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Riccati nonhermiticity with application to the Morse potential
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A supersymmetric one-dimensional matrix procedure, similar to the relationships of the same type between Dirac and Schrödinger equations
in particle physics, is described in the general terms. By this means, we are able to introduce a nonhermitic Hamiltonian having the imaginary
part proportional to the solution of a Riccati equation of the Witten type. The procedure is applied to the exactly solvable Morse potential
introducing, in this way, the corresponding nonhermitic Morse problem. A possible application is the molecular diffraction in evanescent
waves over nanostructured surfaces.
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Un procedimiento matricial uni-dimensional supersimétrico similar a relaciones del mismo tipo entre las ecuaciones de Dirac y Schrödinger
que usamos recientemente para el oscilador armónico cĺasico es presentado de manera concisa en términos generales. El aspecto nuevo es el
uso de paŕametros constantes por medio de los cuales el Hamiltoniano se vuelve no hermı́tico con parte imaginaria proporcional a la solución
de una ecuación de Riccati de tipo Witten, que es caracterı́stica para el ḿetodo supersiḿetrico. El factor de proporcionalidad contiene los
paŕametros mencionados. Aplicamos esta técnica algebraica al oscilador cuántico no arḿonico de Morse obteniendo una forma no hermı́tica.
Una posible aplicación es a la difracción molecular en ondas evanescentes sobre superficies nanoestructuradas.

Descriptores: No hermiticidad; supersimetrı́a; potencial de Morse.

PACS: 11.30.Pb

1. Introduction

We have recently elaborated on an interesting way of in-
troducing imaginary parts (nonhermiticities) in second or-
der differential equations starting from a Dirac-like matrix
equation [1, 2]. The procedure is a complex extension of
the known supersymmetric connection between Dirac matrix
equation and Schrödinger equation [3]. A detailed discus-
sion on Dirac equation by the supersymmetric approach has
been provided by Cooperet al. in 1988, who showed that the
Dirac equation with a Lorentz scalar potential is associated
to a susy pair of Schrödinger Hamiltonians. In the supersym-
metric approach, one uses the fact that the Dirac potential,
that we denote byR, is the solution of a Riccati equation
with the free term related to the potential functionU in the
second order linear differential equations of the Schrödinger
type.

Indeed, writing the one-dimensional Dirac equation in the
form

[αp + βm + βR(x)]ψ(x) = Eψ(x) (1)

wherec = ~ = 1, p = −id/dx, m (> 0) is the fermion
mass, andR(x) is a Lorentz scalar function representing the
potential in which the relativistic particle moves. The wave-
functionψ is a two-component spinor(

ψ1

ψ2

)
,

andα andβ matrices are the following Pauli matrices

σy =
(

0 −i
i 0

)
and σx =

(
0 1
1 0

)
,

respectively. Writing the matrix Dirac equation in a coupled
system form leads to

[
Dx + m + R

]
ψ1 = Eψ2 (2)

[−Dx + m + R
]
ψ2 = Eψ1 . (3)

By decoupling, one gets two Schrödinger equations for each
spinor component, respectively

Hiψi ≡
[−D2

x + Ui

]
ψi = εψi , ε = E2 −m2 , (4)

where the subindexi = 1, 2, and

Ui(x) =
(
(m + R)2 −m2 ∓ dR/dx

)
.

One can also write factorizing operators for Eqs. (4)

A± = ±Dx + m + R (5)

such that

H1 = A−A+ −m2 , H2 = A+A− −m2 . (6)

However, we have employed a so-called complex exten-
sion of the method by which we mean that we have consid-
ered the Dirac potentialR as a purely imaginary quantity im-
plying that a Schr̈odinger potentialsUi are complex, and, as
such, we are dealing with nonhermitic problems. We con-
sidered previously the cases of the classical harmonic oscil-
lator and Friedmann-Robertson-Walker barotropic cosmolo-
gies, which correspond to the very specific situation in which
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the Dirac mass parameter that we have denoted byK was
treated as a free parameterequalto the Dirac eigenvalue pa-
rameterE. This is equivalent to Schrödinger equations at
zero energy,ε = 0. On the other hand, it is interesting to
see how the method works for negative energies,i.e., for a
bound spectrum in quantum mechanics. In this paper, we
first briefly describe the method and next apply it to the case
of Morse potential obtaining a nonhermitic version of this
exactly-solvable quantum problem.

