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A mathematical model is developed in order to study self-confinement of the square beam propagating along the boundary of theIdeal
Metal-Photorefractive Crystalmedia. It is shown that the square beam is self-bending and can be balanced by internal reflection at the
Photorefractive Crystalsurface to result in surface wave formation. Theoretical evidence is given.
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Se desarrolla un modelo matemático para analizar el auto confinamiento de un haz de forma cuadrada, propagándose a lo largo entre la
frontera entre un cristal fotorefractivo en contacto con un metal ideal. Se muestra que el haz es auto-deflectado y que puede ser balanceado
por la reflexíon interna en la superficie interna del cristal photorefractivo, resultando en la formación de la onda superficial. Se da evidencia
teórica.

Descriptores: Solitones espaciales (ondas superficiales); interfase; condiciones de frontera; cristales fotorefractivos.
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1. Introduction

The propagation of spatial solitons in bulk photorefractive
crystals (PRC) has generated a great deal of interest in recent
years, since it provides a tool for energy localization in a non-
linear medium. The spatial soliton, which is due to the quasi-
local drift mechanism of photorefractive non-linearity, has
been obtained both experimentally and theoretically [1–4],
from the balance between linear diffraction and non-linear
self-focusing and several applications have been developed.

An alternative approach to the generation of a spatial
soliton-like beam may be based on non-linear surface waves.
One way is when a beam falls on the interface of two dif-
ferent media, that is, on the wave trapped in the interface
between either a crystal and a metal, or a crystal with the
opposite sign of non-linear diffusion and a dielectric with a
lower average refractive index than a crystal. The occurrence
of self-confinement and the stability of the incident beam on
the interface depends on the diffusion non-linearity (of the
gradient type) of the photorefractive crystal [5].

The non-linear guiding properties in bulk photorefractive
media has recently been a subject for theoretical and exper-
imental research. The response speed of the photorefrac-
tive effect is limited by the photorefractive non-linearity. It
has been predicted that, for a photorefractive crystal such as
BaTiO3, the diffusion mechanism can assure efficient con-
centration of light power in crystal layers∼ 10 µ m thick [5].

At this moment, the spatial confinement of these waves
has been theoretically predicted. The guided, spatially con-
fined surface wave along the boundary of the crystals has
been previously considered [5]; similarly, the surface wave
formation is an eigen-mode problem [6] as is the self-
bending of the beam [7]. Symmetrical and anti-symmetrical
surface waves formation is induced by a laser beam in a

PRC ′ − PRC media, with the opposite sign of the diffusion
non-linearity [5].

Experimental formation of the surface wave in Bi12TiO20

and Bi12SiO20 crystals was demostrated when the photore-
fractive surface waves were induced with a Gaussian beam
of small diameter [8,9].

Our attention is focused on the diffusion mechanism pro-
duced by the non-linear crystals; the non-linearity is related
to the dielectric constant that depends on the spacial posi-
tion. We are analyzing the one light polarization case where
photoconductivity along interface media does not exist, using
the square laser beam (beam distribution) propagation; the
self-bending beam is spread by some diffraction effects that
produce the anti-symmetrical surface wave formation that is
formed by the energy beam’s self-confinement.

The formation of the surface waves and their stability are
produced when a beam is propagated along two media inter-
face,i.e. when the photoconductivity of each medium is sta-
bilized. This important because it produces the spatial wave
(soliton-like or surface wave) propagation due to a diffusion
mechanism of non-linearity (of the gradient type).

The primary goal of our paper is to develop an analytical
approach to the practically important problem of laser beam
propagation along the interface of two media. The question
is whether it is possible to confine the light in a thin layer
along the interfaces, namely is it possible to compensate for
the self-bending and diffraction spreading by diffusion non-
linearity and total internal reflection.

