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On the necessity of the postulate of the collapse of the wave function:
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Based on numerical calculations of the two-slit problem, we object van Kampen´s proposal that the collapse of the wave function is an
unnecessary postulate of Quantum Mechanics if the measuring apparatus is included in a unitary evolution of the system-apparatus. We
argue that van Kampen’s interpretation does not substitute the collapse postulate, it is not precise and it appears impracticable.
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Basados en ćalculos nuḿericos del problema de las dos rejillas, objetamos la propuesta de van Kampen de que el colapso de la función de onda
sea un postulado innecesario de la Mecánica Cúantica si el aparato de medición se incluye en una evolución unitaria del conjunto sistema-
aparato. Arg̈uimos que la interpretación de van Kampen no sustituye el postulado del colapso, no es precisa y parece ser impracticable.

Descriptores: Colapso de la función de onda; medición cúantica.
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The meaning of the collapse of the wave function is already
an old and unabated discussion . In the formalism set up by
von Neumann [1], and in fact already pointed out by Heisen-
berg [2], it is discussed that there is a need for an additional
postulate that establishes that once ameasurementof a quan-
tum system has been performed, the unitary evolution of the
system wave vector ceases to be valid and the state suddenly
collapsesand takes one of the allowed eigenstates of the op-
erator corresponding to the measured quantity. What consti-
tutes ameasurementandhow the system takes on the given
value of the wave function are also age-old questions and
there is a plethora of discussions in the literature [3]. It is
certainly not our purpose to discuss them here. There is, how-
ever, an alternative point of view very clearly summarized by
van Kampen [4] and certainly advocated by other authors, in
which it is argued that there is actually no need to stipulate
the additional postulate of the collapse of the wave function.
Instead, the alternative idea is based on the fact that the mea-
suring apparatus is also a quantum system and that the act
of measuringis just an interaction with the system under in-
vestigation. Therefore, the full description of the combined
system-apparatus should yield and explain the “collapse” of
the wave function. The requirement for the measuring ap-
paratus to be thus considered is that it should have many de-
grees of freedom and that initially be prepared in a metastable
state, such that the measurement leaves it in a stable state
and the transition becomesirreversible in the macroscopic
sense. One first ambiguity on van Kampen’s scheme is that
the macroscopic states of the apparatus are not precisely de-
fined, or identified, with single quantum eigenstates; rather,
they are loosely defined in terms of collections or densities of
states. Because of the many degrees of freedom involved, the
macroscopic states tend to lose coherence among themselves
such that after a certain characteristic time (i.e. the coherence
time) the interference among those states is almost negligi-

ble. Hence, for times after the system-apparatus interaction
took place, longer than the coherence time, the probabilities
for occurrence of the macroscopic states can be considered as
“classical”. That is, even though there may be many possi-
ble macroscopic states, only one will occur without any pos-
sible interference from the other macroscopic states. Since
each macroscopic state is entangled with a given state of the
microscopic system under investigation, following van Kam-
pen, one can identify that when the interaction took place the
wave function of the microscopic system collapsed, it col-
lapsed from the wave function before the interaction with the
apparatus to that entangled with the given macroscopic state
of the apparatus.

Although the previous explanation is very appealing and
appears to demote the postulate of the wave function collapse
to aderivedconcept, we do not find it satisfactory. The pur-
pose of this note is to raise a several-fold objection to van
Kampen’s interpretation of the collapse of the wave function.
In the same vein as van Kampen’s, it is not our intention to
philosophize about Quantum Mechanics, but rather to limit
ourselves as to how Quantum Mechanics is and should be
used in understanding physical phenomena. It is mainly in
this sense that we find that van Kampen’s interpretation does
not substitute for the collapse postulate, it is not precise, and
it appears impossible to put in to practice.

