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Based on numerical calculations of the two-slit problem, we object van Kampen’s proposal that the collapse of the wave function is an

unnecessary postulate of Quantum Mechanics if the measuring apparatus is included in a unitary evolution of the system-apparatus.

argue that van Kampen'’s interpretation does not substitute the collapse postulate, it is not precise and it appears impracticable.
Keywords: Wavepacket collapse; quantum measurement.

Basados enalculos nunéricos del problema de las dos rejillas, objetamos la propuesta de van Kampen de que el colapso da tiefondia
sea un postulado innecesario de la Kidca Cintica si el aparato de medici se incluye en una evolusi unitaria del conjunto sistema-
aparato. Argimos que la interpreta@n de van Kampen no sustituye el postulado del colapso, no es precisa y parece ser impracticable.

Descriptores: Colapso de la funéin de onda; medibn clantica.

PACS: 03.65.Bz

The meaning of the collapse of the wave function is alreadyle. Hence, for times after the system-apparatus interaction
an old and unabated discussion . In the formalism set up btook place, longer than the coherence time, the probabilities
von Neumann [1], and in fact already pointed out by Heisenfor occurrence of the macroscopic states can be considered as
berg [2], it is discussed that there is a need for an additiondiclassical”. That is, even though there may be many possi-
postulate that establishes that onceeasuremerdf a quan-  ble macroscopic states, only one will occur without any pos-
tum system has been performed, the unitary evolution of theible interference from the other macroscopic states. Since
system wave vector ceases to be valid and the state sudderdgich macroscopic state is entangled with a given state of the
collapsesand takes one of the allowed eigenstates of the opmicroscopic system under investigation, following van Kam-
erator corresponding to the measured quantity. What constpen, one can identify that when the interaction took place the
tutes ameasuremerandhow the system takes on the given wave function of the microscopic system collapsed, it col-
value of the wave function are also age-old questions anthpsed from the wave function before the interaction with the
there is a plethora of discussions in the literature [3]. It isapparatus to that entangled with the given macroscopic state
certainly not our purpose to discuss them here. There is, howef the apparatus.

ever, an alternative point of view very clearly summarized by  Although the previous explanation is very appealing and
van Kampen [4] and certainly advocated by other authors, ippears to demote the postulate of the wave function collapse
which it is argued that there is actually no need to stipulatgo aderivedconcept, we do not find it satisfactory. The pur-
the additional postulate of the collapse of the wave funCtionpose of this note is to raise a several-fold objection to van
Instead, the alternative idea is based on the fact that the meﬂampen’s interpreta’[ion of the C0||apse of the wave function.
suring apparatus is also a quantum system and that the agf the same vein as van Kampen’s, it is not our intention to
of measurings just an interaction with the system under in- philosophize about Quantum Mechanics, but rather to limit
vestigation. Therefore, the full description of the combinedourselves as to how Quantum Mechanics is and should be
system-apparatus should yield and explain the “collapse” ofised in understanding physical phenomena. It is mainly in
the wave function. The requirement for the measuring apthis sense that we find that van Kampen's interpretation does

paratus to be thus considered is that it should have many depot substitute for the collapse postulate, it is not precise, and
grees of freedom and that initially be prepared in a metastablg appears impossible to put in to practice.

state, such that the measurement leaves it in a stable state The collapse of the wave function and the problem of

and the transition becomaseversiblein the macroscopic meagyrement are intimately linked but they are not exactly
sense. One first ambiguity on van Kampen's scheme is thahe same problem. The first is the necessary concept of mak-

the macroscopic states of the apparatus are not precisely dgyy contact between, on the one hand, theoretical descriptions
fined, or identified, with single quantum eigenstates; rathe

> ‘ ' . temwithoutthe apparatus. The concept is necessary because
time) the interference among those states is almost neglig e nature of the quantum mechanical description of nat-

