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Bulk anisotropic excitons in type-II semiconductors built with 1D and 2D
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We used a simple variational approach to account for the difference in the electron and hole effective masses in Wannier-Mott excitons in
type-II semiconducting heterostructures in which the electron is constrained in an one-dimensional quantum wire (1DQW) and the hole is in
a two-dimensional quantum layer (2DQL) perpendicular to the wire or viceversa. The resulting Schrödinger equation is similar to that of a
3D bulk exciton because the number of free (nonconfined) variables is three; two coming from the 2DQL and one from the 1DQW. In this
system the effective electron-hole interaction depends on the confinement potentials.
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Utilizamos un ḿetodo variacional para tomar en cuenta la diferencia entre las masas efectivas del electrón y del hueco en excitones Wannier-
Mott en heteroestructuras semiconductoras tipo II en las que el electrón est́a constrẽnido en un alambre cuántico unidimensional (AC1D) y el
hueco en un pozo cuántico bidimensional (PC2D) perpendicular al alambre o viceversa. La ecuación de Schr̈odinger resultante es similar a
la de un excit́on en el bulto en 3D porque el número de variables libres (no confinadas) es tres; dos que provienen del PC2D y una del AC1D.
En este sistema interacción efectiva electŕon-hueco depende de los potenciales de confinamiento.

Descriptores: Enerǵıa del estado base de excitones apantallados; estructuras de baja dimensionalidad; semiconductores.

PACS: 73.23.-b; 71.35.-y; 73.20.Dx

1. Introduction

Man-made low-dimensional solids yield new challenges in
microstructure materials science. In general, excitons in
confined systems are interesting due to their effects on
the electronic and optical properties of high-quality nanos-
tructures with prescribed configuration and dimensionali-
ties. Size quantization in man-made semiconductor struc-
tures of less than three-dimensions leads to exciting new
electronic properties which are important for fundamen-
tal physics and for the development of novel device con-
cepts. Fundamental research as well as device applications
based on these low-dimensional semiconductor structures re-
quires methods of fabricating the structures and of control-
ling their geometrical size on the nanometer scale in a repro-
ducible manner [1]. Typical examples of low-dimensional
systems are one-dimensional quantum wires (1DQW) and
two-dimensional quantum layers (2DQL). On the other hand,
it is possible to construct more complicated artificial struc-
tures by assembling low-dimensional subsystems to study
few-particle systems with tailored interaction potentials. For
instance, now it is possible to join and assemble nanotubes to
form more complex skeletons [2,3].

In recent papers [4] (hereafter referred to as I) and Ref. 5,
Wannier-Mott excitons were analyzed in a novel system in
which the electron is constrained to move along a one-
dimensional quantum wire (1DQW) and the hole is confined
to a two-dimensional quantum layer (2DQL) perpendicular
to the wire. An analogous system is obtained by exchanging
the particles. The motivations for studying this system are
threefold. First, as mentioned above, it is now feasible to con-
struct these types of artificial structures in laboratories. Sec-
ondly, as will be shown, our system makes it possible to tailor
the electron-hole interaction by geometrical means. Finally,
up to now most research has been devoted to type-I semi-
conducting structures (in which electrons and holes share
the same spatial region), while type-II semiconducting struc-
tures have received less attention. In the latter structures,
the electron is confined to one material and the hole in an-
other material due to band lineups in the two materials, which
make this arrangement energetically favorable. For example,
Rorison [6] calculated exciton binding energy and oscillator
strength for quantum wires in type-II semiconductor systems
consisting of a cylindrical wire of one semiconductor embed-
ded in a second semiconductor. Excitons in type-II struc-
tures in which the electron is in 1DQW and the hole is in
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another parallel [7] or perpendicular 1DQW [8], have been
studied. More recently, exciton properties in type-II quantum
disks and dots (QD) have been studied by Janssenset al. as
a function of a perpendicular magnetic field [9, 10] and also
including strain fields in and around the QDs [11]. Strain is
important since it can have a large impact on the QD band
structure and corresponding optical properties [11]. Under
intense light excitation, dynamical processes on indirect and
direct excitons at high density in AlxGa1−xAs-AlAs 1DQW
structures have been investigated [12], and a large blue-shift
of the indirect exciton photoluminescence appears under a
heavy excitation density, but that of the higher lying direct
one hardly does. This is due to the phase space filling effects
on the conduction and valence bands as well as the electric
field effect due to the separation mechanism of the carriers in
the type-II structure.