The collapse of the wave function and the problem of
measurement are intimately linked but they are not exactly
the same problem. The first is the necessary concept of mak-
ing contact between, on the one hand, theoretical descriptions
and predictions of the evolution of aclosedsystem under a
given system Hamiltonian and, on the other hand, a given ex-
perimental situation that is supposed to be able to extract the
eigenvalues and probabilities of the different states of the sys-
temwithout the apparatus. The concept is necessary because
of the nature of the quantum mechanical description of nat-
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ural phenomena, the uncertainty principle, the core of Quan-
tum Mechanics, can only be consistent with a multitude of re-
alizations rather than with a single one. Moreover, Quantum
Mechanics is very precise as toall the possible outcomes of
a given measurable variableandof their probabilities of oc-
currence, but it is silent as to which of them will actually be
realized. For the purposes of discussing our objections to van
Kampen’s arguments, we would also like to pose the concept
of the collapse in an equivalent manner. That is, one can ar-
gue that one does not need to follow the time evolution of the
wave function and that what really matters is the measurable
quantities such as the eigenvalues of the observables and the
transition probabilitiesbetweengiven initial and final states
(corresponding to a complete set of commuting observables,
or, in the standard interpretation, to a complete set of speci-
fied measurements) notwithstanding what happens in the in-
terim. This is equivalent to the collapse since the transition
probabilities indicate the multitude of the final states and in a
given experiment only one of them occurs.

The measurement problem deals more with the loss of co-
herence among macroscopic states. That is, what van Kam-
pen’s has clearly shown is that interaction of microscopic
systems with macroscopic objects leads, to a large extent, to
a conversion of quantum probabilities into classical proba-
bilities and that this result can be used to understand how
a measuring apparatus works. Indeed, the Schrödinger cat
“paradox” can easily be resolved in this way: the cat acts as
a measuring apparatus for the decaying atom that triggers the
“killing” mechanism. Thus, van Kampen’s measurement de-
scription is very helpful in understanding how macroscopic,
“classical” objects (such as ourselves) appear to follow the
rules of classical probabilities (based on our ignorance) rather
than those of quantum mechanics with their “nonintuitive”
interference effects.

In order to show our objections explicitely we shall an-
alyze the Young two-slit problem using a (streamlined) ver-
sion of van Kampen’s measuring apparatus. We mention that
van Kampen himself [5] has given an approximated calcula-
tion of his model, and for that matter Feynman in hisLec-
tures [6] also describes those results. Here we show an ex-
act (numerical) solution of the diffraction of a wave packet
through a two-slit screen with and without the presence of a
measuring apparatus. Let us briefly review the model for the
two-slit experiment and the typical explanation given when
trying to find out which slit the particle went through [7].
A two-dimensional “electron” initially prepared in a wave
packet state (or in a plane-wave state) incides normally on
a screen with two “holes” and its position is registered on a
“photographic plate” placed on the other side of the screen,
see Fig. 1. Under these conditions the probability of find-
ing the particle on the plate, at any given time, shows the
interference caused by the presence of the two slits. It is ar-
gued that if one tries to “see” which hole the particle went
through, the interference is destroyed. (For definiteness, let
us consider the case where one looks for the electronafter it
passes through the holes.) The simplest explanation is that

the measuring apparatus that detects the position of the elec-
tron makes the wave functioncollapseto that position and,
from there, a new wave function fans out. Since the detec-
tor is “on the other side” of the screen, the new wave func-
tion does not pass through the holes and, therefore, shows
no interference. Van Kampen argues that it is unnecessary
to appeal to the collapse of the wave function. Instead, he
proposes that the measuring apparatus be considered as part
of an overallunitarysystem-apparatus description. The “col-
lapse” is then taken into account by the observation that the
states of the detector, consistent when there is no detection,
are orthogonal to the states when thereis detection. Even
though the apparatus is in a superposition of states, it is as-
sumed that there can be no interference between those states
by appealing to the behavior of macroscopic systems. When
there is detection, van Kampen shows generally [4] that the
interaction with the apparatus acts as a “source” and a wave
function indeed fans out from the position of the apparatus.
In the process of “measuring” the detector makes an irre-
versible transition that “permanently” registers the position
of the electron. However, and because of the unitarity of the
evolution, we emphasize that for the cases when the appara-
tus does not make the irreversible transition, and purposely
does not detect, it still does detect. That is, even when it is
not “detected”, the resulting electron wave function is nev-
ertheless modified from the case when there was no detector
at all. In our opinion this poses a serious objection to van
Kampen’s arguments [4]. van Kampen himself [4] points out
to this aspect but somehow plays it down and his argument
is that, in any case, when the “detection” is successful the
collapse occurs. We shall discuss below whether one can say

FIGURE 1. A sketch of the system, showing the box where the
evolution is calculated indicating the position of the screen with
the two slits. The two positions of the atom refer to the cases of
Figs. 3 and 4. The dotted line is the positionx0 where the register-
ing plate is placed. To the left of the screen the initial wave packet
is also sketched.
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that in both cases,i.e. detection and no detection, the wave
function collapses. We shall argue that this ambiguity at the
macroscopic level indicates that the necessity of the collapse
has not been avoided. This fact, namely, that the detector
influences the evolution of the system even if the detection
does not occur, has already been discussed by other authors,
see Refs. [8–10], in the search for a satisfactory understand-
ing of the measurement problem.

