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If a relative motion exists between a given object’s image and a recording medium (such as a photographic film) during exposure, the recorded
image will be blurred. This effect can be expressed by an impulse response in irradiance function and the respective image restoration is made
possible by a post-recording process. General one-dimension motion is considered here. Two cases are discussed: constant velocity motion
and constant acceleration motion. Image simulations representing those degradation mechanisms are shown, as well as the corresponding
restored images after using the method which is described in this work. This method is based on Dirac delta function propreties. We also
show real digital images affected by those motions. It can be experimentally obtained by using an air-rail. The blurred images are processed
digitally by spatial filters given by the proposed method. Numerical and experimental results are shown.

Keywords: Image forming and processing; Fourier optics; modulation and optical transfer functions

Si durante el registro de una imagen (una exposición fotogŕafica, por ejemplo) existiera un movimiento relativo entreésta y el medio de
registro, la imagen grabada resultará deteriorada (emborronada). Este efecto se expresa por medio de la función de respuesta impulso en
irradiancia, y a partir déesta es posible restaurar la imagen mediante procesos posteriores al registro. Aquı́ se considera movimiento rectilı́neo
general y se analizan los casos de movimiento uniformemente lineal y movimiento uniformemente acelerado. Se presentan simulaciones de
imágenes afectadas por estos movimientos ası́ como su restauración al aplicar el procedimiento sugerido por el análisis descrito, que se basa
en propiedades de la función delta de Dirac. También se muestran iḿagenes reales digitalizadas afectadas por los movimientos mencionados
con la ayuda de un riel sin fricción. Estas iḿagenes se procesan digitalmente implementando filtros espaciales sugeridos por el método
propuesto. Se muestran los resultados correspondientes.

Descriptores: Formacíon y procesamiento de iḿagenes;́optica de Fourier; funciones de modulación y transferenciáoptica

PACS: 42.30.Va; 42.30.Kq; 42.30.Lr

1. Introduction

Certain factors that can degrade the recorded image in a pho-
tographic or holographic film have been studied for a long
time. Relevant works include studies on transverse vibra-
tions of one or several components (object, lens, or image
plane) perpendicular to the optical axis, effects studied by A.
W. Lohmann [1]. Uniformly linear motion between the origi-
nal image and the film was treated by Edward L. O’Neill [2],
the shutter operation was analyzed by Ronald V. Shack [3],
longitudinal vibrations were worked on by A.W. Lohmann
and D.P. Paris [4], out-of-focus degradation was studied by
J.W. Goodman [9], the penumbra effect in radiograph im-
ages due to the nonzero dimension of the source was dealt
with by John B. Minkoff, S.K. Hilal, W.F. Konig, M. Arm,
and L.B. Lambert [10]. Nonuniform motion was worked on
by Som [13], multiply exposed images were studied by D.P.
Jablonowski and S.H. Lee [14]. A feature common to these
works is the characterization of the image degradation by a
point spread function (PSF), so that the degraded image can
be expressed by the convolution of the ideal or original image
with the respective PSF.

Works about restoration and evaluation images by a
post-recording process have been demonstrated. In 1953, A.
Maréchal and P. Croce showed the classical image restora-

tion technique by inverse spatial filtering, while P.F. Mueller
and G.O. Reynolds restored images affected by turbulence in
1966. J.L. Harris showed a formulation different from inverse
filtering and experimental results are shown in Ref. 5. C.W.
Helstrom showed image restoration by the method of least
squares, which considers spatial noise in the image [7], A.W.
Lohmann and D.P. Paris showed computer generated binary
spatial filters which can represent complex inverse filters [8].
J.L. Horner showed restoration of photographic images when
noise is considered [11]. George W. Stroke showed holo-
graphic image deblurring [12]. D.P. Jablonowski and S.H.
Lee proposed a method of synthesizing the appropriate com-
posite gratings, which represents a double convolution, with
a set of the Dirac delta function, and experimental results are
shown in Ref. 14, L. Celaya and S. Mallick deblurred images
degraded by a linear smear by using a Wollaston prism and
two linear polarizers [16].