2. Complex extension with a singleK parame-
ter

We consider the slightly different Dirac-like equation with
respect to Eq. (1)

D̂KW ≡ [σyDx + σx(iR + K)]W = KW , (7)

where K is a (not necessarily positive) real constant. In the
left hand side of the equation,K stands as a mass parameter
of the Dirac spinor, whereas on the right hand side, it corre-
sponds to the energy parameter.R is an arbitrary solution of
the Riccati equation of the Witten type [4]

R′ ±R2 = u , (8)

where u is the real part of the nonhermitic potential in
Schr̈odinger equations. Thus, we have an equation equiva-
lent to a Dirac equation for a spinor

W =
(

φ1

φ0

)
≡

(
wf

wb

)
,

of massK at the fixed energyE = K, but in a purely imagi-
nary potential (optical lattices). This equation can be written
as the following system of coupled equations

iDxφ1 + (iR + K)φ1 = Kφ0 (9)

−iDxφ0 + (iR + K)φ0 = Kφ1. (10)

The decoupling of these two equations can be achieved by
applying the operator in Eq. (10) to Eq. (9) . For the fermionic
spinor component one gets

D2
xφ1 −

[
R2 −DxR− i 2KR

]
φ1 = 0 (11)

whereas the bosonic component fulfills

D2
xφ0 −

[
R2 + DxR− i 2KR

]
φ0 = 0. (12)

This is a very simple mathematical scheme for introducing
a special type of nonhermiticity directly proportional to the
Riccati solution. The factorization operators can be written
in this case in the form

A± = ±iDx + K + iR (13)

that allows to write the fermionic equation (11) asH1φ1 ≡
(A−A+ − K2)φ1 = 0, and the bosonic equation (12) as
H2φ0 ≡ (A+A− −K2)φ0 = 0.

3. Complex extension with parameters K
and K

′

A more general case in this scheme is to consider the follow-
ing matrix Dirac-like equation
[ (

0 −i
i 0

)
Dx +

(
0 1
1 0

)(
iR + K 0

0 iR + K

) ]

×
(

w1

w2

)
=

(
K
′

0
0 K

′

)(
w1

w2

)
. (14)

The system of coupled first-order differential equations will
be now

[
− iDx + iR + K

]
w2 = K

′
w1 (15)

[
iDx + iR + K

]
w1 = K

′
w2, (16)

and the equivalent second-order differential equations

Dx
2wi +

[
±DxR + 2iKR + (K2 −K

′2)

−R2
]
wi = 0, (17)

where the subindexi=1, 2 refers to the fermionic and bosonic
components, respectively.

Again, introducing the same factorization operators as for
the singleK case,i.e., A± = ±iDx + K + iR, one can write
Eq. (17) in the Schr̈odinger-like form

H1w1 ≡ (A−A+ −K2)w1 = (K
′2 −K2)w1, (18)

and

H2w2 ≡ (A+A− −K2)w2 = (K
′2 −K2)w2, (19)

for the fermionic and bosonic components, respectively.
These forms are useful for quantum mechanical applications;
see the next section for one of them.

4. Application to the Morse potential

This potential is frequently used in molecular physics in con-
nection with the dissociation and vibrational spectra of di-
atomic molecules. In this case, the Riccati solution is of the
type

R(x) = A−Be−ax. (20)

Therefore, the second-order fermionic differential equa-
tion will be

D2
xw1 +

[
− (

B̄e−2ax − C̄1e−ax
)

+ (K2 −K
′2)

−A2 + 2iK(A−Be−ax)
]
w1 = 0, (21)
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whereB̄ = B2, andC̄1 = B(2A + a).
The solution is expressed as a superposition of Whittaker

functions

w1 = α1eax/2Mκ1,µ

(
2B

a
e−ax

)

+ β1eax/2Wκ1,µ

(
2B

a
e−ax

)
, (22)

κ1 =
A

2a

(
2 +

a

A
− i

2K

A

)

and

µ =
A

a

(
K
′2 −K2

A2
− i

2K

A

)1/2

.

