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The subject of transient effects in quantum mechanics has been of interest to one of the authors (MM) since long before it became pos
to study them experimentally. In particular, the problem of opening a shutter instantaneously led him to the concept of diffraction in time |
Physically, it is only possible to open a shutter as a function of time and this complicates the problem greatly, as it is then not invari
under time translations and thus, among other difficulties, the energy of the system is not a constant of the motion. Kleber and Scheitle
analyzed the problem describing the shutter as-&unction potential at the origin = 0, but whose strength was an inverse function of
time. In this paper, we follow another procedure by adding to our initial two particle channel another one, and make them interact throt
appropriate time independent boundary conditions at the point of coincidence. The full problem conserves the total energy, but this c
not happen if we restrict ourselves to a description in the first channel only. Thus, we have a rough but analytically solvable problem us
a Laplace transform, which mimics some aspects of a time-dependent shutter, and compare our results with some of those derived
different procedure of reference [2].

Keywords: Transient effects; time dependent shutter.

El tema de efectos transitorios en raeanica cantica ha sido de intés para uno de los autores (MM) desde hace mucho tiempo, cuando
alin no hala ttcnicas experimentales para observarlos. En particular, el problem ade abriaimsséaménte un obturador lo llevo al concepto

de difraccon en el tiempo [1]. Desde el punto de vistsido $lo se puede abrir un obturador como furcidel tiempo, y esto complica
grandemente el problema ya que entonces no es invariante ante translaciones en el tiempo y por ello, entre otras dificultaiiesiela ener
sistema no es una constante de movimiento. Kleber y Scheitler [2] analizaron el problema describiendo el obturador como un pote!
0 en el origenz = 0, pero cuya intensidad es una fubiciinversa del tiempo. En este trabajo seguimos otro procedimiento agregando ¢
nuestro canal inicial de dos pamilas otro nuevo, y los hacemos interactuar agsale apropiadas condiciones estacionarias a la frontera en
el punto de coincidencia de los dos canales. El problema completo conserva la éstatgpero esto no sucede si nos restringindds 3 la
descripodn en el primer canal. Por ello tenemos un modelo, (solublétaamhente con ayuda de una transfomrada de Laplace) de algunos
aspectos de un obturador que se abre comodnr2l tiempo y lo comparamos con ekdisis de la referencia [2].

Descriptores: Efectos transitorios; obturadores dependiente del tiempo.

PACS: 03.65.Ca

1. Introduction one of them there is a matter wave satisfying a free particle
Schroedinger equation far < 0, the other is empty. Con-
One of the authors (MM) was interested in transient EffeCtSnecting the two channels appropriate|ygat: 0 we can get

in quantum mechanics since long ago [1] when there was nggain a diffraction in time effect in the second channel.
possibility of observing them experimentally. This situation

has changed dramatically in the last decades as can be seen, In the problems discussed in the last paragraphs, the
for example in Ref. [2] in the review article by Kleber. shutter is removed instantaneously and obviously can not be
One of the articles mentioned above [1] dealt with a oneperformed experimentally. If the shutter is removed in ac-
dimensional problem-co < = < oo in which, initially, there  cordance with some time dependence the problem is much
was a particle characterized by a plane wave coming fronmore complicated mathematically as discussed in many pa-
—oo and satisfying a time dependent Schroedinger equatiopers mentioned in Ref. [2], as well as in another publica-
and interrupted at = 0 by a shutter. tion [3] by the present authors. The presence of an obstacle
If the shutter was opened fully at= 0 the question was to matter waves that is removed following a certain time de-
to determine the transient probability or current density inpendence, or the effect of a potential function for both coor-
the intervald < z < oo. The solution was elementary but, at dinates and time, clearly invalidates the energy as an integral
that time, was not well known and, as it can be expressed inf motion, as the problem is not then invariant under time
terms of Fresnel integrals, it gave time dependent oscillatioranslation, which may be one of the causes of the complex-
effects at any point > 0 which were denoted as diffraction ity. On the other hand if we have two channel interactions
in time [1]. we can appropriately couple them through time independent
The problem mentioned in the previous paragraph camoundary conditions [4] at = 0 so that energy remains an
also be considered as a two channel problem in which botintegral of motion for the complete system, but not if we re-
of them are restricted to the inten@al< =z < oo, while in strict ourselves to the analysis of only the first channel. This
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is what we plan to do in the next section in which we actu-  In the units units of Eq. (5) all the variables will be di-
ally think of motion of each particle in three dimensions, butmensionless and, in particular, the reduced masses in channel
we shall restrict ourselves to the frame of reference wheré and 3 will be

the total momentum is zero and the function for the relative

coordinate is restricted t§ waves. o =ml(1—mb), ps=mh(1—mh) (6)

