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Extension of a factorization method of nonlinear second
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The factorization of nonlinear second-order differential equations proposed by Rosu and Cornejo-Pérez in 2005 is extended to equations
containing quadratic and cubic forms in the first derivative. A few illustrative examples encountered in physics are provided.
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La factorizacíon de ecuaciones diferenciales de segundo orden no lineales propuesta por Rosu y Cornejo-Pérez en 2005 se extiende a
ecuaciones con potencias cuadráticas y ćubicas en la primera derivada. Se proporcionan algunos ejemplos fı́sicos ilustrativos.
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1. Introduction

Finding exact solutions of nonlinear differential equations
has long been an active field of research because of the insight
they offer in the understanding of many processes in physics,
biology, chemistry, and other scientific areas. Among the
methods developed to find analytical solutions of nonlinear
ordinary differential equations (ODEs) and nonlinear par-
tial differential equations (PDEs) we enumerate the trunca-
tion procedure in Painlevé analysis [1], the Hirota bilinear
method [2], the tanh function method [3, 4], the Jacobi ellip-
tic function method [5], and the Prelle-Singer method [6,7].

The factorization method, which in mathematics has
roots that go to Euler and Cauchy, is a well-known technique
used to find exact solutions of linear second order ODEs in an
algebraic manner. In physics, it has attracted much interest as
an elegant way of solving fundamental eigenvalue problems
in quantum mechanics, and later due primarily to its natural
association with supersymmetric quantum mechanics [8–14].
The latter approach has been extended to some types of non-
linear ODEs [15], and to more dimensions [16–19] as well.
In recent times, the factorization technique has been ap-

plied to find exact solutions of many nonlinear ODEs [20],
and to nonlinear PDEs, mainly in the context of traveling
waves [21–29]. The factorization technique was further ex-
tended to a class of coupled Liénard equations, which also
included a coupled version of the modified Emden equation,
by Hazraet al [30]. Their algorithm can be generalized to
higher order scalar and coupled ODEs, but one has to pay
the price of increased algebraic complexity. In addition, Ti-
wari et al [31] factorized even more complicated quadratic
and mixed Líenard-type nonlinear systems, among which the
coupled Mathews-Lakshmanan nonlinear oscillators.

In this paper, we generalize the factorization technique
that we introduced previously [22,23] for nonlinear equations
with a monomial function in the first derivative,i.e., with a
damping term which can be also nonlinear, to nonlinear equa-
tions with polynomial functions of second and third degree
in the first derivative. In the following section, we review the
factorization in the monomial case. Next, we present the fac-
torization of nonlinear equations with polynomial function
of second degree in the first derivative and illustrate it with
a couple of examples. The last section is devoted to the fac-
torization of nonlinear equations with polynomial function of
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third degree in the first derivative. We end up the paper with
the conclusion section.

2. Factorization of nonlinear equations with a
monomial of first degree in the first deriva-
tive

Nonlinear equations of the type

yss + f(y, s)ys + F (y, s) = 0 , (1)

where the subscripts denotes the derivative with respect tos
andF (y, s) andf(y, s) are arbitrary functions ofy(s) ands,
can be factorized as follows [32]:

[Ds − φ2(y, s)][Ds − φ1(y, s)]y(s) = 0 , (2)

whereDs = d/ds. Expanding (2), one can use the following
grouping of terms [22,23]:

D2
sy −

(
φ1 + φ2 +

dφ1

dy
y

)
Dsy

+ (φ1φ2 − ∂φ1/∂s) y = 0 , (3)

and comparing Eq. (1) with Eq. (3), we get the conditions

φ1 + φ2 +
∂φ1

∂y
y = −f , (4)

φ1 φ2 − ∂φ1

∂s
=

F (y, s)
y

. (5)

Any factorization like (2) of a scalar equation of the form
given in Eq. (1) allows us to find a compatible first order non-
linear differential equation,

[Ds − φ1(y, s)]y ≡ Dsy − φ1(y, s)y = 0 , (6)

whose solution provides a particular solution of (1). In other
words, if we are able to find a couple of functionsφ1(y, s)
andφ2(y, s) such that they factorize Eq. (1) in the form (2),
solving Eq. (6) allows to get particular solutions of (1). The
advantage of this factorization has been shown in the impor-
tant particular case when there is no explicit dependence on
s, i.e., for equations

yss + f(y)ys + F (y) = 0, (7)

for which the factorization conditions are

φ1 + φ2 +
dφ1

dy
y = −f , (8)

φ1 φ2 =
F (y)

y
, (9)

when the two unknown functionsφ1(y) and φ2(y) can be
found easily by factoringF (y) when it is a polynomial or
written as a product of two functions. This property of the
nonlinear factorization has been successfully used when it

has been introduced a decade ago and contributed to its popu-
larity [33]. An illustration of this technique in the case of the
cubic Ginzburg-Landau equation can be found in [34]. No-
tice that interchanging the factoring functions turns (8) and
(9) into

φ1 + φ2 +
dφ2

dy
y = −f̃ , (10)

φ1 φ2 =
F (y)

y
, (11)

which correspond to equations

yss + f̃(y)ys + F (y) = 0 . (12)

If s is a traveling variable, this suggests kinematic relation-
ships between the kink solutions of (7) and (12) evolving un-
der the different nonlinear dampingsf(y) andf̃(y).