From the above mentioned deblurring methods, many of
them are optical analog in nature for historical reasons. A
new consideration of these methods within today’s scope,
however, would undoubtedly bring benefits to digital im-
age processing after proper updates or adaptations. It is
under these considerations that the present work was done.
First, a general description of blurring due to linear motion
is proposed taking advantage of Dirac delta function proper-
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ties [13] which have not been used in connection with this
problem, to our knowledge. To test this formulation, two
cases are numerically inspected: uniform velocity and uni-
form acceleration. By using a given form of velocity (PSF),
the corresponding blurring of digital images is performed.
Then, an inverse spatial filter is applied to the smeared im-
age in order to obtain a deblurred one. The Spatial filtering
that we propose was implemented with programs we wrote
in MathCad. Experimental smeared images were achieved
with slides on an air-rail. Inverse filtering used a sample of
linear motion as the experimental PSF. In this case, no ana-
lytical knowledge about the movement was really employed
to achieve restored images, but a further link between the ex-
perimental PSF and the theoretical one can be made to obtain
typical parameters of movement.

In order to achieve image restoration and evaluation, one
must know the nature of the degradation as well as its effect
in order to operate the image to compensate the image for
degradation. In this study, the images are recorded in order
to know the nature of object within the field of view, although
possible motion analysis technique is suggested. When im-
age processing makes an intelligible image from an unintel-
ligible image, it is because the information in the image has
been displayed in such a way that the human visual system
is able to extract it [5]. A qualitative measure of the gain
achieved by processing is a comparison of the information
extraction by the human visual system both before and af-
ter processing. This will be the criterion for evaluating the
restoration. Linear smear restoration is a well-known exam-
ple whereby a PSF (a rectangular or window function for the
case of uniform velocity) is exemplified. It also shows an ap-
plication of the convolution operation. Moreover, it suggests
a restoration method which can be carried out directly [2].
Hence, it can be worthwhile to consider if the techniques
now widely available can offer advantages to the practical
solution of this otherwise classical problem, besides of being
a case with the illustrative features already mentioned. The
case of uniformly accelerated motion, on the other hand, is
more general than the linear one [13], but has been less stud-
ied in the literature (even the effects of oscillatory motion has
been more thoroughly considered.) So, in spite of the already
venerable tradition of the restoration problem, we propose an
analysis which focuses on linear with movement constant ac-
celeration, but that includes also with constant velocity as a
special case. This last case can be used to verify some aspects
of the analysis. Only the case of constant acceleration and
that of constant velocity are considered in detail but, in prin-
ciple, other linear motion could be included using the general
approach. Other “dynamic” effects such as shutter operation
or time-varying aberrations are neglected. There are both nu-
merically calculated images as well as experimental images
shown to illustrate the restoration procedure.

Experimental results and simulations show that inverse
filtering works in a satisfactory way for digital images pro-
cessed by computer. Moreover, it would also be possible to
extract information about the parameters of the movement

which causes smear by means of the true parameters which
can restore the image (motion analysis).

2. Analysis

A linear smearing process in recording images is assumed.
For example, by employing a photographic material, it is sup-
posed that it absorbs incident radiant energy over the linear
range of the H and D curve. PSF of the recording material
are considered as ideal points, thus using Dirac-delta func-
tions instead of extended functions. For instance, the point
spread function of the photographic emulsion resulting from
the diffusion of light in the emulsion is not considered, since
it is independent of other effects, for example, from the influ-
ence of image motion [13] or from the shutter operation [3].

Let I(x) be the irradiance distribution in the original or
ideal image,i.e., that which would be obtained in the absence
of any degradation (See appendix). So, the blurring effect
due to linear motion in the degraded image that is recorded
Ib(x) can be described as a superposition on the photographic
film of successive positions of the original image continu-
ously way, that is

Ib(x) = I(x) ~ IRI(x), (1)

where~ denotes a convolution,IRI(x) is the impulse re-
sponse in irradiance(or point spread function due to motion)
given by

IRI(x) =
1
T

T∫

0

dt δ(x−∆x[t])

=
1
T

∞∫

−∞
dtδ(x−∆x[t])rect

(
t− T

2

T

)
. (2)

HereT is the register time,∆x[t] is the displacement between
the original image and the film at timet andδ(u) is theDirac
delta function.

If we substitute Eq. (2) in Eq. (1), we obtain

Ib(x) = I(x) ~ IRI(x)

=
1
T

T∫

0

dt I(x) ~ δ(x−∆x[t])

=
1
T

T∫

0

dt I(x−∆x[t]).

