg ≡ GMa−2, M is the earth mass,G is the gravita-
tional constant, andR is the vector from the earth’s center to
the air particle,r = ‖R‖ [36]. If X̂i denote the unit vectors
andXi are the coordinates of a particle at timet, we have
R = X̂iXi andV = X̂iV i with V i ≡ Ẋi (≡ dXi/dt).
Repeated indices in one term indicate summation.

Let Y i denote a cartesian coordinate system fixed to the
earth withY 3 = X3, andY 1, Y 2 are the axesX1, X2 ro-
tated, respectively. If̂Yi are the corresponding unit vectors,
then

Ŷi = Pij(t)X̂j (2)

where P11=P22=cos Λ, P12=−P21=sinΛ, P3i=Pi3=δ13
(the Kronecker delta) withΛ = Ωt + Λ0, Ω is the angular
velocity of the earth andΛ0 is a constant. IfY i are the coordi-
nates of an air particle at timet, we haveR = X̂iXi = ŶiY i

and using (2) we getY i = Pij(t)Xj . This relationship to-
gether with Eq. (2) yields

V = VY + ~Ω×R

dV
dt

= AY + 2~Ω×VY + ~Ω×
(
~Ω×R

)
,

whereVY andAY are velocity and acceleration with respect
to the earth,

VY = ŶiV i
Y AY = ŶiV̇ i

Y (3)

with V i
Y ≡ Ẏ i and ~Ω = ΩŶ3. The centripetal accelera-

tion ~Ω×
(
~Ω×R

)
is usually neglected. Thus the momentum

equation is

AY = −ρ−1∇p− ga2r−3R− 2~Ω×VY + F, (4)

where the original gradient∇ = X̂(∂/∂Xi) is replaced by
∇ = Ŷi(∂/∂Y i). The standard literature [1-7] denotesAY

by dVY /dt, although the latter means

dVY /dt = V̇ iŶi + V idŶi/dt

with dŶi/dt = ~Ω× Ŷi [Eq. (2)].
The main coordinate system used in mesoscale meteorol-

ogy [1-7] is a cartesian systemxi with its origin at a point on
the earth with latitudeφc and longitudeλc. Let us suppose
that the planex1x2 is tangent to the earth at(λc, φc) and the
axisx3 is opposite tog at (λc, φc). The general relation be-
tween the coordinatesY i andxi of an air particle is

xi = Rc
ijY

j − aδi3 (5)

with constantRc
ij . The orthogonality of the systemxi im-

plies that the vectorŝxi = ∂R/∂xi are orthonormal,Rc is
orthogonal and̂xi = Rc

ijŶ
j . From this and (2.2,4) we get

the transformation ofVY andAY , namely,

VY = x̂iui ≡ u AY = x̂iu̇i ≡ a

with ui ≡ ẋi. The gravity acceleration isg = x̂igi with

gi = −ga2r−3(xi + δi3a). (6)

Thus the momentum equation (4) is

a = −ρ−1∇p+ x̂igi − 2~Ω× u + F (7)

with ∇ = x̂i(∂/∂xi). In scalar form we have

dui

dt
= −1

ρ

∂p

∂xi
−ga2r−3(xi+δi3a)−2εijkΩju

k +F i, (8)

whereεijk = x̂i ·
(
x̂j × x̂k

)
. These equations will be re-

ferred to as theexact momentum equationssince they have
the exact components (6) ofg while the standard mesoscale
literature [1-16] uses the approximationg ∼ −gx̂3 and the
resulting momentum equations

dui

dt
= −1

ρ

∂p

∂xi
− gδi3 − 2εijkΩju

k + F i. (9)

2.1. Validity region of momentum equations

HereafterD(L) = 2L × 2L denotes a rectangular region of
the tangent planex1x2 with center at the originxi = 0 and∣∣x1
∣∣, ∣∣x2

∣∣ ≤ L. This section gives a summary of Ref. 18,
where the validity region of Eqs. (8) and (9) is estimated. A
first approach is given by the magnitude of the terms in (9).
Table I yields the magnitude of the terms in theu1-equation
from (9) as reported by Atkinson [5], where we have added
a column with the termga2r−3x1 [omitted in (9)] for a flow
with horizontal scaleL (km). We observe that the term of
ga2r−3x1 is one order of magnitude larger than the largest
term of theu1-equation from (9) forL = 102, 103 km. For
flows withL = 10 km, the magnitude ofga2r−3x1 is equal
to that of the Coriolis terms and104 times larger than the dis-
sipative terms. These results suggest that the horizontal com-
ponents ofg cannot be omitted in Eq. (9) for a regionD(L)
larger than 200×200 km2 and should be considered forD(L)
betweenD(L) 10×10 and 200×200 km2.

Rev. Mex. F́ıs. 51 (3) (2005) 217–229
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TABLE I. Magnitudes in ms−2 of terms in theu1-equation for flows with horizontal scaleL (m), U = 10 ms−1, H =104 m, f = 2Ω sin φ,

φ = 45◦, g = 10 ms−2 [5], andx1 = L/2, x2 = x3 = 0, r =
√

(x1)2 + a2, a = 6378 km.

du
dt

= - 1
ρ

∂p
∂x1 +fv -fw + ∂

∂x3 Kz
∂u
∂x3 + ∂

∂x1 KH
∂u
∂x1 - ga2x1

r3

L U2

L
∆P
ρL

fU fHU
L

KU
H2

KU
L2

106 10−4 10−3 10−3 10−5 10−6 10−10 100

105 10−3 10−2 10−3 10−4 10−6 10−8 10−1

104 10−2 10−1 10−3 10−3 10−6 10−6 10−2

Let us consider the calculation of the pressure field of an
isothermic atmosphere with zero velocity with respect to the
earth. Using the equation of statep = RTρ , whereT andR
are temperature and the gas constant, and the pressure at the
earth’s surface,p

(
xi = 0

)
≡ p0, the exact Eqs. (8) yield

p(xi) = p0e
−ba(1−a/r)

whereb ≡ g/RT andr = [
(
x1
)2 +

(
x2
)2 + (x3 + a)2]1/2.

This is the expected pressure field on theentire terrestrial
sphere, with spherical surfaces having a constant pressure.
In contrast, the approximate Eqs. (9) yield

p0
(
xi
)

= p0 exp
(
−bx3

)
.