We now present the model and the exact (albeit numeri-
cal) results. As stated above thesystemis one electron and
a screen with two slits. The measuring apparatus is an atom
togetherwith the electromagnetic radiation field. The atom is
initially prepared in an excited state with a forbidden transi-
tion to the ground state. If the electron passes near the atom,
the latter becomes polarized and the atomic transition is then
possible with the emission of a photon in any direction. The
photon can be further registered, but van Kampen indicates
that it is not necessary to include it since the decayed atom
acts as a permanent record of the passage of the electron; we
return to this point below. Considering the energy of the atom
in the ground state to be zero andΩ in the excited state, the
Hamiltonian of the system-apparatus is (~ = c = m = 1)

H = −1
2
∇2 + Vs(~r) +

1
2
Ω (1 + σz)

+
∑

~k

ka†~ka~k − iu(r)σx

∑

~k

v~k

(
a~k − a†~k

)
, (1)

whereVs(~r) is the potential of the two-slit screen; the third
and the fourth terms represent the atom and the radiation free
Hamiltonians and the last term is the interaction between the
electron and the apparatus;σi are the Pauli matrices. The
interaction term is the product of the electric field times the
dipole moment operator and whose strength depends on the
functionu(r); this, in turn, is supposed to be different from
zero only in a small region of space. The coefficientsvk in-
volve the normalization of the field modes and the form factor
for the allowed values of~k in the dipole approximation.

The states of the overall system-apparatus may be written
as

|Ψ(t)〉 = φ(~r, t) |+; 0〉 +
∑

~k

ψ~k(~r, t)
∣∣∣−;~k〉 . (2)

The state|+; 0〉 represents the atom in the excited state and

no photons, while the state
∣∣∣−;~k〉 is the atom in the ground

state and one photon with momentum~k. The amplitudes
φ(~r, t) and ψ~k(~r, t) are the electron wave functions when
there is no atomic transition and when there is, respectively.
The orthogonality of the atom-radiation states guarantees no
interference between these electronic amplitudes. On this
point, we must assume that,in practice, it would be very dif-
ficult to produce a further measurement on the apparatus that
would yield interference between those states. Since both the
measuring atom and the wave packet have finite spatial ex-
tensions, there is a finite time during which the transition can

occur. This may be considered to be the coherence time in
this model.

The Schr̈odinger equation for this problem yields the fol-
lowing set of equations:

i
∂

∂t
φ =

(
−1

2
∇2 + Vs(~r) + Ω

)
φ− iu(~r)

∑

~k

v~kψ~k (3)

and

i
∂

∂t
ψk =

(
−1

2
∇2 + Vs(~r) + k

)
ψ~k + iu(~r)v~kφ, (4)

for all ~k. In order to be able to perform explicit numerical
calculations we now make further assumptions on the appa-
ratus. These assumptions, although making it lose some of
its generality, preserve the main requirements to qualify it as
an “apparatus”. These are: (a) the atomic transition is very
sharp in energy; that is, the width of the transition line is
considered much smaller than any other relevant energy pa-
rameter. This implies that as the atom makes the transition
with energyΩ, the frequency of the emitted photon isk ≈ Ω.
(b) The emission is isotropic; that is, there is equal probabil-
ity for emission in any direction. Assumptions (a) and (b) are
implemented through the value of the coupling coefficients
v~k. Namely, we approximatev~k = vk ≈ v if k ≈ Ω, and
v~k ≈ 0 otherwise. Note that, still, there are aninfinite num-
ber of possible directions for the emitted photons, and thus,
one still faces an infinite number of equations (3) and (4).
However, using a very particular choice of initial conditions
the problem can drastically be reduced to only two equations:
far in the past, the overall state is such that the electron is in
a stateφ(~r, t → −∞), the atom in the excited state|+〉 , and
the radiation field with no photons present,

|Ψ(t → −∞)〉 = φ(~r, t → −∞) |+; 0〉 . (5)