2. The equations of motion of the problems Taking in to account the derivative pf; with respect to
m}, (i = 1,3) as zero, we will see that!, is restricted to the

K2

Following the observations at the of the last section, we shaltervalo < m) < (1/2)

discuss a state in three stages As our interaction will be limited to the point = 0 we

. . have that, forr # 0, u;(r,t) andug(r,t) satisfy the time
1) First, we have a system of two free particles of masses : . ; SO :
PR . . o dependent radial Schroedinger equations which, in our units,
m}, m{ interacting only at their point of coincidence. are
2) The two particles form a compound of magsthrough ) )
an appropriate boundary condition at their point of co- 19w — 19 “1, 10us - 19 “3, r#£0. (7)
incidence [4]. i Ot 2uy Or?’ i Ot 2u3 Or?

3) The compound particle disintegrates either into the two  The total probability of the system is given by
original particles or into a new channel where we have

them with masses;, my. oo oo
P = / ujurdr + usus + / uzusdr (8)
Thus our state will be represented in a Fock space as 0 0

- wherex indicates a complex conjugation aftishould not
wl(rlvrlat) h ith ti Th
- Do (h, 1) . (1) change with time. Thus

3 (I’é, I‘g, t)

1dp (= (10w (10" 1,
The total momenta should be the same for all three stagesi dt 1\ ot iot ) Y
so we should have

+{ *(18uQ) <18u2>* ]
U ~ Ta. - - s u
pi +Pi = P> = P; + P, ) *\i ot iot)
i : & 1 (9’[1,3 1 3U3 *
and taking as reference frame the one of the observer, in + us| =— ) —(=—=] ug|dr=0, (9)
which we assume they vanish, we get 0 i ot i Ot

p’ll — 7p/1 =p1 p/3 — 7p/3/ = p3 p’2 =0. (3) and USing the equations (7) we get

The first component off becomes only);(ry,t), the 1dpP e 1 o 0%uy B 82u>{u g
secondy,(t), and the last ongs(rs, t). As we are only con- iodt Jy 2 L or2 orz !
sidering the interaction in the S-wavie( orbital angular 19 19 "
momentum equal to zera);,v3 depend on the magnitude + [u; (“2) _ <“2> uQ]
of r1, r3 so for s-waves they can be written as e i Ot
>~ 1 0%us  O%ul
up(r,t — w23 =0. 1
Yi(ry,t) = 1(70 ), Yo = ua(t), +/0 23 {u?’ or? or2 u;),} dr=0. (10)
bs(rs,t) = us(r, t)7 (4) With the help of the identity
,
where we use the same radial variabfer 7, 73 as the chan- o Pu;  0Puj e 9 (0 _ Oui
nel is already indicated by the indiceswof andus. Yorz or2 ' or\ "or  or "
We shall use units in which i— 1.3, (11)

h=c=1, my+m{ =msi+mi=m=1. (5)
we can evaluate the integrals in Eqg. (10) in terms of the inte-
We assume that the total massof particles in channels grand at- = 0 andoo. As atr = oo there is no contribution
1 or 3 is the same, to simplify the mathematics, as then théo the scattered wave for any finite time (as will be seen in the
wave numbers in channels 1 or 3 are proportional, and wilfollowing sections), we just have to consider the contribution
be shown later. atr = 0 which has a negative sign.
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Thus, we obtain that [4] Thus the equations of motion of our problem become
1dpP 1 . 8u1> (au”{) } 8u1 1 9%y Ous 1 0%us
— — = — | (U7 )r= - — Ul )r= —_— |————=——— fi 1
idt 2m {( 2 0< I ) —o or r:O( =0 Yot C2uy Or2 ot 2u3 Or? or r#0 (18)
1 * 1 o=
+ ,% —+ E0u2 U — u2 8UQ + EOU2 (U1)T_O Gz
i Ot i ot
1 Oua B 1 [Ou
1 . Ous ouj 1 Ot o hote= Ao \or -0
+ o [(u3)r=o| == - (u3)r=0
2/,@3 67‘ — 87" S—
r=0 r=0 . 1 8u3 (19)
—0 (12) s\ or ),
where we have introduced the real constant (Us)r=0 = C32U2
Eo=M —1, (13)  Note that Egs. (19) would be changed if we had taken a dif-