Finally, in the casef = 0 andF (y, s) = V (s)y, the fac-
toring functionsφ’s depend only ons and the equations (1)
are linear ones

yss + V (s)y = 0 . (13)

The factorization conditions take the simplified form

φ1 + φ2 = 0 , (14)

φ1 φ2 − dφ1

ds
= V (s) . (15)

From (14), one hasφ1 = −φ2 = φ which upon sub-
stitution in (15) leads to the well known Riccati equation
−dφ/ds − φ2 = V (s) defining the Schr̈odinger potential in
quantum mechanics in terms of the factoring function. The
interchange ofφ1 with φ2 produces the partner Riccati equa-
tion dφ/ds − φ2 = Ṽ (s) of much use in supersymmetric
quantum mechanics [35,36].

3. Factorization of nonlinear equations with
polynomial function of second degree in the
first derivative

Let us consider the following nonlinear second order ODE
with variable coefficients

yss + f(y, s)y 2
s + g(y, s)ys + F (y, s) = 0 . (16)

A factorization of the form

[Ds + f(y, s)ys − φ2(y, s)] [Ds − φ1(y, s)] y = 0 , (17)

is possible if the following constraint equations are satisfied:

φ1 + φ2 +
(

∂φ1

∂y
+ f(y, s)φ1

)
y = −g(y, s), (18)

φ1φ2 − ∂φ1

∂s
=

F (y, s)
y

(19)
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There are also cases when one can work withφ2 = 0. In such
cases, the constraint equations take the form

φ1 +
(

∂φ1

∂y
+ f(y, s)φ1

)
y = −g(y, s), (20)

−∂φ1

∂s
=

F (y, s)
y

. (21)

Finally, the degenerate case corresponding toφ1 = 0,
which also impliesF = 0, leads to the simple constraint

φ2 = −g(y, s) . (22)

As an example of a degenerate case, we mention the equa-
tion for the radial function of the isotropic metric in general
relativity [37]

yss − 3
y
y 2

s −
1
s
ys = 0 , (23)

for which (22) is written as

φ2 =
1
s

. (24)

The solution

y =
1
2

a√
1 + bs2

, (25)

wherea andb are integration constants, can be found by ele-
mentary means [37].

The most important application is when no explicit de-
pendence ons occurs in the equation and so neitherF nor
the φ’s depend ons when the constraints are similar to (8)
and (9). If moreover one assumesφ1 = φ2 = φ then the sec-
ond constraint equation provides the factorization function as

φ(y) =

√
F (y)

y
. (26)

Substituting (26) in the first constraint equation leads to the
following expression for theg coefficient

g(y) = −1
2

√
F (y)

y

[
3 +

(
Fy

F
+ 2f(y)

)
y

]
. (27)

For givenf(y) andF (y), the latter equation gives the coeffi-
cientg(y) for which the nonlinear equation can be factorized
in the form

[
Ds + f(y)ys −

√
F (y)/y

]

×
[
Ds −

√
F (y)/y

]
y = 0 . (28)

There are equations of the latter type which do not present a
linear term in the first derivative. This impliesg(y) = 0, i.e.

3 +
(

Fy

F
+ 2f(y)

)
y = 0 , (29)

which is separable. The solution

F (y) = Cy−3e−2
∫ y f(u)du , (30)

with C an integration constant, provides the form ofF which
for givenf allows the factorization of the equation. However,
as simple as it may look, the condition (30) is quite restric-
tive.

In physical applications, differential equations with
squares of the first derivative are encountered in highly non-
linear areas, such as cosmology [38] and gravitation theories,
e.g., Weyl conformal gravity [39] andf(R) gravity [40], but
occasionally they show up in other branches as well. In the
following, we will give two examples of factorization of such
equations.

3.1. An equation in Weyl’s conformal cosmology

The following equation

yss − α

y
y 2

s +
yσ

x2
= 0 , (31)

whereα andσ are real constants, arises in intermediate calcu-
lations concerning the vacuum solution of the field equations
in Weyl’s conformal gravity [41,42]. Let us try the factoriza-
tion (

Ds − α

y
ys

)
(Ds − φ1(y, s)) y = 0 . (32)

Therefore, the following constraint equations should be sat-
isfied

∂φ1

∂s
= −yσ−1

s2
(33)

φ1 − α

y
φ1y +

∂φ1

∂y
y = 0. (34)

Equation (34) is separable and generates the function
φ1(y, s) = f(s)yα−1, then, from Eq. (33) we obtain

∂φ1

∂s
=

∂

∂s
(yα−1f(s)) = yα−1f ′(s) = −yσ−1

s2
(35)

which impliesα = σ, andf(s) = 1
s + c1, wherec1 is an

arbitrary constant.
Assuming the following [27]