According to this equation, the tangent planex1x2 is a
constant-pressure surface withp = p0. A simple way of esti-
mating the validity region of Eqs. (9) is given by the relative
error ofp0

(
xi
)

with respect to the exact pressurep(xi) = p0

on the terrestrial sphere,∆p0 =
∣∣p0/p− 1

∣∣×100. Figure 6 of
Ref. 18 shows the graph ofξ =

√
2L v.s. ∆p0, whereξ/2 is

the length of the diagonal of a given domainD(L) = 2L×2L
(see Ref. 18, Fig. 2) andx3 = −a +

√
a2 − ξ2. From

this figure we obtain∆p0 = 1, 5, 10 % forL ' 20, 50
and 70 km, respectively. The corresponding domains are
D(L) ' 40×40, 100×100 and 140×140 km2. If we consider
that the largest accepted error ofp0

(
xi
)

is 5% , the validity
domain of Eqs. (9) is bounded by 100×100 km2,

D(L) ⊂ 100× 100 km2.

Another criterion to estimate the validity domain of (9) is
given by the observed horizontal pressure fluctuation on
the terrestrial sphere. It is known that this fluctuation
is δp/ρ∼103 m2s−2 for a horizontal scaleLs = 103 km
on the sphere (see,e.g., [37, Table 2.1]). This yields
the estimateρ−1∂p/∂xs∼10−3 ms−2 used in the standard
scale analysis of the momentum equations in curvilinear
spherical coordinatesxs=a cosφc(λ−λc), ys=a(φ− φc),
zs=r−a [2,37]. Let us calculateρ−1∂p0/∂s where s
is the length of a circular arc that starts at the origin
xi = 0. We haveξ=a sin(s/a), x3=−a[1 − cos(s/a)]
and ∂p0/∂s=bp0 sin(s/a). The density obtained from
the equationρ=p0/RT , yields ρ−1∂p0/∂s = g sin(s/a).
If we impose the condition thatρ−1∂p0/∂s cannot be
larger than the observed pressure fluctuation, we get

g sin(s/a) ≤ 10−3 ms−2, and hencesmax=10−4a=637.8 m
andLmax'a sin(smax/a)=637.8 m.

In the next sections we analyze some computational
mesoscale models that use the approximate Eqs. (9).
These models have been used on domainsD(L) larger than
100× 100 km2 for the analysis of data provided by meteo-
rological networks but no correction of Eqs. (9) have been
reported. This suggests that:

(i) the number of data is not sufficient to appreciate the
error in Eq. (9) generated by the omission of the hori-
zontal components of the exact gravity accelerationg,
and

(ii) the results given by computational models that use
equations such as (9) should be reanalyzed by solving
the exact momentum equations.

2.2. The RAMS model

Since the primary reference of RAMS [9] is Pilke’s book [1],
we begin with the analysis of momentum equations reported
in Ref. 1. A cartesian coordinate systemxyz with the z
axis normal to the earth at a point with latitudeφ is used.
In this casex = x1, y = x2, z = x3, i = x̂1, j = x̂2,
k = x̂3, the direction ofi, j is not defined explicitly in [1].
The gravity and centripetal accelerations are approximated
by g,−gk = G− ~Ω×

(
~Ω×R

)
, with g = 9.8 ms−2. Thus,

the equation of motion is

∂u
∂t

= −u · ∇u− 1
ρ
∇p− gk− 2~Ω× u

[1, Eq. (2-33)] or in scalar form

∂ui

∂t
= −uj ∂u

i

∂xj
− 1
ρ

∂p

∂xi
− gδi3 − 2εijkΩju

k (10)

[1, Eq. (2-45)]. As we saw above, these equations are in-
dependent of the direction of thex, y axes and are valid on
a domainD(L) bounded by100 × 100 km2, but there is no
comment about this validity domain in [1].

The Eqs. (10) are written explicitly in chapter 3 of [1]
with the Coriolis force

−2~Ω× u = 2Ω [i(v sinφ− w cosφ)− ju sinφ+ ku cosφ]

Rev. Mex. F́ıs. 51 (3) (2005) 217–229



220 M.A. NUÑEZ

[1, p. 31,34]. The direction of thex, y axes is not defined but
this form corresponds to−2~Ω×V with

~Ω = Ω (j cosφ+ k sinφ) and u = iu+ jv + kw

and therefore thex (y) axis is tangent to the parallel circle
(meridian) at a point with latitudeφ and is positive eastward
(northward). The pressure gradient is written in terms of the
potential temperatureθ [1, Eq. (2-21)] and the Exner func-
tion π [1, Sec. 4.4],

θ ≡ T (p0/p)R/Cp π ≡ Cp(p/p00)R/Cp ,

which yield
1
ρ

∂p

∂xi
= θ

∂π

∂xi
. (11)

In order to simplify the treatment of the lower boundary con-
ditions, mesoscale models replace the vertical coordinatez
by a terrain-following coordinateσ [1,4-7]. Since the coor-
dinate systemxyσ is nonorthogonal, one can use the tensor
formalism to get the dynamic equations in such coordinates.
The procedure is given in [1] but we shall give some details
to show how factorg appears in the horizontal momentum
equations via the pressure gradient.

Consider the transformation equations

x1 = x̃1 x2 = x̃2 x3 = x3(x̃1, x̃2, x̃3) (12)

or equivalentlyx̃3 = x̃3(x1, x2, x3). The position vectorR
in terms ofx̃i andxi yields the covariant vectorsτi and con-
travariant vectorsηi,

τi ≡
∂R
∂x̃i

=
∂xj

∂x̃i
x̂j ηi ≡ ∇x̃i = x̂j ∂x̃

i

∂xj
. (13)

The contravariant form of exact equations (8) is obtained
from the expression of Eq. (7) in terms of theτi’s. From (13)
we getx̂j = τi∂x̃

i/∂xj and inserting intog = gjx̂j yields
g = g̃iτi with g̃i = gj∂x̃i/∂xj . In particular, for (12) the
horizontal components ofg remain unchanged,

g̃i = gi = −ga2r−3xi (i = 1, 2) g̃3 =
∂x̃3

∂xj
gj . (14)

For the pressure gradient we have

∇p = ηj∂p/∂x̃j = τiG̃
ij∂p/∂x̃j

where G̃ij is the inverse matrix of the metric tensor
G̃ij =

(
∂xk/∂x̃i

) (
∂xk/∂x̃j

)
. In terms of the Exner func-

tion, we have
1
ρ
∇p = τiG̃

ijθ
∂π

∂x̃j
. (15)

Thus, the exact momentum equations (8) withF i = 0 are

∂ũi

∂t
= −ũj ũi

,j − θG̃ij ∂π

∂x̃j
− g̃i − 2ε̃ijlΩ̃j ũl, (16)

whereũi = uj∂x̃i/∂xj are the contravariant components of
u, ũi

,j is the covariant derivative of̃ui, and Ω̃j , ũl are the
covariant components of~Ω, u.