ferent definition of they; in (15). Our choice guarantees that
(which obviously cancels in Eq. (12)) to indicate the differ- the relation between wave functiofs;),.—, and derivatives
ence between the mass of the compound particle and that ¢8u;/dr),—o,i = 1, 3 in the stationary problem be consistent
the two particles in channels 1 and 3. Thgis real but can  with Wigner’s formalism as will be shown later (Eq. (27)).
be positive or negative and, for compactness, we shall only

discuss the first case where the resonance enégdy posi- 3. The Laplace transform of our problem

tive.
The expression (12) can be written as The Laplace transform of a functian of time ¢, and possi-
3 bly of other variables will be indicated by a bar above it and
> <y§+iyi —yi y3+i> =0, (14)  definedas
— o0
u(s) = “stu(t)dt 20
where u(s) /o e " u(t) (20)
_ 1 (0w —u with s being, in general, a complex number such that the in-
"= \or )y T tegral can exist. From (20), we also see that
1 [Ous 4 0u <0
= —\ = , = r=0, St = Sty dt
vs 2u3<8r)To ta = (t)r=o [ = [ e ass
1 0u = —u(0 u 21
=2 B, = (). (25) u(0) + o @)

‘assuming thas is in a region wherexp(—st) tends to 0
whent — oo.
The physical problem, we are interested in, is where we
have a plane wave in channei.g. exp(ix - r), and as the

The bilinear form appears in many problems of mathe
matical physics [5], and it vanishes if there is a linear rela-
tion [5] betweenys.; andy;,i = 1,2, 3 of the form

3 interaction can only occur @t= 0, there we shall need the
Ysgi = Z CijVj (16)  radial part of the plane wave so that
j=1 .
S KTr
with ¢;; being a constant hermitianx® matrix. w(r,0) = K (22)

We can check this by just substituting, ; of Eq. (16) in
Eq. (14), and taking out the factgr,: = 1,2, 3 we arrive at
the hermitian conjugate relation for the correspondjihg

We shall assume that all interactions of the two particle g, .. 1 9%, ‘ 1 9%

while the initial values fows (¢) andus(r, t) will be 0.
Thus the Laplace transform of Eqgs. (18), (19) becomes

systems in channel 1 and 3 are only through the correspond=" +usuy = _ﬂW’ —15U3 = ﬂ a2
ing single particle indicated by the index 2 so that the matrix ! 8
becomes (U1)r=0 = c12U2, (U3)r=0 = C32U2 (23)
0 C12 0 1 8111 1 6113
E = .
lleil| = | cz21 0 co3 17) st Botie =eng 0 ( or ) .o T O r=0
0 C32 0

The solutions of our problem would be provided by the
with co1 = ¢f,, c32 = ¢34 and, for simplicity, we shall con- inverse Laplace transform which implies an integration over
sidercyo, c32 as real numbers. s along the line parallel to the imaginary axis of the complex
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plane ofs from ¢ — ico to ¢ + ioco, and to the right of all the The Laplace transform problem is then fully determined
poles of the problem. by Egs. (25) and boundary conditions (27). The former admit
It is convenient to change our variahlend contour, by immediately the solutions

introducing a new parametérthrough the definition .
21 sin kr

s = —ik*/2, (24) Uy = —/@[RQ — (/)] + Aj expli(k/u1r)],
so that the contour can be modified as indicated in figure 1. Gn = Axoxplilk/mar 29
Using the relation (21) the equations in (24) become ° s oxpli(ky/har)], (29)
da, ., 2uisinkr  d*us . as the scattered waves must be purely outgoing. The coeffi-
g2 TR =i g2 Thpsts=0 (25)  cientsA,, A, will be obtained through Eq. (27) in the fol-
2 o 1 /on, lowing section.
——u Ug=Co1— | —
2 2 ou2 21 2#1 or o
_ 4. Determination of the coefficientsA,, A3
1 8”3
+C23T or (26)
K3\ O/ r=0 At r = 0 we have from (29) that

(@1)r=0 = c12U2, (U3)r=0 = C321s2, ~ ~
o _ (U1)r=0 = A1;  (U3)r=0 = A3
where we can use the last Egs. (26) to elimingtén the first