(Ds − φ1(y, s)) y = Ω, (36)

then, we get

Ω′ − α
y′

y
Ω = 0. (37)

with solutionΩ = k0y
α. Therefore, we get the first order

equation

y′ −
(

1
s

+ c1

)
yα = k0y

α, (38)

which can be rewritten in the form

y′ −
(

1
s

+ k1

)
yα = 0 , (39)
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wherek1 is an integration constant. The general solution of
Eq. (39) is given in the form

y = ((α− 1) (−k1s− k2 − ln s))1/1−α
. (40)

wherek2 is an integration constant. Fork1 = 0 andα = 5,
we obtain the following particular solutions

y1,2 = ± 1√
2(−k2 − ln(s))1/4

, (41)

y3,4 = ± i√
2(−k2 − ln(s))1/4

. (42)

3.2. Langmuir-type equations

A particular example of the type (16) is the following equa-
tion

d2y

ds2
+

1
3y

(
dy

ds

)2

+ γ
dy

ds
+

1
3

y2 − 1
y

= 0

which whenγ = 4/3 provides Langmuir’s radialβ function
occurring in the formula for the space charge between coaxial
cylinders [43]. Using (19), one can choose

φ1 = −
(

1− 1
y

)
, φ2 = −1

3

(
1 +

1
y

)
. (43)

Substituting (43) in (18), one obtainsγ = 5/3, which shows
that the Langmuir case cannot be factored. Ifγ = 5/3, we
can obtain a particular solution from the first-order differen-
tial equation

(
Ds + 1− 1

y

)
y = 0 =⇒ ys + y − 1 = 0 , (44)

which is
y(s) = Ce−s + 1 , (45)

whereC is the integration constant.

4. Factorization of nonlinear equations with
polynomial function of third degree in the
first derivative

It is well known that equations of the type

yss+f(y, s)y 3
s +g(y, s)y 2

s +h(y, s)ys+F (y, s) = 0 , (46)

where the coefficient functions are mappings from two-
dimensional disks to the set of real numbers,D2 → R, define
projective connections [44,45].

Such equations allow for the factorization
[
Ds + f(y, s)ẏ2 − φ2(y, s)

]
[Ds − φ1(y, s)] y = 0 , (47)

with the compatible first order equation

[Ds − φ1(y, s)] y ≡ ys − φ1(y, s)y = 0 , (48)

under the constraint equations

f(y, s)φ1y = −g(y, s) (49)

φ1 + φ2 +
∂φ1

∂y
y = −h(y, s) (50)

φ1φ2 − φ1sy =
F (y, s)

y
. (51)

On the other hand, for any symmetric affine connection
Γ = (Γi

jk(s, y)), the so-called projective connectionas-
sociated toΓ [44] which carries all information about un-
parametrized geodesics ofΓ is determined by the equation

yss − Γ1
22y

3
s + (Γ2

22−2Γ1
12)y

2
s

− (Γ1
11−2Γ2

12) ys + Γ2
11 = 0 . (52)

Thus, one finds that equations (52) can be factored if

φ1y = (Γ2
22−2Γ1

12)/Γ1
22 (53)

φ1 + φ2 +
∂φ1

∂y
y = Γ1

11−2Γ2
12 (54)

φ1φ2 − φ1sy =
Γ2

11

y
. (55)

We do not present any particular case. Rather we no-
tice that for givenΓ’s, (53) providesφ1. Then, substituting
in (54), we getφ2, but in the end (55) should be still satisfied.
This looks complicated and makes the success of the method
less probable.

5. Conclusion

In summary, we have discussed here a simple factorization
method of complicated nonlinear second-order differential
equations containing quadratic and cubic polynomial forms
in the first derivative, and we have presented some exam-
ples. Only those equations with the coefficients satisfying
certain constraints involving the factoring functions can be
factorized. By doing this, one can seek solutions of simpler
first order nonlinear differential equations, corresponding to
the first factorization bracket from the right. This works fine
when there is only a linear term in the first derivative. When
the powers of the first derivatives are more than one, the con-
straint conditions on the factoring functions become more
complicated, and the factorization method is less appropri-
ate. In general, the factorization method can still work when
the coefficients of the nonlinear equation do not depend ex-
plicitly on the independent variable, because the constraint
equations are less restrictive in these cases.
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26. P.G. Est́evez, Ş. Kuru, J. Negro, and L.M. Nieto,J. Phys. A:
Math. Theor.40 (2007) 9819.

27. D.S. Wang and H. Li,J. Math. Anal. Appl.343(2008) 273.

28. E.S. Fahmy,Chaos, Solitons and Fractals38 (2008) 1209.

29. S.C. Mancas and H.C. Rosu,Phys. Lett. A377(2013) 1434.

30. T. Hazra, V. K. Chandrasekar, R. Gladwin Pradeep, and M.
Lakshmanan,J. Math. Phys.53 (2011) 023511.

31. A.K. Tiwari, S.N. Pandey, V.K. Chandrasekar, and M. Laksh-
manan,Appl. Math. Comp.252(2015) 457.
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