We
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ural phenomena, the uncertainty principle, the core of Quanthe measuring apparatus that detects the position of the elec-
tum Mechanics, can only be consistent with a multitude of retron makes the wave functiorollapseto that position and,
alizations rather than with a single one. Moreover, Quantunirom there, a new wave function fans out. Since the detec-
Mechanics is very precise asafl the possible outcomes of tor is “on the other side” of the screen, the new wave func-
a given measurable variabded of their probabilities of oc-  tion does not pass through the holes and, therefore, shows
currence, but it is silent as to which of them will actually be no interference. Van Kampen argues that it is unnecessary
realized. For the purposes of discussing our objections to vato appeal to the collapse of the wave function. Instead, he
Kampen’s arguments, we would also like to pose the concepiroposes that the measuring apparatus be considered as par
of the collapse in an equivalent manner. That is, one can aof an overallunitary system-apparatus description. The “col-
gue that one does not need to follow the time evolution of thdapse” is then taken into account by the observation that the
wave function and that what really matters is the measurablstates of the detector, consistent when there is no detection,
guantities such as the eigenvalues of the observables and thee orthogonal to the states when ther@etection. Even
transition probabilitiesbetweengiveninitial and final states though the apparatus is in a superposition of states, it is as-
(corresponding to a complete set of commuting observablesumed that there can be no interference between those state:
or, in the standard interpretation, to a complete set of specby appealing to the behavior of macroscopic systems. When
fied measurements) notwithstanding what happens in the irthere is detection, van Kampen shows generally [4] that the
terim. This is equivalent to the collapse since the transitiorinteraction with the apparatus acts as a “source” and a wave
probabilities indicate the multitude of the final states and in &unction indeed fans out from the position of the apparatus.
given experiment only one of them occurs. In the process of “measuring” the detector makes an irre-

The measurement problem deals more with the loss of cosersible transition that “permanently” registers the position
herence among macroscopic states. That is, what van Kanef the electron. However, and because of the unitarity of the
pen’s has clearly shown is that interaction of microscopicevolution, we emphasize that for the cases when the appara-
systems with macroscopic objects leads, to a large extent, fols does not make the irreversible transition, and purposely
a conversion of quantum probabilities into classical probadoes not detect, it still does detect. That is, even when it is
bilities and that this result can be used to understand howot “detected”, the resulting electron wave function is nev-
a measuring apparatus works. Indeed, the &tihger cat ertheless modified from the case when there was no detector
“paradox” can easily be resolved in this way: the cat acts agt all. In our opinion this poses a serious objection to van
a measuring apparatus for the decaying atom that triggers théampen’s arguments [4]. van Kampen himself [4] points out
“killing” mechanism. Thus, van Kampen’s measurement de0 this aspect but somehow plays it down and his argument
scription is very helpful in understanding how macroscopic,is that, in any case, when the “detection” is successful the
“classical” objects (such as ourselves) appear to follow theollapse occurs. We shall discuss below whether one can say
rules of classical probabilities (based on our ignorance) rather
than those of quantum mechanics with their “nonintuitive”
interference effects.

In order to show our objections explicitely we shall an-
alyze the Young two-slit problem using a (streamlined) ver-
sion of van Kampen’s measuring apparatus. We mention that

van Kampen himself [5] has given an approximated calcula- ®
tion of his model, and for that matter Feynman in hésc-
tures[6] also describes those results. Here we show an ex- =19

through a two-slit screen with and without the presence of a
measuring apparatus. Let us briefly review the model for the y
two-slit experiment and the typical explanation given when A
trying to find out which slit the particle went through [7].

A two-dimensional “electron” initially prepared in a wave

packet state (or in a plane-wave state) incides normally on

a screen with two “holes” and its position is registered on a
“photographic plate” placed on the other side of the screen, —'> Xo
see Fig. 1. Under these conditions the probability of find- X

ing the particle on the plate, at any given time, shows theFlGURE 1. A sketch of the system, showing the box where the

interference caused by the presence of the two slits. Itis lavolution is calculated indicating the position of the screen with