The factorg appears in the pressure gradient (15) as fol-
lows. Using the components of̃Gij [1, Eq. (6-29)] we have

G̃ij ∂π

∂x̃j
=

∂π

∂x̃i
+
∂x̃3

∂x̃i

∂π

∂x̃3
for i = 1, 2 (17)

where the chain rule yields

∂π

∂x̃3
=
∂x3

∂x̃3

∂π

∂x3
. (18)

Following Pielke, the hydrostatic approximation
ρ−1∂p/∂x3=−g and Eq. (11) are used to get

∂π/∂x3=−g/θ

and Eq. (18) becomes∂π/∂x̃3=−gθ−1∂x3/∂x̃3. For the ter-
rain following-coordinate

x̃3 ≡ σ = s
z − zG(x, y)
s− zG(x, y)

, (19)

where s is a constant andzG(x, y) is the terrain eleva-
tion on (x, y), we have∂π/∂x̃3 = −s−1 (s− zG) gθ−1

[1, Eq. (6-49)] and (17) is

G̃ij ∂π

∂x̃j
=

∂π

∂x̃i
− g

θ

σ − s

s

∂zG

∂x̃i
(i = 1, 2).

Thus the exact horizontal momentum Eqs. (16) are

∂ũi

∂t
= −ũj ũi

,j − θ
∂π

∂x̃i
+ g

σ − s

s

∂zG

∂x̃i

+gi − 2ε̃ijlΩ̃j ũl (i = 1, 2)

wheregi are the horizontal components ofg (14). If the ap-
proximationg ∼ −gk is used,g1 andg2 are replaced by 0 to
obtain

∂ũi

∂t
= −ũj ũi

,j − θ
∂π

∂x̃i
+ g

σ − s

s

∂zG

∂x̃i

i

−2ε̃ijlΩ̃j ũl (i = 1, 2). (20)

These are basically the equations (6-56,57) reported in [1]
where the factorg appears without the use of the exactg.
Additional references [8,10] of RAMS use the approxima-
tion g ∼ −gk to get horizontal momentum equations similar
to Eq. (20) where the factorg appears in∇p via the chain
rule and the hydrostatic approximation as above.

In agreement with the use of the approximationg ∼ −gk
in Refs. 1 and 8, the documentation [10, p. 6] of RAMS re-
ports the momentum equations

du

dt
= −θ∂π

′

∂x
+ fv +∇ ·Km∇u

dv

dt
= −θ∂π

′

∂y
− fu+∇ ·Km∇v

dw

dt
= −θ∂π

′

∂z
− gθv

θ0
+∇ ·Km∇w, (21)
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where only the vertical momentum equation has the factorg,
f = 2Ω sinφc, and we use the notation

d

dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

∇ ·Km∇u ≡
∂

∂x

(
Km

∂u

∂x

)
+

∂

∂y

(
Km

∂u

∂y

)
+

∂

∂z

(
Km

∂u

∂z

)
.

Since the approximationg∼−gk is used, the horizon-
tal momentum equations (21) are valid on a domain
D(L) ⊂ 100× 100 km2, but the documentation [10] does
not comment on this aspect.

2.3. The HOTMAC model

The HOTMAC model uses the momentum equations in
tangent-planexi coordinates

∂ui

∂t
+ Uj

∂ui

∂xj
= −1

ρ

∂P

∂xi
− gδi3 − 2εijkΩjuk + υ

∂2ui

∂xj∂xj

where the approximationg ∼ −gk is used [11]. These equa-
tions are written in terms of the terrain-following vertical co-
ordinate

z∗ = H̄
z − zg(x, y)
H − zg(x, y)

(22)

with H = H̄ + zg(x, y) [12, Eqs. (1,7)], wherēH is the
initial value ofH andzg(x, y) is the ground elevation. The
horizontal momentum equations in coordinatesx1x2z

∗ con-
tain the factorg, which appears via the pressure gradient as
above. In fact, the horizontal pressure gradient in terms of
the Exner functionΠ = Cp (P/P0)

ε, the virtual potential
temperatureΘv ≡ (P0/P )ε

Tv = CpΠ−1Tv andz∗ [12],

(
∂P

∂xi

)
z

= ρΘv

[(
∂Π
∂x̃i

)
z∗

+
∂z∗

∂xi

∂Π
∂z∗

]
for i = 1, 2.

The hydrostatic equation

〈ρ〉−1
∂P/∂z = − [1− β (Θv − 〈Θv〉)] g,

with ρ/ 〈ρ〉 = 1− β (Θv − 〈Θv〉), and the chain rule yields

∂Π
∂z∗

=
∂z

∂z∗
∂Π
∂z

=
H − zg

H̄

−g
Θv

,

where〈.〉 indicates an average over a horizontal plane. This
and the Reynold’s decompositionui = U i + u′i (U i denotes
ensemble average) yield the horizontal momentum equa-
tions [12]

DU

Dt
=f(V − Vg)+g

H̄−z∗

H̄

(
1−〈Θv〉

Θv

)
∂zg

∂x
+
∂

∂x

(
Kx

∂U

∂x

)
+
∂

∂y

(
Kxy

∂U

∂y

)
+

H̄

H−zg

∂

∂z∗
(
−u′w′

)
+C1

DV

Dt

=−f(U−Ug)+g
H̄ − z∗

H̄

(
1−〈Θv〉

Θv

)
∂zg

∂y
+
∂

∂x

(
Kxy

∂V

∂x

)
+
∂

∂y

(
Ky

∂V

∂y

)
+

H̄

H − zg

∂

∂z∗
(
−v′w′

)
+C2 (23)

where

Ci=g
[
〈Θv〉 〈Θv(H)〉−1−

(
〈Θv〉Θv

−1−1
)
z∗(H)−1−1

]∂H
∂xi

and the geostrophic wind componentsUg, Vg are given
in [12, Eq. (8)]. Model variables written in upper case
represent ensemble averages. In agreement with the use
of g ∼ −gk, the horizontal components ofg are omit-
ted and therefore the validity domain of Eqs. (23) is
D(L) ⊂ 100× 100 km2. This region is congruent with the
earliest purpose of studying the airflow on a region of
25×25 km2 [12]. In other work Yamada and Bunker [13] ne-
glect the termsCi to study atmospheric transport and diffu-
sion of airborne over a region of 30×30 km2. In a subsequent
work [14], the termsC1,C2 were replaced byGu (Uobs− U),
Gv (Vobs− V ), respectively, to simulate airflow with a four-
dimensional data assimilation technique, whereGu, Gv are
nudging coefficients andUobs, Vobs are observations ofU ,
V at each 6 hr observation interval. However, the original
small-domain conception of Eqs. (23) wasmissedsince the
resulting momentum equations [14, Eqs. 3,4], which do not

consider the horizontal componentsg1, g2 (14) of g or their
linear approximations−gx/a and−gy/a, were used to as-
similate data from an observation network on a dormain
D(L)∼ 1600× 1300 km2.