This expression is similar to the equation given by Som [13].
However, the detector response (photographic emulsion) is
not taken into account. It is the PSF of the recording medium
which is considered a Dirac-delta function in the position.
In other words, without other degradation mechanisms, the
recorded image has a one-to-one correspondence with the
original image.
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We can express the smeared image (Ib(x)) as a convolu-
tion given in Eq. (1) whenever the functionIRI(x) is in-
variant, at least over a limited region of the image plane (iso-
planatic patch). In Eq. (2), there is a factorT−1 in order to
normalize functionIRI(x) over the space

∞∫

−∞
dx IRI(x) = 1.

On the other hand, in order to change the argument of the
delta function from the spatial domain to the time domain,
we use the following property [17]:

Given the functionr(t), and if the equationr(t) = 0
has a finite or countably infinite numbers of zeros, that is,
r(tn) = 0, then

δ(r(t)) =
∑

n

δ(t− tn[x])∣∣dr
dt

∣∣
tn[x]

,

wheneverr(t) has a continuous derivative
∣∣∣∣
dr

dt

∣∣∣∣
tn[x]

6= 0.

Therefore, ifr(t) = x−∆x[t], then Eq. (2) can be writ-
ten as

IRI(x) =
1
T

∞∫

−∞
dt

∑
n

δ(t− tn[x])∣∣dr
dt

∣∣
tn[x]

rect

(
t− T/2

T

)

=
1
T

∑
n

|v(t)|−1
tn[x] rect

(
tn[x]− T/2

T

)
. (3)

The function velocity (v(t)) has been identified and it char-
acterizes the movement. The absolute value of the velocity
consequently gives positive values of the functionIRI(x).

The equationr(tn)=x−∆x[tn]=0 implies x=∆x[tn],
which is a motion equation and hence we can attempt to
solve this equation fortn, which has a usual sense of time
(0 ≤ tn ≤ T ). Thus, the summation in Eq. (3) only has
one term. When it is possible to findt, then, the velocity is
expressed as function of positionx, and thusv(t) = v′(x).

So, bearing all this in mind, Eq. (3) can be rewritten as

IRI(x)=

{
|Tv′(x)|−1 if x=∆x[t], and:0≤t≤T ,

0 otherwise.
(4)

Now, taking the Fourier transform of Eq.(1) and using
Eq.(2), we have

Ĩb(µ) = Ĩ(µ)ĨRI(µ)

= Ĩ(µ)
1
T

T∫

0

dt e−ı2πµ∆x[t]. (5)

Making a shifted integration variablet by

∆xr[t] = ∆x[t]− xo

which are related by

v′(∆xr) =
d∆x[t]

dt
=

d∆xr[t]
dt

,

we obtain

Ĩb(µ) = Ĩ(µ)
e−ı2πµxo

T

∆xr(T )∫

∆xr(0)

d(∆xr)
e−ı2πµ∆xr

v′(∆xr)
. (6)

Therefore, thetransfer functionis given by:

ĨRI(µ) =

∆xr(T )∫

∆xr(0)

d(∆xr)
e−ı2πµ∆xr

v′(∆xr)T
e−ı2πµxo

=

∞∫

−∞
d(∆xr) e−ı2πµ∆xr

{
e−ı2πµxo

v′(∆xr)T
rect

(
t(∆xr)− T/2

T

)}
. (7)

This result is in agreement with Eq. (4). Here, the upper and
the lower limits in the integral,∆xr(T ) and∆xr(0), corre-
spond to zero and maximum displacements respectively. This
latter limit is calledlength of traceor trace of motion. Beyond
these values, the integrand becomes zero, which is expressed
by means of a rect(u) function.

Eq. (7) is similar to the equations derived by Shack
and Som for the effect due to transverse motion of the im-
age [3, 13]. Shack assumes a negative time coordinate and
Som considers only relative displacement between the ideal
image and the photographic film, whereas here a positive
time coordinate is only considered and one initial displace-
ment is proposed (xo). This in some cases simplifies the
transfer function to real values (displacement theorem).

In order to restore images, some methods have been pro-
posed [5–8, 11, 12, 14]. We use the inverse filter method. It
is performed by taking the Fourier transform of Eq. (1). It is
written

Ĩb(µ) = Ĩ(µ)ĨRI(µ).