In our analysis, we use a specific beam shape that propa-
gated along theIM − PRC media (IM is the ideal metal),
which allows us to obtain and predict a solution, that is the
surface wave [5]. That in turn will be obtained in a form of
diffraction free propagation, where the analytical model ob-
tained from a non-linear equation is reduced to a linear equa-
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tion. This is why the non-linearity has a specific form,i.e. it
is dependent on the light intensity or it is dependent on the
electric field amplitude that is real, which allows us to thor-
oughly determine that the surface wave obtained is a problem
of photorefractive eigen-modes [6].

For some cases, it is easier to obtain surface waves exper-
imentally than to predict them theoretically, but in both cases,
the obtaining must be by the diffusion mechanism of gradient
a type.

The diffusion mechanism is produced by spatially vary-
ing the dielectric constantε(x, z) = ε + δε(x, z), where
δε(x, z) represents a non-linear contribution. This contribu-
tion leads to the beam self-bending and if some reflecting
surface presents the surface wave formation.

For the beam incidence, the solid media interface can be
constituted by photorefractive crystal and ideal metal. For
the beam propagation along the interface, the field continuity
equations and its field derivative function are applied. Here
is demonstrated that the square beam is stabilized by the dif-
fusion mechanism and by the formation of spatial surfaces
wave for theIM − PRC media.

The present work is the result of the analytical study
of the conditions of formation and propagation of surface
waves of the soliton-like form as a linear approximation in
IM −PRC media with a diffusion non-linearity (of the gra-
dient type) and mainly focusing on the anti-symmetrical sur-
face wave formation generated by a specific shape laser beam
or for the non-symmetrical surface waves, under the condi-
tions they are normally produced.

It is shown that such surface waves shapes depend on the
beam shape of the incident laser, also it is shown that under
such conditions the existence of the surface waves formation
can be predicted (for the one light polarization case).

The fundamental mathematical tool used to solve the dif-
ferential equation that describes the beam propagation into
the photorefractive medium is the Laplace transform for the
PRC medium and the Maxwell equations for the interface
media.

Below we develop a mathematical model in order to ob-
tain the differential equation, which describes the beam am-
plitude behavior in each medium, the continuity conditions
that satisfies the Maxwell equations in the interface media,
the conditions for obtaining the surface wave formation for
describing the steady solutions. Finally a dicussion and the
conclusions are presented.

2. Mathematical model

Figure 1 shows the linear polarization light, this is when the
beam incides in the photorefractive crystals’ interface. It is
assumed that the boundary between two media has no par-
ticular properties such as: surface trapping centers, blocking
properties for the charge transfer, surface photogalvanic ef-
fects etc.

FIGURE 1. Field continuity applying the Maxwel equations in
z = 0 and continuity conditions inZ > 0.

One of the media is anIM and it must be located in the
x < 0region; the second−PRC in thex ≥ 0 region, which
means both must be in mutual contact.

The wave equation shown below is used for the region
x ≥ 0 for PRC medium. It is a standard scalar three-
dimensional equation for monochromatic light wave with fre-
quencyω and complex amplitudeE1(X,Y, Z, t) propagating
in an unbonded optically transparent medium with small spa-
tial variations of the dielectric constantε(X,Z).

The wave equation for the scalar electric field component
is written as:

∇2E1(X, Y, Z, t)− µε0ε(X, Z)
∂2E1(X, Y, Z, t)

∂t2

= 0 for x ≥ 0. (1)

and the non-linear properties are describerd byε(X, Z).
Three different stages of internal field formation due to

charges on transparent metals (electrodes) which are in con-
tact with PRC ′s are reported [10, 4.6 section]. But in our
particular case, none of these affects the surface wave for-
mation. Static electric fields induced by charges on the elec-
trodes are produced for very small diffusion lengths given as