2.4. The ARPS model

The ARPS model considers dynamic equations in tangent-
plane coordinatesxyz, and each meteorological variable is
decomposed as follows

ψ(x, y, z, t) = ψ0(z) + ψ̄(x, y, z, t)

whereψ0 corresponds to an atmospheric base state which
is horizontally homogeneous and̄ψ is a perturbation of
ψ0 [16, p. 117]. This decomposition shows the local concep-
tion of ARPS, since a base state that depends only ofz is
correct in a vicinity of the originx = y = z = 0. The
ARPS documentation [16] does not point out this local char-
acter, instead it asserts that the model is suitable for use on
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scales ranging from a few meters to hundreds of kilome-
ters [16, p. 113], but the validity domain is small, as is shown
below.

Chapter 7 of Ref. 16 describes the map projection options
to define the computational domain and says that “the map
factors are not included in the dynamic equations of ARPS
version 4.0, but will be in a future release”. “If one chooses
the Lambert conformal projection and uses a relatively small
domain (less that 1000 km), then the effect of the map fac-
tor is negligible” (the role of map projections is discussed in
Sec. 3). Accordingly, the model can be applied on a domain
D(L) as large as 1000×1000 km2. This assertion is incorrect
since

(i) on a domain larger than 700×700 km2, the troposphere
is below the tangentxy plane, and

(ii) the approximationg ∼ −gk is used in momentum
equations.

In fact, the model solves dynamic equations in terrain follow-
ing coordinatesξ = x, η = y, ζ = ζ (x, y, z) with ζ (x, y, z)
similar to Eq. (19) [16, p. 114, 199] which yield the horizon-
tal momentum equations [16, p. 119]

dv∗

dt
= −

[
∂

∂η
J3(p′ − αDiv∗) +

∂

∂ζ
J2(p′ − αDiv∗)

]
− ρ∗fu+

√
GDv

du∗

dt
= −

[
∂

∂ξ
J3(p′ − αDiv∗) +

∂

∂ζ
J1(p′ − αDiv∗)

]
+ ρ∗

[
fv − f̃w

]
+
√
GDu (24)

where the horizontal componentsg1, g2 of g are omitted;
J1 = −∂z/∂ξ, J2 = −∂z/∂η,

√
G = |∂z/∂ζ|, the notation

u∗ = ρ∗u with ρ∗ = ρ̄
√
G is used andαDiv∗ is an artifi-

cial divergence damping term to attenuate acoustic waves. In
fact, Eqs. (24) are obtained from the momentum equation for
a Boussinesq fluid

∂~V

∂t
+∇ · (~V ~V ) = −∇ p′

ρ0
+Bk

with B = −gρ′/ρ̄ andg ∼ −gk [16, p. 350]. As we saw in
Sec. 2.1, the last approximation is valid on a domainD(L)
bounded by100× 100 km2.

3. Map projections

Map projections have been used in numerical weather pre-
diction models to consider the earth’s sphericity [4,7,22,23].
Map projections generate curvilinear coordinatesxpypzp

which are defined below and will be calledprojection coor-
dinates.

The spherical coordinates of a point with position vector
R = ŶiY i are defined by

Y 1=r cosφ cosλ Y 2=r cosφ sinλ Y 3=r sinφ (25)

wherer = ‖R‖, φ is the latitude andλ the longitude. The
projection of a point(λ, φ, r = a) on the earth is a point
(xp, yp) in a cartesian systemxpyp given by a pair of equa-
tions

xp = xp(λ, φ) yp = yp(λ, φ). (26)

The center(λc, φc, r = a) of the domainD is projected on
the origin of the systemxpyp, xp (λc, φc) = yp (λc, φc) = 0.
If a point has spherical coordinates(λ, φ, r), its projection
coordinates(xp, yp, zp) are defined by Eq. (26) and

zp = r − a. (27)

Since conformal map projections are used in meteorology,
xp, yp, zp define an orthogonal curvilinear system.

3.1. Equations in projection coordinates

In order to obtain dynamic equations in projection coordi-
nates, we first consider some expressions in spherical coordi-
nates. Lets1 = λ, s2 = φ, s3 = r. The substitution of Eqs.
(25) intoR = ŶiY i yields orthonormal vectorŝsi = si/hsi

with si = ∂R/∂si andhsi =
∥∥si
∥∥. The relation between̂Yj

andŝi is

ŝi = RijŶj (28)

whereR is given by

R (λ, φ) =

 − sinλ cosλ 0
− sinφ cosλ − sinφ sinλ cosφ
cosφ cosλ cosφ sinλ sinφ

 (29)

and satisfiesRikRij = δij . HenceVY (3) is transformed as
follows:

VY = Ẏ jŶj = ṡi ∂Y
j

∂si
Ŷj = ṡihsiŝi = ui

sŝ
i

whereui
s ≡ ṡihsi. From the identityVY =V k

Y Ŷk=ui
sŝ

i

and Eq. (28) we getV k
Y = Rlku

l
s; this and Eq. (28) yield

AY = ŶkV̇ k = ŝjRjk

(
Rlku̇

l
s + Ṙlku

l
s

)
and therefore

AY = ŝjaj
s, aj

s ≡ u̇j
s + RjkṘlku

l
s. (30)

Let us now consider calculations in projection coordinates
with x1

p = xp, x2
p = yp, x3

p = zp. The orthogonality of coor-
dinatesxi

p means the orthogonality of the unitary vectors

x̂i
p = xi

p/hpi with xi
p = ∂R/∂xi

p, hpi =
∥∥xi

p

∥∥ . (31)

The contravariant vectors in spherical and projection coordi-
nates,ηj

s = ∇sj andηi
p = ∇xi

p, can be written as follows

ηj
s = ∇sj =

ŝj

hsj
ηi

p = ∇xi
p =

x̂i
p

hpi
. (32)
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These indentities and the chain rule yield

x̂i
p

hpi
= ∇xi

p = Ŷk
∂xi

p

∂Y k
= Ŷk

∂sj

∂Y k

∂xi
p

∂sj

= ∇sj
∂xi

p

∂sj
=

ŝj

hsj

∂xi
p

∂sj

or

x̂i
p = hpi

∑
j

ŝjh−1
sj ∂x

i
p/∂s

j ,

and hence

hpi =

∑
j

(
h−1

sj

∂xi
p

∂sj

)2
−1/2

.