This implies thatψ~k(~r, t → −∞) = 0 for all ~k. We now
choose the initial state of the electronφ(~r, t →∞) as a wave
packet localized far away from the two-slit screen. Using
this initial condition in Eqs.(3) and (4) together with assump-
tions (a) and (b), it is very easy to check that for allk 6= Ω,
ψ~k(~r, t) = 0 for all time. For|~k| = Ω all ψ~k(~r, t) are indeed
different from zero, but they are allidentical. In words this
means thatif the atom emits, the probability of further find-
ing the electron at a given position~r is independentof the
direction in which the photon was emitted. Thus, we need to
solveonly two equations of the infinite set (3) and (4). This
can clearly be seen if we set

ψ~k(~r, t) = ψ(~r, t)

(∑

k=Ω

)−1/2

(6)

and

ṽ = v

(∑

k=Ω

)1/2

, (7)
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where
∑

k=Ω is the sum of all the electromagnetic modes
with wave vector magnitude equal toΩ. The coupled equa-
tions to be solved now are

i
∂

∂t
φ =

(
−1

2
∇2 + Vs(~r) + Ω

)
φ− iu(~r) ṽ ψ (8)

and

i
∂

∂t
ψ =

(
−1

2
∇2 + Vs(~r) + Ω

)
ψ + iu(~r) ṽ φ, (9)

subject to the aforementioned initial conditions. It can also
be verified that while the overall state is given by Eq.(2), the
normalization condition reduces to

∫
d3r |φ(~r, t)|2 +

∫
d3r |ψ(~r, t)|2 = 1 (10)

with φ andψ being not orthogonal, in general. We stress that
while the apparatus is still macroscopic in the sense of having
a very large number of degrees of freedom, the analytic sim-
plification to only two amplitudes is not only a consequence
of assumptions (a) and (b) above, but also a consequence of
the peculiar initial condition. The irreversibility of the mea-
surement remains guaranteed, since once the atom emits it
remains in the ground state|−〉 .

We now proceed to discuss the numerical results of
Eqs.(8) and (9). The equations were solved using the split-
operator method [11]. In Fig. 1 we show the position of
the screen with the slits and the position of the atom. In
order to facilitate the numerical calculation, the “walls” of
the screen are not infinite but rather a very high and sharp
Gaussian function. We have verified, not shown here, that
the tunneling through those barriers is completely negligible
for the times that we choose to analyze the wave functions.
The strength functionu(r) of the atom in Eqs.(8) and (9) is
also taken to be a Gaussian function. The componentφ(~r, 0)
of the initial state of the electron is a minimum uncertainty
wave packet in the propagating directionx and constant in
they direction, parallel to the screen. The center of the wave
packet moves initially with a given velocity pointing towards
the screen. The componentψ(~r, 0) of the initial state is cho-
sen to be zero. We chose arbitrary values for all variables
such that the numerical procedure worked well and the re-
sults were easily interpretable.

In the following set of figures, we show the probabilities
|φ(~r, t0)|2 and|ψ(~r, t0)|2 of finding the electron at the posi-
tion ~r = (x0, y) with x0 a fixed position to the right of the
screen and as a function of the vertical variabley. The time
t0 is arbitrary but the same for all figures.

In Fig. 2 we show the probability|φf (~r, t0)|2 for the case
whenthere is no atomand, therefore, the componentψ(~r, t)
equals zero all the time. We can clearly see the expected sym-
metric interference pattern, with some diffraction due to the
finite width of the slits. This is the result with which we shall
compare the following cases.

FIGURE 2. Probability |φf (x0, y, t0)|2 of finding the electron at
the registering plate placed inx0, see Fig. 1, for the case when
there is no atom.

Figures 3 shows the probabilities|φ(~r, t0)|2 and
|ψ(~r, t0)|2 when the detecting atom is placednearone of the
slits. The cases (A) and (B) correspond to different strengths
of the interaction of the electron with the atom. We note that
as the strength is increased, the wave functionψ(~r, t0) of the
“detected” electron is more noticeable and, indeed, it shows
no interference (though again, some diffraction due to the fi-
nite size of the holes, see below). At the same time, the wave
functionφ(~r, t0) of the electron that was not “detected” be-
comes more and more deformed precisely in the region where
the detected part appears, clearly showing the presence of the
atom. This can easily be seen by comparing Figs. 2 and 3.