LD =
√

Dτf =
√

µτfkBTe−1 =
√

µτfEDK−1,

whereD is the diffusion coefficient,µ is the mobility,τf is
the free carrier life time,kB is the Boltzman constant,T is
the absolute temperature,e the electron charge,ED is the
diffusion field, andK is the spatial frequency [11]. Usually
the diffusion length is small in comparison with the surface
wave width. For example, in BaTiO3: LD‖C = 0.08 µm and
LD⊥C = 0.32 µm that correspond both crystal orientations,
where theC-axis is‖ parallel or⊥ perpendicular to the grat-
ing vector [12] and comparing these results with the surface
wave width obtained by Cronin for this crystal (Fig. 4) [7],
it turns out that the diffusion lengths are too small compared
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with the surface wave width. On the other hand, the magni-
tude of the internal field induced by charges on the electrodes
is negligible compared with the field magnitude produced by
the diffusion non-linearity. Part of these contact effects is the
“bottleneck”; the charge stratification property introduced by
this effect has been suggested to design an adaptive photode-
tector [13]. But as before, this effect does not significantly
influence the surface wave formation. For all these reasons,
in our next analysis these contact effects will not be taken
into account.

Another simplification is that the surface current, flowing
exactly on the boundary surface [14], can also be neglected
in the paraxial approximation.

The space charge electric field relief to the refractive
index change is ensured via a linear electro-optic effect in
δε(X,Z), where:

ε(X, Z) = ε + δε(X, Z). (2)

Hereε is the spatially uniform average dielectric constant and
δε(X,Z) is the photoinduced changes,ε À |δε(X, Z)| [5].

The distribution of the electric field amplitude
E1(X, Y, Z, t) does not depend on the longitudinal coor-
dinateY and is assumed to be a function of the transversal
coordinatesX, Z. Then for a monochromatic wave we as-
sume a solution of the form:

E1(X, Z, t) = E1(X,Z) exp(−iωt). (3)

Then (1) is transformed to:

∂2E1(X, Z)
∂X2

+
∂2E1(X,Z)

∂Z2

+ω2µε0ε(X, Z)E1(X, Z) = 0. (4)

Furthermore, we will look for the solution of the form:

E1(X, Z) = E(X, Z) exp(−iβZ) (5)

whereβ is the wave propagation constant [5, 6]; then (4)
changes to:

∂2E(X,Z)
∂X2

+
∂2E(X, Z)

∂Z2
− 2iβ

∂E(X,Z)
∂Z

−(β2 − ω2µ [ε + δε (X, Z)] ε0)E(X, Z) = 0. (6)

The following equation defines the photoinduced varia-
tion of the dielectric constant given by [5–7]:

δε(X, Z) = n4r
kBT

e

∂ ln |E(X,Z)|2
∂X

. (7)

The last is valid under the steady-state conditions of illu-
mination (when nothing is changing with time), and the space
charge electric field arises as a result of drift-diffusion equi-
librium

δε(X, Z) = n4rEsc(X,Z)

and

Esc(x, z) = −kBTe−1 ∂ ln I

∂x
.

For a surface mode with a planar phase [5–7]

(I(x, z))−1 ∂ I(x, z)
∂x

= 2(E(x, z))−1 ∂E(x, z)
∂x

,

hereI is the light intensity. That transformation of the space
charge electric field relief to the index changes is ensured
via the linear electro-optic effect; the photoinduced change
is δε(x, z) = n4rEsc(x, z). Then, taking into account (7),
one can write:

δε(x, z) = 2n4r
KBT

e
(E(x, z))−1 ∂E(x, z)

∂x
. (8)

Here (7) is a real quantity,r is the electro-optic coefficient,
andn is the average refractive index of the sample.

Parameterγ = k0n
2rkBTe−1 characterizes non-linear

diffusion intensity,k0 =
√

µεε0 is the light wave number in
a optically linear medium, andε is the spatially uniform aver-
age dielectric constant. Substituting the last equation into (6)
and considering also the approach of slow variation of the
amplitude [5,6]:

∣∣∣∣
∂2E(X, Z)

∂Z2

∣∣∣∣ ¿
∣∣∣∣β

∂E(X, Z)
∂Z

∣∣∣∣ , (9)

we have:

k−2
0

∂2E(X, Z)
∂X2

+ D′ ∂E(X,Z)
∂X

−2bk−1
0 i

∂E(X, Z)
∂Z

− CE(X, Z) = 0 (10)

whereC = (β2 − k2
0)k

−2
0 , andD′ = 2γk−1

0 .

