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The factorization of nonlinear second-order differential equations proposed by Rosu and CémegjorP2005 is extended to equations
containing quadratic and cubic forms in the first derivative. A few illustrative examples encountered in physics are provided.
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La factorizacbn de ecuaciones diferenciales de segundo orden no lineales propuesta por Rosu y @oezegP2005 se extiende a
ecuaciones con potencias cuailras y dibicas en la primera derivada. Se proporcionan algunos ejenmgioasfilustrativos.

Descriptores: Ecuacon de segundo orden no lineal; factoriZatipotencias de la primera derivada.

PACS: 02.30.Hq; 11.30.Pb

1. Introduction plied to find exact solutions of many nonlinear ODEs [20],
and to nonlinear PDEs, mainly in the context of traveling
Finding exact solutions of nonlinear differential equationsWaves [21-29]. The factorization technique was further ex-
has long been an active field of research because of the insigighded to a class of coupledénard equations, which also
they offer in the understanding of many processes in physicdncluded a coupled version of the modified Emden equation,
biology, chemistry, and other scientific areas. Among thePY Hazraet al[30]. Their algorithm can be generalized to
methods developed to find analytical solutions of nonlineaf!igher order scalar and coupled ODEs, but one has to pay
ordinary differential equations (ODEs) and nonlinear IOar_the price of mcrease_d algebraic complexny_. In addition, Tl-
tial differential equations (PDEs) we enumerate the trunca?Vari et al [31] factorized even more complicated quadratic
tion procedure in Painlé analysis [1], the Hirota bilinear 2nd mixed Lénard-type nonlinear systems, among which the
method [2]1 the tanh function method [3,4], the Jacobi e”ip_coupled Mathews-Lakshmanan nonlinear oscillators.

tic function method [S], and the Prelle-Singer method [6,7]. | this paper, we generalize the factorization technique

The factorization method, which in mathematics hasthat we introduced previously [22,23] for nonlinear equations
roots that go to Euler and Cauchy, is a well-known techniquevith a monomial function in the first derivativee., with a
used to find exact solutions of linear second order ODEs in adamping term which can be also nonlinear, to nonlinear equa-
algebraic manner. In physics, it has attracted much interest d®ns with polynomial functions of second and third degree
an elegant way of solving fundamental eigenvalue problemn the first derivative. In the following section, we review the
in quantum mechanics, and later due primarily to its naturafactorization in the monomial case. Next, we present the fac-
association with supersymmetric quantum mechanics [8—14jorization of nonlinear equations with polynomial function
The latter approach has been extended to some types of noof second degree in the first derivative and illustrate it with
linear ODEs [15], and to more dimensions [16—19] as well.a couple of examples. The last section is devoted to the fac-
In recent times, the factorization technique has been aperization of nonlinear equations with polynomial function of
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third degree in the first derivative. We end up the paper witthas been introduced a decade ago and contributed to its popu-
the conclusion section. larity [33]. An illustration of this technique in the case of the
cubic Ginzburg-Landau equation can be found in [34]. No-

2. Factorization of nonlinear equations with a tice that interchanging the factoring functions turns (8) and

monomial of first degree in the first deriva- () into
. d -
tive o1+ a2y =—F. (10
Nonlinear equations of the type
Bros = 28 )
Yss + [y, 8)ys + F(y,s) =0, 1) Y

where the subscriptdenotes the derivative with respectsto  Which correspond to equations
andF(y,s) andf(y, s) are arbitrary functions aj(s) ands,

can be factorized as follows [32]: yss + f(y)ys + F(y) =0. (12)
D, — . 8)|[Ds — . 8)|y(s) =0, 2 If sis a traveling variable, this suggests kinematic relation-
: P2 )l 1. )ly(s) @) ships between the kink solutions of (7) and (12) evolving un-
whereD, = d/ds. Expanding (2), one can use the following der the different nonlinear dampings$y) and f(y).
grouping of terms [22, 23]: Finally, in the casg’ = 0 andF'(y, s) = V(s)y, the fac-
toring functions¢’s depend only ors and the equations (1)
do
D%y — <¢1 + ¢ + 1y> Dy are linear ones
% Yss + V(s)y=0. (13)
+ (9192 — 961/0s)y =0, () The factorization conditions take the simplified form
and comparing Eq. (1) with Eq. (3), we get the conditions b1+ o =0, (14)
91, _ _ d
o1+ P2t oy 7 a @ ¢1¢2—%:V(3)- (15)
01 P9 — % = £y ) . (5) From (14), one hag; = —¢o = ¢ which upon sub-
s Yy