gued that if one tries to “see” which hole the particle wentyhe o siits. The two positions of the atom refer to the cases of
through, the interference is destroyed. (For definiteness, l@tigs. 3 and 4. The dotted line is the positianwhere the register-
us consider the case where one looks for the eleaftamit  ing plate is placed. To the left of the screen the initial wave packet
passes through the holes.) The simplest explanation is th&t also sketched.
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that in both cases,e. detection and no detection, the wave occur. This may be considered to be the coherence time in
function collapses. We shall argue that this ambiguity at thehis model.
macroscopic level indicates that the necessity of the collapse The Schédinger equation for this problem yields the fol-
has not been avoided. This fact, namely, that the detectdowing set of equations:
influences the evolution of the system even if the detection 1
does not occur, hz_is already been dlscugsed by other authorsiit(;s — (—2V2 V() + Q) & — iu(7) ZUEW ©)
see Refs. [8-10], in the search for a satisfactory understand- =
ing of the measurement problem.

We now present the model and the exact (albeit numeri@nd
cal) results. As stated above thgstems one electron and 0 1_, L
a screen with two slits. The measuring apparatus is an atom Zawk = (_QV +Vs(F) + k) Vg +iu(Pogd, (4
togethemwith the electromagnetic radiation field. The atom is
initially prepared in an excited state with a forbidden transi-for all k. In order to be able to perform explicit numerical
tion to the ground state. If the electron passes near the atornalculations we now make further assumptions on the appa-
the latter becomes polarized and the atomic transition is theratus. These assumptions, although making it lose some of
possible with the emission of a photon in any direction. Theits generality, preserve the main requirements to qualify it as
photon can be further registered, but van Kampen indicatean “apparatus”. These are: (a) the atomic transition is very
that it is not necessary to include it since the decayed atorsharp in energy; that is, the width of the transition line is
acts as a permanent record of the passage of the electron; wensidered much smaller than any other relevant energy pa-
return to this point below. Considering the energy of the atonrameter. This implies that as the atom makes the transition
in the ground state to be zero afidn the excited state, the with energys2, the frequency of the emitted photorkiss .

k

Hamiltonian of the system-apparatusiis=£ ¢ = m = 1) (b) The emission is isotropic; that is, there is equal probabil-
1 1 ity for emission in any direction. Assumptions (a) and (b) are
H= _§v2 + Vo (7) + §Q (1+0.) implemented through the value of the coupling coefficients

vi. Namely, we approximate; = v, ~ v if & =~ Q, and

o g ot vz = 0 otherwise. Note that, still, there are snfinite num-

+%:ka’“ak ulr)os Z:vk <ak a’“) () ber of possible directions for the emitted photons, and thus,
one still faces an infinite number of equations (3) and (4).

whereV;(7) is the potential of the two-slit screen; the third However, using a very particular choice of initial conditions
and the fourth terms represent the atom and the radiation fret@e problem can drastically be reduced to only two equations:
Hamiltonians and the last term is the interaction between théar in the past, the overall state is such that the electron is in
electron and the apparatus; are the Pauli matrices. The a statep(7,t — —oo), the atom in the excited state), and
interaction term is the product of the electric field times thethe radiation field with no photons present,
dipole moment operator and whose strength depends on the
functionu(r); this, in turn, is supposed to be different from [U(t — —00)) = (7t — —00) |+30) . ®)
zero only in a small region of space. The coefficientsn- o . R
volve theynormalizationgofthefiepld modes and the form factorThIS |mpI|e§ t.h.atwﬁ(r’t — —00) = Oﬂfor all k. We now
for the allowed values of in the dipole approximation. choose the initial state of the electro(y’, ¢ — oo) as awave

The states of the overall system-apparatus may be writte qclfefc_locallze_o_l faf away from the two-slit screen. Using
as this initial condition in Egs.(3) and (4) together with assump-

tions (a) and (b), it is very easy to check that for/al ©,

— (7 . (7| Yz(7 t) = 0 for all time. For|k| = Q all ¢z(7, t) are indeed
[P = (8 1+0) + Z%(T,t) ‘ k@) different from zero, but they are atlentical In words this
means thaif the atom emits, the probability of further find-
The statd+;0) represents the atom in the excited state andng the electron at a given positiohis independenbf the
no photonS, while the Sta*e_; E> is the atom in the ground direction in which the photon was emitted. Thus, we need to