For the Eqs. (26) and (27) we have∂xi
p/∂s

3 = δi3 and there-
forehp3 = 1,

hpi =

∑
j=1,2

(
1
hsj

∂xi
p

∂sj

)2
−1/2

(i = 1, 2), (33)

and

x̂i
p = Tij ŝj with Tij =

hpi

hsj

∂xi
p

∂sj
, (34)

without summation in repeated indices in the last equation,
andT3i = Ti3 = δ3i. We assume thatT = {Tij} defines a
rotation of ŝ1 and ŝ2, then x̂1

p × x̂2
p = x̂3

p, det(Tij) = 1,
and the normalization and orthogonality ofx̂i

p and ŝj yield
T11T22 − T12T21 = 1,

T 2
11 + T 2

12 = T 2
21 + T 2

22 = 1 T11T21 + T12T22 = 0. (35)

HenceT11 = T22 ≡ T1, T12 = −T22 ≡ T2 and

T =

 T1 T2 0
−T2 T1 0
0 0 1

 . (36)

If bip andbjs denote the physical components of a vectorb in
coordinatesxi

p andsj , respectively, that is,b = x̂i
pb

i
p = ŝjbjs,

Eq. (34) yields
bip = Tijb

j
s. (37)

In particular, the physical components ofVY in projection
coordinates are

u1
p = T1u

1
s+T2u

2
s u2

p = −T2u
1
s+T1u

2
s u3

p = u3
s. (38)

Another expression ofui
p is obtained by combining

VY =ŶkẎ k with Eq. (31) and the chain rule, namely

ui
p = hpiẋ

i
p. (39)

If ai
p denote the physical components ofAY in projection co-

ordinates, Eq. (37) yieldsai
p = Tija

j
s. From Eq. (37) we get

uj
s = Tmju

m
p and inserting it into Eq. (30) foraj

s yields

ai
p = Tij

(
d

dt
Tmju

m
p +RjkṘlkT

t
mlu

l
p

)
=
dui

p

dt
+Qimu

m
p (40)

where we useTijTmj = δim andQ ≡ TṪ
t
+TRṘ

t
Tt. In or-

der to compare the expressions in projection coordinates with
those reported in the literature, the following notation will be
used:

(i) us = u1
s, vs = u2

s, ws = u3
s,

(ii) λ̂ = ŝj , φ̂ = ŝ2, r̂ = ŝ3,

(iii) up = u1
p, vp = u2

p, wp = u3
p,

(iv) x̂p = x̂1
p, ŷp = x̂2

p, ẑp = x̂3
p, and

(v) hx = hp1, hy = hp2.

From (35) and (36) we get the antisymmetric matrixTṪ
t
,

RṘ
t

is obtained from (29) anḋsi = ui
s/hsi, and using (38)

one getsQimu
m
p or in matrix form

Q

 up

vp

wp

=

 −
(
r−1us tanφ+ ξ

)
vp + r−1upvp(

r−1us tanφ+ ξ
)
up + r−1wpvp

−r−1
(
u2

p + v2
p

)


with ξ = T1Ṫ2−T2Ṫ1. To compute the Coriolis force in pro-
jection coordinates we definee = 2Ωcosφ andf=2Ω sinφ.
In spherical coordinates we have2~Ω = eφ̂ + f r̂ and using
Eq. (37) we get2~Ω = x̂peT2 + ŷpeT1 + ẑpf and

2~Ω×VY = x̂p (ewpT2 − fvp) + ŷp (−ewpT1 + fup)

+ẑpe (vpT2 − upT1) .

Using (32) and the chain rule, the pressure gradient takes the
form

∇p =
(
x̂p

1
hx

∂

∂xp
+ ŷp

1
hy

∂

∂yp
+ ẑp

∂

∂zp

)
p.

Substituting the above results into the exact momentum equa-
tion (4) with F = 0 and the approximationga2/r2 ∼ g
yields

dup

dt
+

1
hxρ

∂p

∂xp
= vp

(
f +

us tanφ
r

+ ξ

)
− ewpT1 −

upwp

r

dvp

dt
+

1
hyρ

∂p

∂yp
= −up

(
f +

us tanφ
r

+ ξ

)
+ ewpT2 −

vpwp

r

dwp

dt
+

1
ρ

∂p

∂zp
+ g = e (upT1 − vpT2) +

u2
p + v2

p

r
(41)
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with us = upT1 − vpT2 [Eq. (37)],ξ = T1Ṫ2 − T2Ṫ1 and

d

dt
=

∂

∂t
+
up

hx

∂

∂xp
+
vp

hy

∂

∂yp
+ wp

∂

∂zp
.

3.2. Map projections and topography

Terrain elevation data are defined with respect to an ellip-
soidal earth model [38,39], but some models consider that the
data are defined with respect to a sphere without considering
the method to define such a sphere [10,16,28]. This omis-
sion is unfortunate because an incorrect choice of the sphere
radius can generate significant errors in the terrain elevation
data. For instance, the data base GTOPO30 [39] has data
defined with respect to the ellipsoid WGS84 (World Geode-
tic System 1984) with axesa = 6378, b = 6357 km [38].
The relative difference(a− b) /b is small but the difference
a − b = 21 km is equal to the average height of the tropo-
sphere. A method to define properly a spherical earth model
with the parameters of an ellipsoid is given in Ref. 24. Thus
we can consider that the terrain data are defined with respect
to a sphereSa with radiusa. If hs(λ, φ) denotes the ter-
rain elevation at point(λ, φ, r = a) of Sa, the set of points
{λ, φ, hs} defines the true earth surface which is calledgeoid.
In practice the geoid is known on a discrete set of points
{λk, φk, hsk}N

k=1 known as thedigital elevation model.
Some mesoscale models use the following procedure to

define the topography. If a terrain datum has spherical co-
ordinates(λ, φ, r = hs + a), a point(xp, yp) is computed
with a map projection (26) and it is assumed that the terrain
elevation at such a point ishs. Of course,(xp, yp) belongs
to thexpyp plane in the abstractxpypzp space, but of the ter-
rain height at the domain center(λc, φc, r = a) is defined
as the datumhs(λc, φc), thexpyp plane coincides with the
xy plane tangent to the sphereSa at (λc, φc). Additionally,
if the scale of thex, y, z andxp, yp, zp axes is the same, then
every point(xp, yp, zp ≡ hp) defines a point in thexyz co-
ordinate system (see details in Ref. 24). To clarify the ge-
ometrical meaning of(xp, yp, hp), let us remember that if
a pointP has spherical coordinates(λ, φ, r = hs + a), its
unique andcorrect cartesian coordinatesx, y, z are obtained
from Eqs. (5) and (25). Thus, if(xp, yp, hp) has coordinates
(λ, φ, r = hs + a), the corresponding cartesian coordinates
are given by x

y
z + a

 = R (λc, φc)