Eq. (26) to get 1 <c’)u1) _ 2i iy kA,
_ B k2 — (K2 T
{ (t1)r=0 } _ 1 [ C12C21  C12C23 ] mA\ O/ | (12 / )] i
(@3)r=0 2(k3 — k?) | c32ca1 C32023 1 <8U3> ik 4 (30)
(=8 — s
L (om) ps\ Or ) ,—o Vit
X IL11 687{3 r=0 . (27)
s ( or )r:o Thus Eq. (27) becomes
Note that this result is a Wignét matrix formulation [6] A (—1) CloCal Claco
for two channels and one resonant state. In Eq. (27) we have [ A ] = 22— kD) [ oot e 3 }
replacedEO by 0 3221 32€23
1 1@2712 + kA,
Ey = ik?}a (28) x | W=l {2‘1)1]4 VEL L (31)
Vi 3

whereky is real for £y > 0, and imaginary forF, < 0, but
for compactness, we shall restrict ourselves to the first case.  Multiplying both sides of Eq. (31) byk? — k2), and
| passing to the left side the terms dependingignAs; we get

k2 — k(2) +i(k/2\/;71)012021 i(k/2\//73)012023 :| |: A1 :| _ —1 |: C12C21 :| (32)
i(k/2y/11)cszca1 k* — k§ + i(k/2\/n3)csac03 As [k2 — (k2/u1)] | c32c21

To get the explicit values ofi;, A3 in terms of the parameters in Eqg. (32) we need to apply to both sides of this equation,
the inverse of the matrix that appears on the left hand side. To find this inverse we note thak forrafix we have

-1
a b _ | d -b
[c d} = (ad — bc) [c a } (33)
For the matrix in Eq. (32) the determinant is
k ([ c1ac C39Cos
ad — be = (k* — k2 [kQ—k2+i(12 2y 2“)]. (34)
( O) 0 9 /7,“1 /7//&3

Remembering that after Eq. (17) we assumeglteal soc;; = c;;, and introducing the notation

1 1 1
I = 56%2’ I's = 5033, NI = 5012023
1 1 1 r I I's

FErESE AR >
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we obtain

[ ]-eole- (D) wos{iws i (3) )

K2 — k2 +i(k/2m)Ts  —i(k/2y/05)vT 1T H T, } (36)
—i(k/2\/m)VTiTs  k* = kg +i(k/2\/m)T1 | [ VTils.

Carrying out the operations applying the 2 matrix to

the two component vectors we get 5. Transient effects in the two channel interac-
. tion
[ Ay } _ (=)
Az (k2 — (k2/p1)|[(K? — k) + ik(D/ /1)) As ;(r, s) is defined in terms ofi;(r,t) by the expression
r (20), the inverse operations will be
X [ ! ] (37)
AV F1F3 1 c+ioco
wi(r,t) = 2—/ e, (r, s)ds, (40)
T Je—ioco

where a factok? — k32) appearers in the numerator which
is canceled with the same factor in the denominator giverand using the relation (24) ferin terms of the variablé it

by (34). becomes
The (I'v/\/p1), (I's/\/ms) can be considered as the 1 -
widths of the resonant state in channels 1 and 3, while ui(rt) = —— e "7 uy(r, k)kdk, (41)

211 c’

(I'/y/1x), defined in Eq. (35), is the total width [6].
The poles of the scattering amplitudés, A; are give by  where the contouf” is shown in Fig. 1.

the zeros of the denominator in Eq. (37). Two of them are In the second quadrant of the compléx plane

k = £(r/p1) and the other two are roots. of the equation  k=—k,+ik, wherek,, k, are real and positive. Thus

2

k? +ik(T/u) — k2 =0, exp {—zk;] = exp {—z‘(ki —ki)tﬂ]

)\i:—i< r )i 1@3—12. (38) x exp(—kokyt) (42)

2,/1t 4p
and whenk| — oo, the expression in (42) tends to zero. We
The scattering amplitudes in channel 1 and 3 can then bean then close the contod by the dashed arc of a circle
written as indicated in Fig. 1 and, ik, is real {.e. M > 1) we can
deform it to the contouC in Fig. 1, where we bypass the

{ Ay } — (=) polesk = +(x/ /1) at the real axis by the indicated circles.
Az | [k = (5/m)]lk+(k//m)](k = A+ )(k = A=) Thus ouru;(r, t) becomes