Solving for the transform of the original image gives

Ĩ(µ) =
Ĩb(µ)

ĨRI(µ)
= Ĩb(µ)HR(µ),

where the inverse filter is defined by

HR(µ) =

{
1

F{IRI(x)} if F {IRI(x)} 6= 0,

k otherwise.
,

k is a constant value.
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Although this is one of the most direct methods, there
are problems related to points where the transfer function is
zero. These points are replaced by the constantk. k = 0
was chosen and then the restored spectrum is multiplied by
an absorption grating whose lines coincide with the zeros
of F {IRI(x)}. This becomes a convolution in the image
space between the restored image and the Fourier transform
of the resulting grating, thus giving rise to replicating images
(ghost images.) In any case, image degradation always re-
duces the information content in the image [5].

3. Typical cases of motion

Now, special cases of smear due to motion are studied: uni-
form velocity and uniform acceleration.

3.1. Smear due to uniformly linear motion

This case is characterized by a constant velocityvo and satis-
fies:∆x[t] = vot + xo, r(t) = x− xo − vot, dr/dt = −vo,

using Eq. (2) and Eq. (3), we get

IRIl(x) =
1
T

∞∫

−∞
dt δ (x− xo − vot) rect

(
t− T/2

T

)

=
1
L

rect

(
∆xo

L
− 1

2

)
, (8)

where∆xo ≡ x − xo andL ≡ voT is the length of trace in
this case. Putting Eq. (8) in to Eq. (1) , the degraded image
in this case will be:

Ilb(x) = I(x) ~ 1
L

rect

(
∆xo

L
− 1

2

)

= I(x) ~ 1
L

rect

(
∆xo − L/2

L

)
. (9)

Taking the Fourier transform of Eq. (9) we obtain

Ĩlb(µ) = Ĩ(µ)sinc(Lµ) exp(−ı2πµ(xo + L/2)). (10)

Using the inverse filter method,

Ĩ ′lb(µ) =





Ĩlb(µ)(sinc(Lµ))−1eı2πµ(xo+L/2), if Lµ 6= n;

0, otherwise.
, (11)

wheren is an integer.

Thus, the restored image is reached by taking the inverse
Fourier transformI ′(x) = F−1

{
Ĩ ′lb(µ)

}
.

If there is a symmetric displacement about the origin co-
ordinate, i.e., xo = −L/2, the exponential factor will be
unity. Here, we can see the advantage of using the initial
position.

3.2. Smear due to uniformly accelerated motion

This case is characterized by one initial velocityvo, and one
uniform accelerationac and then:

∆x[t] = xo + vot +
1
2
act

2,

r(t) = x− xo − vot− 1
2
act

2,

dr

dt
= −vo − act.

We have to find the roots of

r(tn) = 0 or t2 + 2
vo

ac
t− 2

∆xo

ac
= 0.

Two solutions are found:

t1,2 = −vo

ac

(
1∓

[
1 +

2ac∆xo

v2
o

]1/2
)

;

t1 =
vo

ac

([
1 +

2ac∆xo

v2
o

]1/2

− 1

)
> 0, (12)

which are valid for an initial velocity different from zero
(vo 6= 0). Only t1 has a physical meaning.

If the initial velocity is zero (vo = 0), the positive root
will be:

t1 =
√

2∆xo

ac
. (13)

Substitutingt1 of Eq. (12) (whenvo 6= 0) in the absolute
value of the derivative, then the velocity is expressed as a
function of displacement.

∣∣∣∣
dr

dt

∣∣∣∣
t1

= v′ac(∆xo)

= vo

[
1 +

2ac∆xo

v2
o

]1/2

. (14)

Similarly for the case of an initial velocity zero (whenvo=0).∣∣∣∣
dr

dt

∣∣∣∣
t1

= v′ao(∆xo) =
√

2ac∆xo. (15)
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FIGURE 1. Impulse response in irradiance for uniform velocity.

FIGURE 2. Impulse response in irradiance for uniform acceleration
and non-zero initial velocity (vo 6= 0).