solveonly two equations of the infinite set (3) and (4). This

can clearly be seen if we set

k

state and one photon with momentum The amplitudes
¢(r,t) and (7, t) are the electron wave functions when

there is no atomic transition and when there is, respectively. -1/2
The orthogonality of the atom-radiation states guarantees no V(7 t) = (7 t) (Z) (6)
interference between these electronic amplitudes. On this k=0

point, we must assume that, practice it would be very dif- a
ficult to produce a further measurement on the apparatus tha{1

would yield interference between those states. Since both the 1/2
measuring atom and the wave packet have finite spatial ex- U= Z ; (7)
tensions, there is a finite time during which the transition can k=0
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where) ", ., is the sum of all the electromagnetic modes
with wave vector magnitude equal o The coupled equa-

tions to be solved now are 10,%,Y )P ——
.0 1, . -
i—¢p=—=V + V(M +Q)p—iu(@)oy (8)
ot 2
and
.0 1, S . -
ig =5V + V() +Q Y +iu(F) 0o, (9)

subject to the aforementioned initial conditions. It can also
be verified that while the overall state is given by Eq.(2), the
normalization condition reduces to

PRI TY, N 2o LM Aeessihond

y
FIGURE 2. Probabili z0,y, to)|? of finding the electron at
/dgr (7, t)|2 + /dgr (7, t)|2 =1 (10) the registering pIatet)p/)I‘zéfe(doirg, soe)L. Fig. 1, fgr the case when

there is no atom
with ¢ andi being not orthogonal, in general. We stress that
while the apparatus is still macroscopic in the sense of having Figures 3 shows the probabilitiess(7,%)> and
a very large number of degrees of freedom, the analytic simw,(,:" to)|2 when the detecting atom is placedarone of the
plification to only two amplitudes is not only a consequencesjits. The cases (A) and (B) correspond to different strengths
of assumptions (a) and (b) above, but also a consequence gf the interaction of the electron with the atom. We note that
the peculiar initial condition. The irreversibility of the mea- s the strength is increased, the wave functi¢r ¢,) of the
surement remains guaranteed, since once the atom emits«fetected” electron is more noticeable and, indeed, it shows
remains in the ground state,) . no interference (though again, some diffraction due to the fi-

We now proceed to discuss the numerical results ohite size of the holes, see below). At the same time, the wave
Egs.(8) and (9). The equations were solved using the spliftunction ¢(, ¢,) of the electron that was not “detected” be-
operator method [11]. In Fig. 1 we show the position of comes more and more deformed precisely in the region where
the screen with the slits and the position of the atom. Inthe detected part appears, clearly showing the presence of the
order to facilitate the numerical calculation, the “walls” of atom. This can easily be seen by comparing Figs. 2 and 3.
the screen are not infinite but rather a very high and sharp The set of Figs. 4 show the probabilitigs(7, t,)|> and
Gaussian function. We have verified, not shown here, thal (7, ,)|?> when the detecting atom is placed exactly in the
the tunneling through those barriers is completely negligiblemiddle between the slits. Again, the different cases corre-
for the times that we choose to analyze the wave functionsspond to increasing electron-atom interaction strength and,
The strength function(r) of the atom in Eqgs.(8) and (9) is once more, the presence of the atonbath probability am-
also taken to be a Gaussian function. The compo#entd)  plitudes is evident. For a clearer conclusion of this point
of the initial state of the electron is a minimum uncertaintywe ask the reader to compare Fig. 2 with the probability
wave packet in the propagating directiorand constant in  |(7, t,)|? of Figs. 3 and 4.
they direction, parallel to the screen. The center of the wave  we would like to point out to the small oscillations of the
packet moves initially with a given velocity pointing towards amplitude ofi(7, t,) in Figs. 3 and 4. These oscillations are
the screen. The componenti, 0) of the initial state is cho-  due to the diffraction caused by the finite sizes of the slits and
sen to be zero. We chose arbitrary values for all variableghe detecting atom. Thatis, those oscillations are not a sign of
such that the numerical procedure worked well and the remterference of the wave function passing through both slits.
sults were easily interpretable. In Figs. 3a and 3b the diffraction is more clearly seen because