The bosonic equation reads

D2
xw2 +

[− (
B̄e−2ax − C̄2e−ax

)
+ (K2 −K ′2)

−A2 + 2iK(A−Be−ax)
]
w2 = 0, (23)

whereB̄ = B2, andC̄2 = B(2A− a).
The solution is a superposition of the following Whittaker

functions

w2 = α2eax/2Mκ2,µ

(
2B

a
e−ax

)

+β2eax/2Wκ2,µ

(
2B

a
e−ax

)
, (24)

where

κ2 =
A

2a

(
2− a

A
− i

2K

A

)
,

and theµ subindex is unchanged.
If we now place ourselves within the quantum mechan-

ical (hermitic) Morse problem, we should takeβ2 = 0 and
K = 0 in order to achieve the exact correspondence with the
bound spectrum problem and eliminate the non-hermiticity.
Moreover, the following well-known connection with the as-
sociated Laguerre polynomials

M p
2 +n+ 1

2 , p
2
(y) = y

p+1
2 e−y/2Lp

n(y) , y =
2B

a
e−ax (25)

can be used in our case with the following identifications

p

2
=

K ′

a
, K ′ = (A− an)

i.e.,

p = 2
(

A

a
− n

)
.

Then we can write the solution of the hermitic bosonic prob-
lem in the well-known form

w2,n(y) = α2

(
2B

a

) 1
2

y
A
a −ne−y/2L

2( A
a −n)

n (y). (26)

If we want to approach the nonhermitic problem, we define
by analogy with Eq. (25)

Mκ2,µ(y) = yµ+ 1
2 e−y/2L2µ

κ2−µ− 1
2
(y), (27)

whereκ2 andµ are the complex parameters mentioned be-
fore, and the symbol corresponding to the associated La-
guerre polynomial representing now a Laguerre-like function
introduced by definition through Eq. (27). The wavefunction
of the nonhermitic problem can be written as follows

w2,nonherm(y) = α2

(
2B

a

) 1
2

yµe−y/2L2µ

κ2−µ− 1
2
(y) . (28)

In the case of the nonhermitic fermionic problem, the for-
mulas are similar with the replacement ofκ2 by κ1. Thus:

w1,nonherm(y) = α1

(
2B

a

) 1
2

yµe−y/2L2µ

κ1−µ− 1
2
(y) . (29)

In conclusion, the supersymmetric connection between
Dirac-like equations and Schrödinger equations, in a simple
complex extension form, has been applied here in the quan-
tum context of the Morse potential. However, in the pure
quantum case, the results of this note seem to be only of
mathematical interest. A natural question is how different
types of nonhermiticities can be engineered. As we noticed
in our previous research [1], physical optics is closer to real
applications. In particular, one can think to the diffraction of
diatomic molecules in evanescent fields because such fields
have imaginary wavenumbers, and we know that Schrödinger
equations are similar to Helmholtz equation in the parax-
ial approximation. A specific experimental setup could be
very similar to that discussed recently by Lévêque and col-
laborators [5] in their study of diffractive scattering of cold
atoms from an evanescent field, spatially modulated by an
array of nanometric objects with high index of refraction
and subwavelength periodicity deposited on a glass surface.
The evanescent wavefield is created by a totally internally
reflected laser beam and is strongly modulated by the con-
figuration of the nanostructure. The calculations are not easy
as one should tackle Helmholtz equations in complicated ge-
ometries. The task is to obtain the configuration of the nanos-
tructure that is able to produce the evanescent field corre-
sponding to the nonhermitic part of our Morse problem. This
is experimentally only a challenging possibility for the time
being.
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