3.2.1. Non-zero initial velocity (vo 6= 0)

Here, the function is obtained by substituting Eq. (14) in
Eq. (3)

IRIac(x)=
1
T

∞∫

−∞
dt

δ

(
t+ vo

ac

(
1−

[
1+ 2ac∆xo

v2
o

] 1
2
))

vo

[
1+ 2ac∆xo

v2
o

] 1
2

×rect

(
t−T

2

T

)

=
1

v′ac(∆x0)T
rect

(
v′ac(∆x0)−vo

vf−vo
−1

2

)
, (16)

wherevf is the final velocity given byvf = vo +acT . In this
case, the length of trace is

L′ ≡ x(T )− xo = voT +
1
2
acT

2.

Evaluating the zero and maximum displacement in to
Eq. (16) we have

IRIa(∆xo = 0) =
1

voT
rect

(
−1

2

)

and

IRIa(∆xo = L′) =
1

vfT
rect

(
1
2

)
.

The respective transfer function for (16) by using Eq.(7)
is given by

ĨRIac(µ) =

L′∫

0

d(∆xo)e−ı2πµ∆xo

[
e−ı2πµxo

[v2
o + 2ac∆xo]

1/2
T

]

=
e−ı2πµxo

T

L′∫

0

d(∆xo)e−ı2πµ∆xo

× 1

[v2
o + 2ac∆xo]

1/2

=
e−ı2πµxo

T
eıµK1

×
{(

K2

πac

) 1
2 ∞∑

n=0

[j2n(µK2)− ıj2n+1(µK2)]

−
(

K1

πac

) 1
2 ∞∑

n=0

[j2n(µK1)− ıj2n+1(µK1)]

}
,

where

K1 =
πv2

o

ac
, K2 =

πv2
o

ac
+ 2πL′,

andj2n(y) andj2n+1(y) are spherical Bessel functions of the
first kind [13].

3.2.2. Initial velocity of zero value (vo=0)

Herevo=0 and theIRI(x) function is obtained from Eq. (15)
and Eq. (3)

IRIao(x) =
1

v′ao(∆x0)T
rect




v′ao(∆xo)
ac

− T/2
T


 .

FIGURE 3. Impulse response in irradiance for uniform acceleration
and initial velocity of zero value (vo = 0).

Rev. Mex. F́ıs. 51 (4) (2005) 398–406



IMAGE RESTORATION OF BLURRING DUE TO RECTILINEAR MOTION: CONSTANT VELOCITY AND CONSTANT ACCELERATION 403

FIGURE 4. Flux diagram showing the smear simulation and restoring process. In this case, the restoration of blurring due to uniform
acceleration is shown.
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FIGURE 5. Restoration of smeared simulation letters. Original im-
age in a) was convolved with a blurring representing by uniform
velocity in b); and corresponding restoration in c).

In this case, the length of trace isLo = (1/2)acT
2, so the

IRIao(x) function can rewritten as

IRIao(x) =
1

[2ac∆xo]
1/2

T
rect

(√
∆xo

Lo
− 1

2

)
. (17)

4. Numerical results

In order to visualize how the present method of image
restoration performs, a gray scale image was deliberately
blurred by a convolution process with theIRI(x) function
for different cases of movement. Then, the inverse filter
method was applied by means of a program written in Math-
cad, and the restored image was obtained. More images suf-
fering from degradation by uniform acceleration than by uni-

FIGURE 6. a), d), g), j) are original images; b), e), h), k) smear im-
ages by convolution representing blurring by uniform acceleration;
in c), f), i), l), the corresponding restoration.

FIGURE 7. a) Original photographic image; b) smeared simulation
image by convolution; c) restored image.

form velocity are shown because the case of non-zero accel-
eration is less known that the uniform velocity case (Figs. 6
and 7).

In binary images, like Figs. 5, 6a, 6g, 6j, 10, and 11, this
restoration method has a practical feature. In particular, the
restoration of uniform velocity insomuch as some extra be in-
formation has been put in (absorption grating) and it can seen
included in the restored image. This extraneous information
can be identified and eliminated more easily in the practical
binary case. However, the numerical procedure works satis-
factory for both gray scale images and binary images even in
the case of constant velocity.

The image restorations show here is satisfactory accord-
ing to visual evaluation criteria; in other words, the original
structure of the image can be distinguishable. In simulation
cases, we can say there is a perfect restoration because the
functionIRI is completely known. So numerical procedure
shows that if adequateIRI is used, will have excellent results
in the restored image.