The set of Figs. 4 show the probabilities|φ(~r, t0)|2 and
|ψ(~r, t0)|2 when the detecting atom is placed exactly in the
middle between the slits. Again, the different cases corre-
spond to increasing electron-atom interaction strength and,
once more, the presence of the atom inbothprobability am-
plitudes is evident. For a clearer conclusion of this point
we ask the reader to compare Fig. 2 with the probability
|φ(~r, t0)|2 of Figs. 3 and 4.

We would like to point out to the small oscillations of the
amplitude ofψ(~r, t0) in Figs. 3 and 4. These oscillations are
due to the diffraction caused by the finite sizes of the slits and
the detecting atom. That is, those oscillations are not a sign of
interference of the wave function passing through both slits.
In Figs. 3a and 3b the diffraction is more clearly seen because
the atom is placed ”asymmetrically” with respect to the slits
(notice that the oscillations are also asymmetric). In Fig. 4a
the effect is not seen at the scale of the plot but in Fig. 4b the
effect is again visible because of the larger intensity of the
electron-atom interaction, and it is symmetric in this case.

It is also instructive to verify that if one chooses “not to
see” whether the atom emitted or not, the sum of the proba-
bilities |φ(~r, t0)|2 + |ψ(~r, t0)|2 does notequal the probability
|φf (~r, t0)|2 when there is no atom. That is, contrary to many
pedagogical and qualitative discussions, the result is different
if the detector is present from the case when there is no de-
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FIGURE 3. Probabilities of finding the electron at the registering
plate placed inx0, when the atom is placedaboveone of the slits,
see Fig. 1. |φ(x0, y, t0)|2 is the pattern when the atomdoes not
emit a photon, and|ψ(x0, y, t0)|2 is when the atomemitsa pho-
ton. (A) and (B) refer to different strengths̃v of the electron-atom
interaction.

tector, whether one chooses to see or not, simply because the
evolution of the system occurs under different Hamiltonians.
See Fig. 5.

Our main objection is that van Kampen’s connotation of
collapse applies equally well to the case when the detection
is successful and to the case when it is not, as opposed to his
stance that the collapse occurs only when the detection actu-
ally happened. In the figures above one sees that the wave
function φf (~r, t) collapses toeither to φ(~r, t) or to ψ(~r, t)
when the apparatus is present. This is more clearly seen in
cases (B) of Figs. 3 and 4. To call only to the case when
there is detection one of “collapse”, because the wave func-
tion seems tospatially collapse to the position of the atom,
is arbitrary: The usual connotation of the concept of collapse
refers to the reduction of an arbitrary wave function to an
eigenstate of the measured observables. The apparatus of van
Kampen is designed to measure the position of the electron
at the atom’s location and, it could be argued, the collapse
should only apply to the case when the atom makes the transi-

FIGURE 4. Probabilities of finding the electron at the registering
plate placed inx0, when the atom is placed in thecenterbetween
the slits, see Fig. 1.|φ(x0, y, t0)|2 is the pattern when the atom
does notemit a photon, and|ψ(x0, y, t0)|2 is when the atomemits
a photon. (A) and (B) refer to different strengthsṽ of the electron-
atom interaction.

tion. However, it is evident that the wave function is modified
in either case and there is no right to call one case a “measure-
ment” and not the other one. This is a very important objec-
tion to van Kampen’s arguments; that is, for the case when
there is no transition, even though the apparatus remains in
a metastable state, one must consider it as “stable” as when
the transition occurred. This is the only way that one could
a posteriori distinguish one case from the other and attach a
“classical” probability

∫
d~r|ψ|2 to the “successful” case and∫

d~r|φ|2 to the “unsuccessful” one. However, even with this
observation, van Kampen’s idea still seems very attractive be-
cause it appears to show that the interaction of a macroscopic
system with a microscopic onealways“collapses” the wave
function of the latter, in the sense that after the interaction has
taken place (and for times longer than the coherence time) the
different macroscopic states occur with “classical” probabil-
ities. However, the origin of the probabilities is not classical
since there is no underlying dynamics that if we knew, we
could in principle predict the outcome with probability equal
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FIGURE 5. Comparison of the probabilities|φf (x0, y, t0)|2 when
there is no atom, with the sum|φ(x0, y, t0)|2 + |ψ(x0, y, t0)|2 of
Fig. 3A. The latter is the total probability of finding the electron at
the plate, independently of whether the atom registers or not. Note
that these quantities aredifferent.