2. The system

In our system, in which the electron is constrained in a
1DQW and the hole is in a 2DQL perpendicular to the wire
(or viceversa), the number of free (nonconfined) variables is
three; two coming from the 2DQL and one from the 1DQW.
This arrangement of the particles is original and interesting
because, as shown in I, this system can be mapped on to a
one- particle system moving in a three-dimensional (3D) free
space which interacts through an effective potentialVeff with
another particle fixed at the origin. Thus, except for the fact
that the interaction potentials are different, a 3D exciton is
analogous to our novel system. Since theVeff in I is defined
as an interaction between the charged density probabilities
of the electron and the hole, then it involves an average over
some transverse coordinates, and thusVeff between confined
particles depends on the kind of transverse confinement. For
instance, here we will employ a parabolic transverse confine-
ment potential which allow us to obtain analytical expres-
sions forVeff . In I, the resulting 3D exciton Schrödinger
equation in the laboratory frame of reference was solved in
terms of the common 3D exciton states by taking into ac-
count the finite width of both 1DQW and 2DQL. For vanish-
ing 1DQW and 2DQL widths, the solution is formally iden-
tical to a 3D exciton.

However, calculations in I were performed by assuming,
for simplicity’s sake, that the effective masses of the electron
and the hole were identical. This approximation is almost
never valid. Since generally these effective masses are differ-
ent in semiconductors, the purpose of this paper is to present
a more realistic calculation that takes into account the fact
that these effective masses are different. As in I, let us con-
sider the general case of two quasiparticles confined to move
in a heterostructure in such a way that one quasiparticle lies
in an infinite 1DQW with the axis along thez-direction and
the other lies in an infinite 2DQL parallel to thexy plane (see
Fig. 1). We assume strong confinement so that in the confin-
ing directions (x andy for one quasi-particle in the 1DQW
andz for the other), both quasi-particles are in their respec-

FIGURE 1. Schematic diagram of a system formed by an infinite
1DQW in which an electron is confined crossing a perpendicular
2DQL in which a hole is confined. Their widths are given in terms
of the standard deviations as defined in the text.

tive ground states. The widths of the 1DQW areσx1 andσy1 ,
andσz2 is the width of the 2DQL.

3. Theory

As in I, we separate the two-particle wave function as

Ψ(x1, y1, z1, x2, y2, z2)

= Ψ0
1(x1, y1)Ψ0

2(z2)S(z1, x2, y2), (1)
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1(x1, y1) and Ψ0

2(z2) are the groundstate wave-
functions of the quasiparticles with chargesq1 and q2,
with corresponding transverse confinement energiesE0t

1 and
E0t

2 . S(x2, y2, z1) is the part of the wavefunction that con-
tains the interparticle Coulomb potential which satisfies the
Schr̈odinger equation
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is the effective interparticle Coulomb potential, the Coulomb
interaction potential being

V̂int (−→r1−−→r2)=
q1q2

ε

√
(x1−x2)

2 +(y1−y2)
2 +(z1−z2)2

, (4)

whereε is the appropriate dielectric screening of the semi-
conductor media. The excitonic energyE is defined as

E = Et − E0t
1 − E0t

2 . (5)

For the sake if convenience we choose harmonic
transverse confining potentials for both particles, that is,
V̂1(x1, y1) = (k1x

2
1 + k2y

2
1)/2 andV̂2(z2) = k3z

2
2/2. The

choice of harmonic confining potentials has the advantage
over a hard-well potential that it could model either soft
or hard possible confinements. In terms of standard devia-
tions σx1 = 〈(x1)2〉0, σy1 = 〈(y1)2〉0 andσz2 = 〈(z2)2〉0
(which are of the order of magnitude of the respective thick-
ness of the 1DQW and 2DQL when subindex0 indicates
groundstate), these potentials yield the normalized ground-
state transverse wavefunctions
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Furthermore, it was found that for harmonic confinement
potentials the effective potential (withq1 = e andq2 = −e)
is

Veff = −e2

εr
erf

(
r√
2σ

)
, (8)

where, for the sake of simplicity,σ = σx1 = σy1 = σz2.
Here erf(x) is the error function defined as

erf(x) =
2√
π

∫ x

0

e−s2
ds.

As shown in I, when all widthsσx1 , σy1 and σz2 van-
ish, thenVeff becomes a simple screened Coulomb potential
−e2/εr, wherer =

√
x2

2 + y2
2 + z2

1 . With thisVeff , Eq. (2)
was solved in I for the casem1 = m2 (see Fig. 2). Notice
that we can tailorVeff in two ways. One way is due to the
particular geometry, and the second one by choosing the type
of confinement potential.