In the simulated smear images, it is possible to distin-
guish which images were smear by uniform linea and which
by uniform acceleration. This difference is due to the form
of the functionIRI. For the first case this is symmetric, as
long as the second is non-symmetric. This fact has signifi-
cant consequences in the processing insomuch as the transfer
function due to uniform acceleration case does not vanish, but
the transfer function due to uniform velocity does. Accord-
ing to S.C. Som [13], “As far as the magnitude of the transfer
function is concerned, a smear due to uniform acceleration is
preferable to one of the same extent due to uniform velocity”.
The transfer function zeros consequently a loss of have as a
consequence, resolution lost.

5. Experimental results

Actual photographic images of letters painted on a carrier
which went moving over an air-rail were obtained (Fig. 9).
Each motion was captured by means of a given rail inclina-
tion. Actual degraded images are shown in Figs. 10 and 11
for constant velocity and constant acceleration respectively.
Also, the restored images of each letter are shown after being
subjected the method described. One small white point was
put on the carrier and was taken as the trace of the movement.
The trace was used as the functionIRI(x) in the program we
wrote in Mathcad, in order to process the images.

Rev. Mex. F́ıs. 51 (4) (2005) 398–406
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FIGURE 8. Flux diagram showing the experimental image restoration. In this case, the restoration of blurring due to uniform acceleration is
shown.

FIGURE 9. Experimental setup: air-rail and carrier employed to
get experimentally smeared photographs due to relative motion of
a carrier with respect to the photographic camera.

6. Final Comments

The present analysis describes image blurring based on
Dirac-delta functions as an alternative to previous ones. An-

FIGURE 10. a) Photograph taken of the letter “H” which is in
static position; b) Actual photograph taken of the letter “H” which
is mounted in a carrier with linear motion over a level air-rail at
constant velocity; c) restored letter.

FIGURE 11. a) Photograph taken of the letter “H” which is in
static position; b) Actual photograph taken of the letter “H” which
is mounted in a carrier with linear motion over a tilted air-rail at
constant acceleration; b) restored letter.
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alytical results for some types of movement were presented.
Examples of restoration of both numerically generated im-
ages and experimental images which have been blurred due to
uniform linear motion or constant acceleration motion have
been presented. Restorations are carried out on the digital-
ized corresponding images by using the proposed analysis.

The Dirac-delta function formalism was used to define a
PSF function. Purposely blurred images were calculated by
convolving a given image with the corresponding PSF. Two
types of linear movements were considered: constant veloc-
ity and constant acceleration. Because analytical knowledge
of IRI was given beforehand, implementation of the inverse
filter avoiding zeros was carried out directly.

As for the experimental data, there was no need for such
knowledge as long as it was possible to isolate the blurring
of a point. This blur was information identified as the PSF
function and, from that, the inverse filter was implemented.
However, when the analytical form of the blur was known,
motion parameters could be determined as well, leading to
motion analysis.

Analysis of every function PSF is simplified when it is ex-
pressed in terms of Dirac delta functions. The restoration pro-
gram for experimental data does not need the analytic form
of the transfer function. Numerical and experimental results
obtained by implementation of our analysis show that the in-
verse filter method can work adequately.

Although state-of-the-art grabbing resources seem to
lessen the applicability of restoration techniques to blurred
images with degradation due to motion (high-speed CMOS
cameras with 60,000 fps capability, or short laser flashes of
duration in the range of ps, for example), movement inspec-
tion can be still be useful as a technique for movement anal-
ysis. For this purpose, stroboscopic illumination techniques
constitute a well-known particular case of composite imaging

with non-overlapping superposition of discrete, not blurred
images. The more general case of composite multiple, over-
lapping images could be treated with the basic elements de-
scribed in this work.
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A Appendix

As a rule, one image can be described by a two-dimensional
functionI(x, y) when there is linear motion in one direction
at an angleθ with respect to the x-axis. The impulse response
in irradiance is given by

IRI2D(x, y) = IRI(x′)δ(y′),

where (
x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

) (
x

y

)
.

For the sake of simplicity, we consider motion across the x-
axis. Then

IRI2D(x, y) = IRI(x)δ(y),

and therefore

Ib(x, y) = I(x, y) ~ ~(IRI(x)δ(y))

= I(x, y) ~ IRI(x).

Only one dimension has to be considered.
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