In the following set of figures, we show the probabilities the atom is placed "asymmetrically” with respect to the slits
|p(7, to)|* and |y (7, to)|? of finding the electron at the posi- (notice that the oscillations are also asymmetric). In Fig. 4a
tion ¥ = (xo,y) with z¢ a fixed position to the right of the the effect is not seen at the scale of the plot but in Fig. 4b the
screen and as a function of the vertical variapleThe time  effect is again visible because of the larger intensity of the
to is arbitrary but the same for all figures. electron-atom interaction, and it is symmetric in this case.

In Fig. 2 we show the probability) ; (7, )| for the case It is also instructive to verify that if one chooses “not to
whenthere is no atonand, therefore, the componen(r, ¢) see” whether the atom emitted or not, the sum of the proba-
equals zero all the time. We can clearly see the expected symhilities |¢(7, to)|? + | (7, to)|? does noequal the probability
metric interference pattern, with some diffraction due to the|¢ (7, to)|> when there is no atom. That is, contrary to many
finite width of the slits. This is the result with which we shall pedagogical and qualitative discussions, the result is different
compare the following cases. if the detector is present from the case when there is no de-
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FIGURE 3. Probabilities of finding the electron at the registering FiGuRE 4. Probabilities of finding the electron at the registering
plate placed inco, when the atom is placegboveone of the slits,  plate placed inzo, when the atom is placed in tenterbetween
see Fig. 1.|¢(zo,y,t0)|? is the pattern when the atodoes not  the slits, see Fig. 1]¢(zo,y,t0)|? is the pattern when the atom

emit a photon, and(zo, y, to)|? is when the atonemitsa pho-  does noemit a photon, ant)(zo, y, to)| is when the atonemits
ton. (A) and (B) refer to different strengthisof the electron-atom  a photon. (A) and (B) refer to different strengtisf the electron-
interaction. atom interaction.

tector, whether one chooses to see or not, simply because tkien. However, it is evident that the wave function is modified
evolution of the system occurs under different Hamiltoniansin either case and there is no right to call one case a “measure-
See Fig. 5. ment” and not the other one. This is a very important objec-
Our main objection is that van Kampen’s connotation oftion to van Kampen'’s arguments; that is, for the case when
collapse applies equally well to the case when the detectiothere is no transition, even though the apparatus remains in
is successful and to the case when it is not, as opposed to hismetastable state, one must consider it as “stable” as when
stance that the collapse occurs only when the detection actthe transition occurred. This is the only way that one could
ally happened. In the figures above one sees that the waweposteriori distinguish one case from the other and attach a
function ¢ (7, t) collapses taeitherto ¢(7,t) or to (7, t) “classical” probability [ di]+/|? to the “successful” case and
when the apparatus is present. This is more clearly seen ifi di]$|* to the “unsuccessful” one. However, even with this
cases (B) of Figs. 3 and 4. To call only to the case wherobservation, van Kampen'’s idea still seems very attractive be-
there is detection one of “collapse”, because the wave funceause it appears to show that the interaction of a macroscopic
tion seems tespatially collapse to the position of the atom, system with a microscopic oraways“collapses” the wave
is arbitrary: The usual connotation of the concept of collapsdunction of the latter, in the sense that after the interaction has
refers to the reduction of an arbitrary wave function to antaken place (and for times longer than the coherence time) the
eigenstate of the measured observables. The apparatus of vdifferent macroscopic states occur with “classical” probabil-
Kampen is designed to measure the position of the electroities. However, the origin of the probabilities is not classical
at the atom’s location and, it could be argued, the collapssince there is no underlying dynamics that if we knew, we
should only apply to the case when the atom makes the transtould in principle predict the outcome with probability equal
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measurements. The values of those probabilities are com-
pletely dependent on the Hamiltonian used to evolve the sys-