to one. It is impossible because the origin is quantum me-
chanical. In other words, the macroscopic states also col-
lapse. We have seen that even when the purported measure-
ment did not take place, the apparatus itself also “collapsed”
to other of its macroscopic states, and we do not know which
one. And again, in a given realization of the experiment, only
one state will occur. Thus, we are still facing the “problem”
that we can only predict the transition probabilities between
initial and final states, which we have argued is equivalent to
the concept of the collapse. It is the lack of coherence be-
tween macroscopic states, and therefore of interference, that
seems to free us from the particle-wave dilemma and, thus,
of the apparent need for the collapse. But the collapse con-
cept is concealed there and we have appealed to it in order to
give meaning to the realization of the different macroscopic
states.

The second objection, not unrelated to the previous one,
is that even if we accept that the collapse happened only when
the transition occurred, the result is manifestly apparatus-
and measurement-dependent. In van Kampen’s original treat-
ment, Ref. [4], he plays down the role of the photon that the
atom emits. It is said that the photon can be registered by a
photographic plate that one needs not to include in the de-
scription since the decayed atom acts as a permanent record.
Indeed. However, if one includes the photographic plate into
theunitary description, the interference patterns will be dif-
ferent from the case when it is not included. Thus, we end
up with a theory whose results depend on what we use to
measure them. Although this critique may seem more of a
practical use rather than of a fundamental difficulty, we find
that this interpretation, in a sense, defeats the purpose of the
theoryof Quantum Mechanics. That is, as atheory, the mea-
surable predictions of Quantum Mechanics are not only the
eigenvalues of the operators but also the probabilities of such

measurements. The values of those probabilities are com-
pletely dependent on the Hamiltonian used to evolve the sys-
tem. The actual probabilities in a given set of actual experi-
ments may serve to deduce, if not the whole state, at least a
partial knowledge of it. And in most practical cases one is
interested in the probabilities (or states) corresponding to the
evolution under a givensystemHamiltonian in theabsenceof
the apparatus. In other words, Quantum Mechanicsis used in
everyday problems (such as atomic spectra, specific heats and
superconductivity) to find out states of systems that have at-
tached a particular system Hamiltonian. How onemeasures
the corresponding physical quantities in order to extract the
probabilities pertaining to a given stateis not a problem of
Quantum Mechanics, but rather, it is part of our tasks to be
able to subtract the effect of the measuring apparatus and find
out the state in the absence of the detector. As a simple ex-
ample, we all believe it is meaningful and useful toknowthe
natural linewidth of, say, an atomic transition; such knowl-
edge can only beinferred from experiments that necessarily
include the effects of the surroundings (other than the elec-
tromagnetic vacuum) and the measuring apparatus [12].

We find that van Kampen’s analysis is an excellent exam-
ple of an actual measuring apparatus that shows that Quantum
Mechanics can indeed describe a measurement; specially the
fact that in order to go from “quantum” to “classical” proba-
bilities the apparatus must have a large number of degrees of
freedom and that the partial knowledge of the whole wave
function yields an increase in entropy of the macroscopic
state [4]. And indeed, van Kampen’s analysis reflects the fact
that a measurement “collapses” the wave function. However,
many questions remain blurred and imprecise. For instance,
when exactly do the macroscopic states lose their coherence?
how precise and definite is this incoherence? how large a
system must be to be considered macroscopic? how rigorous
and precise can we make these statements as a matter of prin-
ciple? We should not disregard the experimentalist ingenuity
in preparing macrostates with longer and longer coherence
times. As a matter of fact, the possible success of the quan-
tum computers will rest on the ability of maintaining many
qubits coherent for a long time [13].

To summarize, the point of van Kampen is whether the
collapsefollows from the rules of Quantum Mechanics or
not. Our point is that the “problem” of the collapse, and its
need, is a consequence of the uncertainty principle, the core
of Quantum Mechanics, and we cannot dispose of itwithin
the theory. The collapse postulate is what tells us that only
one of the realizations occurs. For microscopic systems the
collapse concept is more poignant because the interference
effects cannot be neglected, but it remains true for macro-
scopic systems.
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