 (hs + a) cosφ cosλ
(hs + a) cosφ sinλ

(hs + a) sinφ

 (42)

whereR (λc, φc) is given by Eq. (29). This shows thatx, y, z
andxp, yp, zp are different. In particular, ifP is a point in the
geoid with coordinates(λk, φk, rk = hsk + a) and the cor-
responding projection coordinatesxpk, ypk, hpk are seen as
the cartesian coordinates of a pointP ′ in physical space, it
is clear theP ′ does not belong to the geoid in general. The
documentation of HOTMAC [15] and ARPS [16] does not
report the use of Eq. (42) to obtain the correct coordinates

xk, yk, zk; instead,xpk, ypk, hpk are considered to be valid
approximations ofxk, yk, zk,

xpk ∼ xk ypk ∼ yk hk ∼ zk,

and the set{xpk, ypk, hpk} is a reliable digital elevation
model of the geoid with respect to thexyz system; but this
is not necessarily the case. Since map projections generate a
minimum distortion of the sphereSa, xpk, ypk are similar to
xk, yk over a wide domainD(L). For instance, Figs. 4,5 of
Ref. 24 show that the relative error|ypk − yk| /yk is very
small for |yk| ≤ 1665 km with several map projections.
The problem lies inzpk; if (xpk, ypk) is close to the ori-
gin (x = 0, y = 0, z = 0) = (λc, φc, r = a), the difference
|zpk − zk| is small but it increases rapidly withxpk or ypk.
For example, the correct cartesian coordinates of a point on
Sa with projection coordinatesxpk = zpk = 0, ypk = 650
(km) arexk = 0, yk = 650 ± 8, zk = −33 (km). The data
hk reported in GTOPO30 for Mexico have an uncertainty of
±30 m [39]; in this case the approximationzk ∼ hk is valid
on a domainD(L) bounded by Ref. 24

Dh ∼ 60× 60 km2

which is very small for some mesoscale applications, as we
shall see below.

The ARPS documentation [16] describes three map pro-
jections that the user can employ to define the computational
domain and the topography. The latter is defined with pro-
jection coordinatesxpk, ypk, hpk when a terrain datum has
spherical coordinates(λk, φk, hk). If all calculations were
done in projection coordinates, the use of the “terrain data”
{xpk, ypk, hpk}would be correct. However, the model ARPS
combine the data{xpk, ypk, hpk}, with dynamic equations in
coordinatesxyσz. In fact, “the map factors are not included
in the dynamic equations of ARPS version 4.0”, but “If one
chooses the Lambert conformal projection and uses a rela-
tively small model domain (less than 1000 km), then the ef-
fect of the map factors is negligible” [16, Sec. 7.1]. This
assertion can lead to an incorrect use of the model because

(i) the momentum equations use the approximation
g ∼ −gk which is valid onD(L) ⊂100×100 km2,

(ii) the troposphere is below thexy plane whenD(L) is
larger than 700×700 km2, and

(iii) the data{xpk, ypk, hpk} are a reliable estimation of the
geoid on a domainD(L) ⊆60×60 km2.

According to Ref. 15, the model HOTMAC uses the Uni-
versal Transverse Mercator (UTM) projection [38] to define
the horizontal coordinates and the topography. This means
that the horizontal coordinates are projection coordinates
xp, yp defined by the UTM projection. However, in Sec. 2.3
we saw that the model equations are written and solved in
coordinatesxyz∗ (22). Thus, the validity domain of HOT-
MAC is Dh ∼60×60 km2, since the corresponding terrain
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data{xpk, ypk, hpk} and the approximationg ∼ −gk are
valid on such a domain. The domainDh is congruent with the
original conception of HOTMAC, which was developed for
meteorological simulations on domains that are 25×25 [12]
and 30×30 km2 [13]. However, this conception was missed
in Ref. 14, where the approximationg ∼ −gk and the UTM
system are used to assimilate meteorological data on a do-
mainD(L) ∼1300×1600 km2. In this domain the separation
between thexy plane and the sphereSa reaches up 33 km.
In an other application [20] a domain of 120×150 km2 was
used to analyze air pollution data in Mexico City; in this case
the separation betweenSa and thexy plane reaches 1.6 km.

The use of a terrain-following vertical coordinateσzp,
which is defined with a terrain elevationzhp(x, y) obtained
via map projections, introduces the error ofzhp(x, y) directly
into dynamic equations such as (23) and (24) . Of course, the
solution of this problem is simple since all that is needed is
to eliminate the use of map projections to define the topogra-
phy (which is a procedure without computational, physical or
mathematical advantages) and use a correct coordinate trans-
formation, as is done in Ref. 24.

3.3. Map projections in RAMS model

The correct use of map projections consists in transforming
terrain data and each meteorological variable into the space
of projection coordinatesxpypzp, and solving the dynamic
equations in such a space (equations such as (41)). This pro-
cedure is used in models RAMS and MM5 but there are some
inconsistencies, as we shall see below.

The horizontal domainD(L) and the terrain elevation of
model RAMS are defined with a rotated Polar-Stereographic
Projection (PSP) [10, p. 6], “where the pole of projection is
rotated to an area near the center of the domain, thus min-
imizing the distortion of the projection in the main area of
interest” and “The appropriate map factors are used in all hor-
izontal derivative terms”. Documentation [10] and additional
references [1,8,9] do not describe the procedure for introduc-
ing the “map factors” in horizontal derivatives, but there is an
inconsistency in the use of the PSP.

There are two ways to introduce the map factors into dy-
namic equations. The first one consists in using the map pro-
jection equations (26) of the PSP to transform the dynamic
equations in spherical coordinatesλφr into equations in pro-
jection coordinatesxpypzp, as was done in section 3.1. The
second way consists in using the Eqs. (26), (27) and (42)
to transform the equations in coordinatesxyz into equations
in coordinatesxpypzp. In each case, the exact acceleration
g = −ga2r−3R has to be used to get momentum equa-
tions in coordinatesxpypzp that are valid on any domain
D(L). However, in Sec. 2.2 we saw that the documenta-
tion [10, p. 6] and complementary Refs. 1 and 8 of RAMS
use the approximationg ∼ −gk. Therefore, independently
of the method used to introduce the map factors into model
equations, the momentum equations are valid on a domain
D ⊂200×200 km2. This domain is very small with respect
to that of 1764×1764 km2 used to analyze the meteorologi-

cal data of the project of Investigation sobre Materia Particu-
lada y Deterioro Atmosf́erico - Aerosol and Visibility Evalua-
tion (IMADA-AVER), which was conducted by the U.S. De-
partment of Energy and the Instituto Mexicano del Petróleo
in 1997 [21].

3.4. Model MM5 version 2

Versions 2 and 3 of model MM5 [26,27] have the same choice
of three map projections for defining the model domain. The
documentation of Program Terrain [28] describes, in detail,
the use of these map projections in defining the topography.
The model computes the input information in projection co-
ordinatesxpyp, andzp is replaced by the terrain-following
coordinate

σ =
p0(zp)− ptop

p∗(xp, yp)
(43)

whereptop is a constant,p∗ = ps(xp, yp) − ptop, ps is the
pressure on the topography, andp0(zp) is the pressure of
an atmospheric reference state which obeys the hydrostatic
equationdp0/dzp = −gρ0(zp), and the equation of state
p0 = RT0ρ0 with T0 = T00 + A log(p0/p00). From these
equations, the expression ofzp in terms ofσ follows, and
using the chain rule one gets the relationships(

∂

∂xp

)
zp

=
(

∂

∂xp

)
σ

− σ

p∗
∂p∗

∂xp

∂

∂σ(
∂

∂yp

)
zp

=
(

∂

∂yp

)
σ

− σ

p∗
∂p∗

∂yp

∂

∂σ

∂

∂zp
= −ρ0g

p∗
∂

∂σ
(44)

which has to be used to get the correct momentum equations
in coordinatesxpypσ, but to simplify the notation we use the
left side of Eq. (44).