Assuming thatC=0, then b=βk−1
0 = 1, for β=k0

and using normalized coordinates:x=k0X andz=2−1k0Z,
Eq. (10) transforms to:

∂2E(x, z)
∂x2

+ D
∂E(x, z)

∂x
− ib

∂E(x, z)
∂z

= 0, (11)

The last equation describes the beam propagation only for
x ≥ 0, with D = 2γ.

Here the amplitude of optical electric field
E(x, z −→∞) is assumed to be real, corresponding to a
problem of the photorefractive eigen-modes. For the ideal
metal medium in the regionx < 0 we have:

EIM (x, z) = 0 (12)
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3. Boundary and initial conditions

Further we will consider a light beam with linear polarization
along they − axis (Fig. 1).

For z > 0 only, the optical electric field has only a tan-
gential component. From the continuity conditions for the
IM − PRC case we have

E1(x, z)|x=0 = G1(z) = G(z) = 0 (13)

and

∂E1(x, z)
∂x

|x=0 = F (z) for z > 0 (14)

whereG1(z), G(z) represents the boundary conditions for
the photorefractive media and ideal metal respectively on the
interface media, andF (z) represents the derivative of the
electric field distribution on the interface as a boundary con-
dition too.

The input optical electric field distribution is expressed,
by:

E1(x, z)|z=0 = K1(x). (15)

This condition is only valid in the regionz=0,
which satisfies the Maxwell equations in the three media
(AIR− IM − PRC) (see Fig. 1).

4. Differential equation solution

To solve (11) and to obtain a non-stationary solution (with
respect to thez− variable), two methods already known can
be applied: the Laplace and Fourier transform. However the
latter is more complicated to use in the case under considera-
tion. So we apply the Laplace Transform with respect to the
variablez, L(E(x, z)) = E(x, s). As a result, we obtain a
second order non-homogeneous differential equation, for the
regionx ≥ 0

d2E(x, s)
dx2

+ D
dE(x, s)

dx
− ibsE(x, s) = −ibK1(x) (16)

Applying the continuity conditions (13) and (14), to (16)
we get:

E(x, s) = exp(−Dx

2
)
[
G1(s) cos

{
β1(s)x

2

}

+H1(s) sin
{

β1(s)x
2

}]
+ g1(x, s) (17)

where

H1(s) = [DG(s) + 2F (s)] β−1
1 (s), (18)

so thatg1(x, s) is the non-homogeneous solution of (16), in
the space(x, s), with the constant

β1 = − i

2

√
D2 + 4ibs = −i

√
γ2 + ibs (19)

and

g1(x, s) = 2ib

x∫

0

K1(t) exp
[
−D

2
(x− t)

]

× sin [β1(s)(x− t)]
iβ1(s)

dt (20)

Now we apply the inverse Laplace transform to (20),i.e.

L−1
s g1(x, s) = g1(x, z) (21)

Eq. (16), where the solution to the non-homogeneous part is:

g1(x, z) =

√
ib

4πz
exp(−ηz)

x∫

0

K1(t)

× exp
[
− ib(x− t)2

4z
− D(x− t)

2

]
dt (22)

whereη = D2(4ib)−1 and

G(x, z, t, 0)=
√

b(4iπz)−1 exp
[
−1

2
ib(t−x)2(2z)−1

]

× exp
[
1
2
D(t−x)

]
(23)

represents the Green function [14, 15]. Using this function,
we can rewrite (22) as:

g1(x, z) = exp(−ηz)

x∫

0

K1(t)G(x, z, t, 0)dt (24)

5. Square beam and convolution integrals

Furthermore we will consider a square beam of the form:

K1(x) =
0 if 0 ≤ x < ζ
g0 if ζ ≤ x ≤ h

zero in other cases
(25)

as an initial condition. Applying the inverse Laplace trans-
form to the homogeneous part of (17), we get:

E(x, z) = exp
(
−Dx

2

)
[EI(x, z) + EII(x, z)

+EIII(x, z)] + g1(x, z) (26)

where

EI(x, z) =
τx

2
√

π

×
z∫

0

[
G(z − u) exp

(
τ2x2

4u
− ηu

)]
u
−3
2 du (27)
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EII(x, z) =
D

2
√

π

×
z∫

0

[
G(z − u) exp

(
τ2x2

4u
− ηu

)]
u
−1
2 du (28)

EIII(x, z) =
1√
π

×
z∫

0

[
F (z − u) exp

(
τ2x2

4u
− ηu

)]
u
−1
2 du. (29)

Hereτ = 2i
√

ib.
The integrals (27), (28) and (29), represent the convolu-

tion of initial conditions.

6. Analytical solution for the amplitude
E(x, z)E(x, z)E(x, z)

Evaluating the integrals for the regionx ≥ 0, we obtain the
solution of (10), that is:

EPRC(x, z) = f1g0[f2(f3 + f4)− f5(f6 + f7)

−f8(f9 + f10) + f11(f12 + f13)] (30)

for z > 0. (see Appendix A and see Figs. from 2 to 4). (the
erf function has its complex argument, so now for an approx-
imation of it, we can use [16]).

FIGURE 2. Beam propagation near to incidence planeIM−PRC,
and the self-bending beam begins with D=0.7.

FIGURE 3. The formation of the surface wave inIM−PRC starts,
with D=0.7, the characteristic length of the surface wave formation
decreases when the diffusion coefficient increases.

For the analysis of the asymptotic behavior of solu-
tion (30), we used the series expansion of theerf functions
with a complex large values ofz are considered (see Figs. 2
and 4).

FIGURE 4. The formation of the surface wave inIM−PRC starts,
with D=0.3, the characteristic length of the surface wave formation
increases when the diffusion coefficient decreases.

Rev. Mex. F́ıs. 51 (4) (2005) 371–378
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FIGURE 5. The surface waves set with D=0.05(depicted with+),
D=0.333 (depicted with-), D=0.666 (depicted with-) and D=0.999
(depicted with continuous line), which represent the increase of the
photorefractive response speed.

Now applying the limit whenz → ∞ in (30), we obtain
the stationary solution, namely the surface wave:

lim E(x, z →∞) = E(x) (31)

where:

E(x) =
1
2
g0 exp

(
−Dx

2

)
[Q1(x) + Q2(x)] (32)

whereg0 is a normalization constant (if necessary).

Q1(x) =
1
2

exp
(

Dζ

2

)
exp

(
−D

2

√
(x− ζ)2

)

− exp
(
−Dζ

2

)
exp

(
D

2

√
(x + ζ)2

)
(33)

Q2(x) = exp
(
−Dh

2

)
exp

(
D

2

√
(x− h)2

)

− 1
2

exp
(

Dh

2

)
exp

(
−D

2

√
(x + h)2

)
(34)

for regionx ≥ 0, (see Fig. 5).

7. Conclusions

Equation (4) was derived for a slow variation of the ampli-
tude, and it is widely used in the analysis of the light diffrac-
tion in grating volume [5, 17], which agrees with the results
given by Eqs. (27), (28), (29).

This model, in principle, could give an initial guess that
can be corrected to take into account the dark conductivities.

IM−PRC media generate the spatial surface wave since
this clearly results from the imaging property of an ideal
metal surface, for this specific crystal orientation.

As was shown, the surface wave shape essentially de-
pends on the shape of the incident beam. Before this work,
it had not been specified how the shape of the input beam
affects the surface wave formation.

Therefore, there in so evidence that surface wave forma-
tion depends on∆K = β − k0 as is also outlined in [5].

Here it is predicted that the anti-symmetrical surface
waves (oscillatory waves) can not be obtained with this ori-
entation crystal, as is also outlined in [5].