stitution in (15) leads to the well known Riccati equation

Any factorization like (2) of a scalar equation of the form —d¢/ds — ¢* = V(s) defining the Sctisdinger potential in
given in Eq. (1) allows us to find a compatible first order non-guantum mechanics in terms of the factoring function. The

linear differential equation, interchange of; with ¢, produces the partner Riccati equa-
tion do/ds — ¢> = V(s) of much use in supersymmetric
[Ds — ¢1(y, )|y = Dsy — ¢1(y, 8)y =0, (6) guantum mechanics [35, 36].

whose solution provides a particular solution of (1). In other

words, if we are able to find a couple of functions(y,s) 3. Factorization of nonlinear equations with
andg¢s(y, s) such that they factorize Eq. (1) in the form (2), polynomial function of second degree in the
solving Eq. (6) allows to get particular solutions of (1). The first derivative

advantage of this factorization has been shown in the impor-

tant particular case when there is no explicit dependence obet us consider the following nonlinear second order ODE

s, i.e,, for equations with variable coefficients
Yss + f(W)ys + Fy) =0, () Yss + ()2 + g(y,8)ys + Fy,s) =0.  (16)
for which the factorization conditions are A factorization of the form
dgy
Ot g2t =1 (8) [Ds+ f(y, 8)ys — b2(y, 5)] [Ds — ¢1(y, )]y =0, (17)
b1 by = F(y) 7 ©) is possible if the following constraint equations are satisfied:
- 991 = 18
when the two unknown functiong, (y) and ¢,(y) can be R fy,s)or)y=—g(y.s), (18
found easily by factoring®(y) when it is a polynomial or
written as a product of two functions. This property of the b1 — 9¢1 — F(y,s) (19)
nonlinear factorization has been successfully used when it Os

Rev. Mex. Fis63(2017) 218-222



220 H.C. ROSU, O. CORNEJO#REZ, M. FEREZ-MALDONADO AND J.A. BELINCHON

There are also cases when one can work with= 0. Insuch  which is separable. The solution

cases, the constraint equations take the form Y
F(y) = Cy e 2/ "0, (30)

0
¢1 + (;;j + f(y, 5)¢1> y=—9(,s),  (20)  with C an integration constant, provides the formiivhich
for given f allows the factorization of the equation. However,
_0¢1 _ Fl(y,s) (1) as simple as it may look, the condition (30) is quite restric-
Os y tive.

In physical applications, differential equations with
squares of the first derivative are encountered in highly non-
linear areas, such as cosmology [38] and gravitation theories,

és = —g(y, ) . 22) e.g, Weyl conformal gravity [39] ang'(R) gravity [40], but
’ occasionally they show up in other branches as well. In the
As an example of a degenerate case, we mention the equf(.g_llowing, we will give two examples of factorization of such
tion for the radial function of the isotropic metric in general €duations.

Finally, the degenerate case correspondingto= 0,
which also impliesF’ = 0, leads to the simple constraint

relativity [37] L
3.1. Anequation in Weyl's conformal cosmology
3 1
Yss — ;yf — ¥ =0, (23)  The following equation
for which (22) is written as Yes — —y2 + yj =0, (31)
yooow
1 . . .
O = —. (24)  wherea ando are real constants, arises in intermediate calcu-
5 lations concerning the vacuum solution of the field equations
The solution in Weyl's conformal gravity [41,42]. Let us try the factoriza-
1 a fi
PN ek (29 Ton o
2 (2. 20) D= atmspy=0. ()
wherea andb are integration constants, can be found by ele- Y
mentary means [37]. Therefore, the following constraint equations should be sat-
The most important application is when no explicit de- isfied
pendence o occurs in the equation and so neitifémor Sy yo 1
the ¢’s depend ors when the constraints are similar to (8) v - (33)
and (9). If moreover one assumgs= ¢, = ¢ then the sec- 5 5
ond constraint equation provides the factorization function as b1 — ﬁqgly + %y =0. (34)
Y Ay
o(y) = F(y) _ (26) Equation (34) is separable and generates the function
Yy o1(y,s) = f(s)y*~1, then, from Eq. (33) we obtain
Substituting (26) in the first constraint equation leads to the ~ d¢1 9 o1

ST ) =y () =~ (39)

following expression for theg coefficient ds  Os

1 [F) . which impliesa = o, and f(s) = 1 + ¢, Wherec; is an
gly) = —= Yy {3 + (1/ + Qf(y)) y} ] (27)  arbitrary constant.