The momentum equations reported in the documentation
of MM5 version 2 [26] are

dup

dt
+

1
ρ

∂p

∂xp
=vp

(
f + up

∂m

∂y

)
−ewp−

upwp

a
+Du (45)

dvp

dt
+

1
ρ

∂p

∂yp
= −up

(
f + up

∂m

∂y

)
− vpwp

a
+Dv (46)

dwp

dt
+

1
ρ

∂p

∂zp
+ g = eup +

u2
p + v2

p

a
+Dw (47)

with
d

dt
=

∂

∂t
+ up

∂

∂xp
+ vp

∂

∂yp
+ wp

∂

∂zp

where the gradient pressure is written in terms ofxpypzp,
instead of using the right side of Eq. (44). In the next sec-
tion we show that the correct Eqs. (41) can be rewritten with
m = 1/hx = 1/hy and

r−1us tanφ+ ξ = up∂m/∂yp − vp∂m/∂xp.

Thus, a comparison with the correct equations (41) shows
that:
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(i) the Eqs. (45)-(47) omitm in the horizontal pressure
gradient and the advection terms ofd/dt ,

(ii) in Eq. (45) the term−vp∂m/∂xp is absent andewp

has to be replaced byewpT1,

(iii) in Eq. (46) the terms−vp∂m/∂xp andewpT2 are ab-
sent,

(iv) in Eq. (47) the term−evpT2 is absent andeup has to
be replaced byeupT1.

In order to obtain additional information about the the-
oretical formulation of MM5 version 2, the equations of
Ref. 25 cited in the documentation of MM5 version 2 were
considered. In this reference the hydrostatic approximation
is applied to the vertical momentum equation and the vertical
coordinateσ Eq. (43), is used. The momentum equations are

∂p∗u

∂t
= −∂p

∗uu

∂x
− ∂p∗σ̇u

∂x
− σRdTp

∗

p

∂p∗

∂x
− p∗

∂φ

∂x

+ fp∗(v − vg) + p∗(Fu +Du + Pu + Cu)

∂p∗v

∂t
= −∂p

∗uv

∂x
− ∂p∗σ̇v

∂x
− fp∗(u− ug)

+ p∗(Fv +Dv + Pv + Cv) (48)

withAu=p∗(Fu+Du+Pu+Cu),Av=p∗(Fv+Dv+Pv+Cv),
whereF ,D, P , C,R are horizontal eddy diffusion, horizon-
tal fourth order smoothing, vertical eddy flux convergence,
cumulus transport term, and radiative heating, respectively.
From Eqs. (48) we get the following conclusions: (i) The
absence of the factorshi =

∥∥∂R/∂xi
p

∥∥ implieshi = 1 and
therefore the horizontal coordinates are the cartesian coor-
dinatesxy of a plane tangent to the sphereSa. Thus, the
horizontal components ofg arenecessaryfor modeling on
a domain larger than 100×100 km2. However, (ii) the hor-
izontal components ofg or their linear approximation are
absent in (48) and therefore the approximationg ∼ −gk is
used, although the Eqs. (48) were used in Ref. 25 to simulate
convection on a region with each side measuring 600 km.

3.5. Model MM5 version 3

The momentum equations of model MM5 version 3 [27] are

dup

dt
+
m

ρ

∂p

∂xp
= vp

(
f + up

∂m

∂yp
− vp

∂m

∂xp

)
− ewp cosα− upwp

a
+Du

dvp

dt
+
m

ρ

∂p

∂yp
= −up

(
f + up

∂m

∂yp
− vp

∂m

∂xp

)
+ ewp sinα− vpwp

a
+Dv

dwp

dt
+

1
ρ

∂p

∂zp
+ g = e (up cosα− vp sinα)

+
u2

p + v2
p

a
+Dw, (49)

with

d

dt
=

∂

∂t
+mup

∂

∂xp
+mvp

∂

∂yp
+ wp

∂

∂zp

wherem is the map-scale factor,e = 2Ω cosφ, f = 2Ω sinφ,
whereφ is the latitude,α = λ− λc, λ is longitude andλc is
central longitude. These equations are similar to the correct
ones (41) but there are some differences.

The Mexican meteorological service uses model MM5
version 3 [29,30] to carry out the operational analysis on a
domainD ∼3330×3330 km2 defined by a Lambert projec-
tion [29]. The projection is [28]

xp = Rs(φ) sin(kα) yp = −Rs(φ) cos(kα) (50)

with

Rs(φ) = (am cosφ)/k,

m = [tanB/ tanB1]
k cosφ1/ cosφ,

B = 2−1 (90◦ − φ) ,

B1 = 2−1 (90◦ − φ1)

and

k =
log [cosφ1/ cosφ2]

log [tan (π/4− φ1/2) / tan (π/4− φ2/2)]
.

In this case the Eqs. (33) yieldhx=hy=r/am, T1=cos kα,
T2=− sin kα, ξ=−kus/r cosφ. Some algebraic manipula-
tions andr ∼ a yield

us tanφ
r

+ ξ = up
∂m

∂yp
− vp

∂m

∂xp
(51)

and the correct Eqs. (41) are

dup

dt
+
m

ρ

∂p

∂xp
= vp

(
f + up

∂m

∂yp
− vp

∂m

∂xp

)
dvp

dt
+
m

ρ

∂p

∂yp
− ewp cos kα− upwp

a

dvp

dt
+
m

ρ

∂p

∂yp
= −up

(
f + up

∂m

∂yp
− vp

∂m

∂xp

)
dvp

dt
+
m

ρ

∂p

∂yp
− ewp sin kα− vpwp

a

dwp

dt
+

1
ρ

∂p

∂zp
+ g = e (up cos kα+ vp sin kα)

dvp

dt

+
m

ρ

∂p

∂yp
+
u2

p + v2
p

a
, (52)
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where the approximationr ∼ a is used. According to (49),
with Du = Dv = Dw = 0, the MM5 equations are

dup

dt
+
m

ρp

∂pp

∂xp
= vp

(
f + up

∂m

∂y
− vp

∂m

∂x

)
− ewp cosα− upwp

a

dvp

dt
+
m

ρp

∂pp

∂yp
= −up

(
f + up

∂m

∂y
− vp

∂m

∂x

)
+ ewp sinα− vpwp

a

dwp

dt
+

1
ρp

∂pp

∂zp
+ g = e (up cosα− vp sinα)

+
u2

p + v2
p

a
. (53)

We can see the following differences:

(i) MM5 equations (53) havecosα and− sinα instead
of the correct coefficientscos kα and sin kα, respec-
tively. Factork appears inT1, T2 by means of the Jaco-
bian matrix∂xi

p/∂s
j of the projection equations (50),

whereas the MM5 equations omit such a factor. To get
an idea of the magnitude ofk we havek = 0.34 for
φ1 = 15◦, φ2 = 25◦ and k = 3.4 for φ1 = 35◦,
φ2 = 55◦.