The light confinement of the beam is obtained from the
speed of the photorefractive response, when the magnitude
of the diffusion coefficientγ involved in D is increased, as
shown in the arguments of theexp function in (32). If the
magnitude ofγ is increased, then theexp function in (32)
determines that when the wave penetration is closer to the
boundary of the two mediaIM − PRC, the beam spread by
diffraction tends to be much less, which implies that the wave
quickly reaches stability (see Fig. 5) where, if we increase the
diffusion coefficientD(γ), the incident beam energy tends to
lose a bit of energy by spread.

The non-stationary solution obtained for beam propaga-
tion along anIM − PRC media interface makes it possible
to predict the beam behavior inside the crystal. In particu-
lar, it is possible to estimate the speed of the photorefractive
response, which depends on the light intensity,i.e. for this
analysis, to know the length from the point where the beam
starts to propagate to that one of the surface wave formation,
along the propagation axis.

In a further analysis, the dark conductivities will have to
be considered, since this physical effect can decrease the pho-
torefractive response speed of the surface wave formation,
thus gaining higher relevance over other physical effects pro-
duced when the laser beam is propagated along the media
interface.

A reason that restricts to a more general solution is that
the dark conductivities and the saturation of the impurity pho-
torefractive centers in the crystals are neglected, but for this
model, in principle, we could give an initial study so that
thereinafter, we can develop the solution in order to take them
into account, where these conductivities and the saturation of
the impurity sooner or later experimentally tend to exist and
are not necessarily negligible.

However this mathematical model is used for two spe-
cific beam shapes; it is also used to explain how the surface
waves are reproduced by each laser beam propagating along
a two medium interface, which allows the beam energy to be
confined, and offers us the possibility of manipulating it for
technical applications.

With the continuity equations for this specific laser beam
it is possible to construct another physical situation of the
wave guide, as for example [6],i.e. these results are to be
used to make the confinement of energy more efficient within
the crystal so that it can de easily used and manipulated.
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A Appendix

f1 =
1
2

exp
(
−Dx

2

)
(A.1)

f2 =
1
2

[
1 + 3

x− ζ√
(x− ζ)2

]
exp

(
Dζ

2

)
(A.2)

f3 = exp

(
D

√
(x− ζ)2

2

)
erf

[
D

2

√
z

ib
+

1
2

√
ib(x− ζ)2

z

]
(A.3)

f4 = exp

[
−D

√
(x− ζ)2

2

]
erf

[
D

2

√
z

ib
− 1

2

√
ib(x− ζ)2

z

]
− 2 sinh

[
D

2

√
(x− ζ)2

]
(A.4)

f5 =

[
1 +

x + ζ√
(x + ζ)2

]
exp

(
−Dζ

2

)
(A.5)

f6 = exp

[
D

√
(x + ζ)2

2

]
erf

[
D

2

√
z

ib
+

1
2

√
ib(x + ζ)2

z

]
(A.6)

f7 = exp

[
−D

√
(x + h)2

2

]
erf

[
D

2

√
z

ib
− 1

2

√
ib(x + h)2

z

]
− 2 sinh

[
D

2

√
(x + h)2

]
(A.7)

f8 =
1
2

[
1 + 3

x− h√
(x− h)2

]
exp

(
Dh

2

)
(A.8)

f9 = exp

[
D

√
(x− h)2

2

]
erf

[
D

2

√
z

ib
+

1
2

√
ib(x− h)2

z

]
(A.9)

f10 = exp

[
−D

√
(x− h)2

2

]
erf

[
D

2

√
z

ib
− 1

2

√
ib(x− h)2

z

]
− 2 sinh

[
D

2

√
(x− h)2

]
(A.10)

f11 =

[
1 +

x + h√
(x + h)2

]
exp

(
−Dh

2

)
(A.11)

f12 = exp

[
D

√
(x + h)2

2

]
erf

[
D

2

√
z

ib
+

1
2

√
ib(x + h)2

z

]
(A.12)

f13 = exp

[
−D

√
(x + h)2

2

]
erf

[
D

2

√
z

ib
− 1

2

√
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