2 Y F Assuming the following [27]
For givenf(y) andF(y), the latter equation gives the coeffi- (Ds — ¢1(y,5))y = Q, (36)
cientg(y) for which the nonlinear equation can be factorized
in the form then, we get )
o —ola=o. (37)
D+ Fwys = VFW)/y] y

with solution = kqy®. Therefore, we get the first order
X [Ds - F(y)/y} y=0. (28)  equation

1
’r - o _ «@
There are equations of the latter type which do not present a Y (s * Cl) 4 Foy™, (38)

linear term in the first derivative. This impliggy) = 0, i.e. which can be rewritten in the form

3+(Z;j’+2f(y)>y:0, (29) y’—<i+k1)y“=0, (39)
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wherek; is an integration constant. The general solution ofunder the constraint equations
Eq. (39) is given in the form

f(y. )y = —g(y, s) (49)
y=((a=1)(~kis —ky —Ins))" /""" (40) 9
b1+ 62+ oy = —h(y,s) (50
whereks is an integration constant. F&f = 0 anda = 5, y
. . . . F ’S
we obtain the following particular solutions b1y — broy = (y,5) ' (51)
1 .
=+ , 41 i i '
Y1,2 V2 (—hy — In(s))1/4 (41) On thie other hand, for any symmetric affine connection
. I' = (T(s,y)), the so-called projective connectics-
yag =+ L (42) sociated tol" [44] which carries all information about un-
i V2(—ky —In(s))1/4 " parametrized geodesics Dfis determined by the equation
3.2. Langmuir-type equations Yss — Daoys + (05, —2015)y.
1 2 2
A particular example of the type (16) is the following equa- — (=2 ys + 17, = 0. (52)
tion Thus, one finds that equations (52) can be factored if
2
@ + i @ 7@ lyQ —1 -0 bty = (F%2_21—‘}2)/P§2 (53)
ds?2 = 3y \ ds ds 3 y D61
+ ¢y + ——y =T}, —2I? 54
which wheny = 4/3 provides Langmuir’s radigb function b1+ ¢ Jy Y H 12 4)
occurring in the formula for the space charge between coaxial T2
cylinders [43]. Using (19), one can choose 102 — 15y = f : (55)

by =— <1 B 1) by = 1 ( n 1) (43) We do not present any particular case. Rather we no-
! y) ' 2 3 y) tice that for givenls, (53) providesp;. Then, substituting

in (54), we gety,, but in the end (55) should be still satisfied.

This looks complicated and makes the success of the method

less probable.

Substituting (43) in (18), one obtaiRs= 5/3, which shows
that the Langmuir case cannot be factoredy K 5/3, we
can obtain a particular solution from the first-order differen-

tial equation .
5. Conclusion
1
<Ds +1- y> y=0=ys+y-1=0, (44)  1n summary, we have discussed here a simple factorization
method of complicated nonlinear second-order differential
which is equations containing quadratic and cubic polynomial forms
y(s)=Ce*+1, (45)  in the first derivative, and we have presented some exam-

ples. Only those equations with the coefficients satisfying
certain constraints involving the factoring functions can be
factorized. By doing this, one can seek solutions of simpler
4. Factorization of nonlinear equations with first order nonlinear differential equations, corresponding to

polynomial function of third degree in the the first factorization bracket from the right. This works fine

where( is the integration constant.

first derivative when there is only a linear term in the first derivative. When
the powers of the first derivatives are more than one, the con-
It is well known that equations of the type straint conditions on the factoring functions become more

complicated, and the factorization method is less appropri-
Yss I (Y, )y2+9(y, 8)yZ+h(y, s)ys+F(y,5) =0, (46)  ate. In general, the factorization method can still work when
the coefficients of the nonlinear equation do not depend ex-
plicitly on the independent variable, because the constraint
equations are less restrictive in these cases.

where the coefficient functions are mappings from two-
dimensional disks to the set of real numb&?$,— R, define
projective connections [44, 45].

Such equations allow for the factorization

[Ds + f(yv S)y2 - ¢2(y7 5)} [DS - ¢1(y7 5)] Y= 0 ) (47)
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