2
[0y 1) tem. The actual probabilities in a given set of actual experi-
|¢(x0,y,t0)|2 + ments may serve to deduce, if not the whole state, at least a
(XY t)F —— partial knowledge of it. And in most practical cases one is

interested in the probabilities (or states) corresponding to the
evolution under a givesystenHamiltonian in theabsencef
the apparatus. In other words, Quantum Mechaisiased in
everyday problems (such as atomic spectra, specific heats and
superconductivity) to find out states of systems that have at-
tached a particular system Hamiltonian. How oneasures
the corresponding physical quantities in order to extract the
probabilities pertaining to a given statenota problem of
D ———— e ——— Quantum Mechanics, but rather, it is part of our tasks to be
y able to subtract the effect of the measuring apparatus and find
FIGURE 5. Comparison of the probabilitiéss (zo0, y, £o)[2 when out the state in the at?s_ence of_the detector. As a simple ex-
there is no atomwith the sum(zo, , t0)|? + [v(x0, y. to)|? of ample, we aII_ believe it is meamng_ful and _u_sefuktmwthe
Fig. 3A. The latter is the total probability of finding the electron at natural linewidth of, say, an atomic transition; such knowl-

the plate, independently of whether the atom registers or not. Note?dge can only bénferred from exper.iments that necessarily
that these quantities adifferent include the effects of the surroundings (other than the elec-

tromagnetic vacuum) and the measuring apparatus [12].

to one. It is impossible because the origin is quantum me- We find that van Kampen’s analysis is an excellent exam-
chanical. In other words, the macroscopic states also cople of an actual measuring apparatus that shows that Quantum
lapse. We have seen that even when the purported measufdechanics can indeed describe a measurement; specially the
ment did not take place, the apparatus itself also “collapsedfact that in order to go from “quantum” to “classical” proba-
to other of its macroscopic states, and we do not know whictilities the apparatus must have a large number of degrees of
one. And again, in a given realization of the experiment, onlyfreedom and that the partial knowledge of the whole wave
one state will occur. Thus, we are still facing the “problem” function yields an increase in entropy of the macroscopic
that we can only predict the transition probabilities betweerstate [4]. And indeed, van Kampen'’s analysis reflects the fact
initial and final states, which we have argued is equivalent téhat a measurement “collapses” the wave function. However,
the concept of the collapse. It is the lack of coherence bemany questions remain blurred and imprecise. For instance,
tween macroscopic states, and therefore of interference, thathen exactly do the macroscopic states lose their coherence?
seems to free us from the particle-wave dilemma and, thug)ow precise and definite is this incoherence? how large a
of the apparent need for the collapse. But the collapse corsystem must be to be considered macroscopic? how rigorous
cept is concealed there and we have appealed to it in order &nd precise can we make these statements as a matter of prin-
give meaning to the realization of the different macroscopicciple? We should not disregard the experimentalist ingenuity
states. in preparing macrostates with longer and longer coherence

The second objection, not unrelated to the previous ondiMes. As a matter of fact, the possible success of the quan-
is that even if we accept that the collapse happened only wheifM computers will rest on the ability of maintaining many
the transition occurred, the result is manifestly apparatusdubits coherent for a long time [13]. _
and measurement-dependent. In van Kampen’s original treat- 10 Summarize, the point of van Kampen is whether the
ment, Ref. [4], he plays down the role of the photon that thecollapsefollows from the rules of Quantum Mechanics or
atom emits. It is said that the photon can be registered by Ot Our point is that the “problem” of the collapse, and its
photographic plate that one needs not to include in the de2€€d, is & consequence of the uncertainty principle, the core
scription since the decayed atom acts as a permanent recof. Quantum Mechanics, and we cannot dispose wiitiin
Indeed. However, if one includes the photographic plate intgh€ theory. The collapse postulate is what tells us that only
the unitary description, the interference patterns will be dif- On€ of the realizations occurs. For microscopic systems the
ferent from the case when it is not included. Thus, we endollapse concept is more poignant because the interference
up with a theory whose results depend on what we use tgffects cannot be neglected, but it remains true for macro-

measure them. Although this critique may seem more of £COPIC Systems.

practical use rather than of a fundamental difficulty, we find

that this interpretation, in a sense, defeats the purpose of th&cknowledgment
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