FIGURE 2. Comparison of the equal-mass case (m1 = m2, solid
line) and the more realistic casesm1 6= m2 (dashed and dotted
lines) for the normalized groundstate energiesE/Eo as a function
of the widthσ/ao. The dashed curve corresponds to the electron
in the 1DQW and the hole in the 2DQL, and the dotted line corre-
sponds to an exchange of electron and hole. Here,Eo = e2/(2εao)
is the3D exciton binding energy,ao = ~2ε/(e2µ) is the exciton
Bohr radius, and the reduced mass isµ = m1m2/(m1 + m2).

In our system the source of anisotropy is from the fact
that the coefficients of the partial derivatives in Eq. (2) are not
equal because, in general, the values of the effective masses
of the electron and the hole are different (that is,m1 6= m2).
To solve Eq. (2), we employ the following variational func-
tion for the ground state
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)−1/2
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which represents, with suitable choice of the constantsa and
b, a very good approximation to the exact solution [13]. In
Ref. 13 this wavefunction modeled donor states in silicon.
Hereρ2

2 = x2
2 + y2

2 , and the parametersa andb are chosen
in such a way that they minimize the exciton binding energy
(which is defined as the negative of the groundstate energy).
This function was originally used by Kohn to solve a simi-
lar equation which describes donor states in semiconductors
with different effective masses around the minima of the con-
duction band along the (1,0,0) axis and equivalent axes [13].

4. Results and discussion

To solve Eq. (2), we employed the simple variational wave-
function Eq. (9). However, for some cases this method
may not be the most appropriate on for dealing with strong
anisotropies. For instance, if one of the effective masses is
very small compared with the others, we may use what is
called adiabatical approximation. That is, one first solves the
equation of the smallest effective mass particle (light particle)
where the positions of the other particles are treated as param-
eters - as when we find the electric motion for fixed nuclear
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positions in molecular problems. Then the slower dynamics
of the rest of the particles is solved- as if one weresolving
the nuclear motion in molecular problems. The same pro-
cedure is applied when two of the three effective masses are
very small. In the particular case that the values of the three
masses are all of different scales, then the same procedure is
applied three times in succession.

In our case of semiconducting materials, the effective
masses are not so different. Here we used the following val-
ues: the effective masses of the electron and hole are respec-
tively −0.067m and 0.7m [14] (m being the free electron
mass), which correspond to quantum wells of AlxGa1−xAs-
AlAs. In Fig. 2, we show the corresponding results of the
groundstate energy as a function of the widthσ for isotropic
and anisotropic cases. The results show that the exciton en-
ergy is not invariant with the exchange of particles since,
in Eq. (2), m1 contributes to the kinetic energy in the de-
nominator of the two first terms, whereasm2 contributes
only in one kinetic energy component. Therefore, when
m1is smaller thanm2, the kinetic energy (and consequently
the groundstate energy) of the system increases. Also, the
exciton binding energy decreases as confinement becomes
weaker. Therefore, confinement effects are always stronger
for the ground state. This work presents a system that re-
sembles a 3D anisotropic exciton Schrödinger equation. In
the limit of vanishing thickness of both 1DQW and 2DQL
(σx = σy = σz = 0), is similar to that of an anisotropic 3D
exciton with screened Coulomb interaction, set for the rela-
tive coordinates in the center of mass reference. For arbitrary
thickness, the electron–hole potential is no longer coulombic.

In summary, we have extended the work presented in I
to take into account the more realistic cases in which the
electron and hole effective masses are different. The ground

state variational wavefunction used here is analogous to that
employed in a 3D bulk system to study donor impurity
states [13], but here we have solved the exciton Schrödinger
equation of our heterostructure, which exhibits an important
difference. In our case, the interaction potential is an effective
Coulomb potential which depends on the type of confinement
and on the 1DQW and 2DQL widths. We considered that, in
the confinement directions, both electron and hole were in
their respective groundstate of a harmonic potential which
yielded an analytical expression for the effective interparticle
Coulomb potential for the caseσx = σy = σz. In general,
we can modify the Coulomb potential with different choices
of confinement potentials. It is interesting to note that the
analogies between the system studied here and bulk excitons
can be explained in terms of the equivalent degrees of free-
dom. A two-particle system like ours, with only one degree
of freedom for one particle and two degrees of freedom for
the other, behaves like a system where one particle is fixed
at the origin and the other particle has the remaining three
degrees of freedom.

The variational method employed here is simple, and ac-
counts for the main features of the problem. Our quantitative
results show that the difference between the casesm1 = m2

andm1 6= m2 is large. We hope that this work may stimu-
late further experimental and theoretical efforts in the study
of type-II novel semiconducting heterostructures.
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