(ii) Although the termsewp cosα andewp sinα are small,
their incorrectness increases the error when the equa-
tions (53) are solved numerically.

(iii) The incorrect termseup cosα, −evp sinα are small
with respect tog, but their magnitude is equal to or
larger than that ofdwp/dt. For example, for large scale
synoptic systemsdwp/dt ∼ 10−7 ms−2, eup cosα ∼
10−3 ms−2 for |φ| ≤ 300 andfvp sinα ∼ 10−3 ms−2

for |φ| ≥ 450 [37, Table 2.2]. This invalidates the use
of thewp−equation to compute vertical motions which
are important for the prognostic of rainfall.

The Mercator projection used by MM5 is [28]

xp = aα yp = a ln [(1 + sinφ)/ cosφ] . (54)

In this case, the Eqs. (33) yieldhx = hy = r/am with
m = 1/ cosφ, T1 = 1, T2 = ξ = 0 and usingr ∼ a. Equa-
tion (51) holds true and therefore the correct Eqs. (41) have
the form

dup

dt
+
m

ρp

∂pp

∂xp
= vp

(
f + up

∂m

∂y
− vp

∂m

∂x

)
− ewp −

upwp

r

dvp

dt
+
m

ρp

∂pp

∂yp
= −up

(
f + up

∂m

∂y
− vp

∂m

∂x

)
− 0− vpwp

r

dwp

dt
+

1
ρp

∂pp

∂zp
+ g = eup +

u2
p + v2

p

r
. (55)

According to (49) the equations of MM5 version 3 are

dup

dt
+
m

ρp

∂pp

∂xp
= vp

(
f + up

∂m

∂y
− vp

∂m

∂x

)
− ewp cosα− upwp

a

dvp

dt
+
m

ρp

∂pp

∂yp
= −up

(
f + up

∂m

∂y
− vp

∂m

∂x

)
+ ewp sinα− vpwp

a

dwp

dt
+

1
ρp

∂pp

∂zp
+ g = e (up cosα− vp sinα)

+
u2

p + v2
p

a
. (56)

There are the following differences:

(i) The Eqs. (56) have the coefficientscosα andsinα in-
stead of the correct ones,1 and 0, respectively. We
haveT2 = ξ = 0 since the Jacobian matrix∂xi

p/∂s
j

of (54) is diagonal.

(ii) As above, the incorrect terms in horizontal momentum
equations (−ewp cosα and+ewp sinα) are small but
they increase the numerical errors.

(iii) The incorrect termseup cosα and−evp sinα in the
vertical momentum equation invalidate its use in com-
putingwp (and predicting rainfall) since at least one
term is larger thandwp/dt, as we saw above [37].

The documentation of MM5 version 3 [27, pp. 8-5] com-
ments that Eqs. (49) include terms (eup andevp) represent-
ing the usually neglected components of the Coriolis force,
but the examples above show that such terms are incorrect in
projection coordinates.

4. Conclusions

There has been an important effort to develop and calibrate
computational mesoscale models which use the approxima-
tion g ∼ −gk [1,4-17]. This approximation yields a sim-
ple momentum equation useful for theoretical analysis [3],
but not for numerical simulations of real atmospheric flows
on a domain larger than 100×100 km2. The estimation of
this validity domain (Sec. 2.1) ignores important aspects of
a real flow such as stratification or time dependence. Since
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these factors can generate qualitatively different flows from
the exact and approximate momentum equations (8) and (9)
because of the nonlinearities of such equations [40], the va-
lidity domain of the approximationg ∼ −gk may be signif-
icantly smaller. On the other hand, Pielke [17] suggests that
the numerical modeling of some real mesoscale flows may
require a domain with 5000 km on a side. A partial solution
to the conflict is the use of the exact value ofg, which al-
lows the use of the tangent-plane systemxyz on a domain
D(L) ⊂700×700 km2, since the troposphere is below thexy
plane forD(L) ⊃700×700 km2. Of course, the optimal solu-
tion is the development of computational models that explic-
itly consider the earth sphericity. The use of map projections
into the dynamic equations is legitime if the latter are written
correctly in projection coordinatesxpypzp.

The mesoscale models considered in this work have an in-
creasing number of users in Mexican institutions devoted to
meteorological research [31-35] and operational meteorolog-
ical analysis [29,30]. This has been motivated by the results
found by some users. For instance, some authors [33] claim
that version 2 of MM5 generates the meteorological prod-
ucts that Mexican Institutions should use to prevent disasters
caused by severe storms in México City, but the analysis of
sections 3.4 and 3.5 shows that versions 2 and 3 of MM5
cannot be used to predict rainfall. These incongruences show
that the data available on Mexican territory are not enough to
validate mesoscale models.

The use of mesoscale models in México has not consid-
ered the solution of operational problems inherent in any me-
teorological network. For instance, the Mexican meteorolog-
ical service uses the model MM5 version 3 to predict mete-
orological conditions. This model defines the initial condi-
tions with data generated by global meteorological models,
which in turn use the data from the rawisondes in Mexico at
12 hr observation intervals. The meteorological service has
the open problem of validating data from rawisonde and sur-
face stations, but this problem is not considered with the use
of MM5. Of course, the reliability of MM5 depends heav-
ily on the data from global models which in turn depend on
the quality of data provided by the Mexican meteorological
service. To this we must to add the fact that the estimation
of meteorological conditions with the data from a network is
an unsolved open problem [41]. This means that the initial
conditions used by a model like MM5 are not optimal and
therefore the resulting numerical predictions have to be care-
fully validated [42].
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18. M.A. Nuñez,Nuovo Cimento C26 (2003) 469.

Rev. Mex. F́ıs. 51 (3) (2005) 217–229



ANALYSIS OF SOME ATMOSPHERIC MESOSCALE MODELS 229

19. G.C. McVittie,Quat. J. Mech. Appl. Math1 (1948) 174.

20. Instituto Mexicano del Petróleo and Los Alamos National Lab-
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en el estudio de la dińamica atmosf́erica regional de Ḿexico,
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