Ly (39) 1, [~ )
| ot |- wrt) = 5P [ esp(-ik?/2ka(r bk, @3)
Tr — 00
The Laplace transform solution of our two channel prob-where P stands for the principal value of the integral in or-
lems @,(r, k) has now been fully determined through Egs.der, to take into account the semicircles around the poles
(29) and (39). Then we proceed to express the solution asfa= +(x/,/p1). From Eq.(29) the radial scattereg(r, k)

function of time using an inverse Laplace transform. is given by
Plane s Plane E P Plane k
c
C C . C
:t 1 /\ m
1 1
K +K

FIGURE 1. Contours in the complex plane for the inverse of the Laplace transform.
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6. Physical implications

u;(r, k) = Aj exp [i/ﬂ( uir)} i=13 (a4) The discussion of transient effects in the probability density

i.e. |u;(r,t)|?,i = 1,3 for the two channel problem is in-
. o . . teresting in itself, but in the introduction we mentioned that
with the 4; of Eq. (39). We see that it is convenient, first, to e would like to use the width in the channel with index 3

use the theory of residues to write as a kind of model for the time dependent shutter effect in
k the channel with index 1. Thus we shall only concern our-
F(k) = selves with the behavior dfi; (r, ¢)|2, in which the effect of

[k = (5//EDI[E + (5/y/m)I(k = A ) (k= A-) the other channel only appears throd@i/,/jz3) both in the

4 R total widthI'/, /i of (35) and the poles. of (38). Thus we
=y —= (45) first write explicitly u, (r,t) as
a=1 (k a QQ)
Fl M[\//Tlrv (H/\//“Tl)v t}
where up(r,t) = — :
=g { (52 ) + i/ ) (0 ) — RS

@ = (R/Vm), q@=—(k/Vim), @=XA, qa=>X, M[/fr, —(k/ /i), 1]

+— -
K —i(k r — k2
o [@_qa)m)} ) (52 1u2) — (/i) (T /) — K3
~da 201 M (/i Ay, t)
We, thus, obtain from Egs. (29), (39) and (45) that the [(52/ 1) = A3]V/4kg — (I2/ )
scatterecbart of the wave fupctlon in channel 1, which we 2A_ M (\/fiir, A, t)
continue to denote by, (r, t), is 5 5 > § (51)
[(K2/ 1) = A2]\/4k§ — (I /)
4 - 0 . e . 1212
up (r,t) = Z Ral“liP/ explik(yr) — 3ik1] dk In the Eq. (51) the functiod (\/u1r, ¢,t) is given by
a=1 2 Joo (k — ga) Eqg. (48), wheres is the wave number of our incident plane
4 wave,I'/\ /it is given by (35) and3 = 2(M — 1).
= Z RoT1 M (/17 Gas t) (47) In Fig. 2 we give a numerical example ¢f;(r,t)|?
a=1 as function of time. We indicate in Fig. 2 specific values
of p1, (I'/\/11), ko and the point- of observation and keep
where the function\/ (p, ¢, t) is given by Ref. [1] (T's/\/n3) as a parameter. By changing the value of this pa-
rameter in the intervad < (I's//f13) < oo, we evaluate in
M(p,q,t) = }exp [Z <qp _ 1q2t>} Fig. 2 the probability densityu, (r, t)|'2 as function of time
2 2 and compare it in the next section, with the diffraction in time

effect when a shutter is opened as a function of time.
xerfc[(l —i)(4t)"V2(p — qt)} (48)

with ‘u1(5, t>|2
0.01

erfo(z) = 27~ '/2 /°° exp(—2%)dz =1—erf(z) (49) 0.008
From Egs. (44) and (37) we have that for the other chan- 0.006

nel 0.004

0.002

4
us(r,t) = > Ra/TilsM(\/ji57,qart)  (50)
a=1

5 10 15 20
We have thus the explicit analytic expressions for time 1

the transient scattered [1] amplitudes as functions of the: g re 2. Scattered probability density in channel 1 as function of
M(p, q,t), whose properties are known in Refs. [1,2]. We the width(I's/,/z3) in channel 3, for the fixed values of the param-

proceed then to discuss their physical implications, and lategters given belowd = 6, m = 1, ko = /2(M — 1) = V10,
to compare them with results derived from other procedureg,, = I'y = 1, us = 1, &« = 4, r = 10. The values above the
in reference [2] . curves are those of the wid{li's /. /113).

Rev. Mex. 5. 51 (4) (2005) 407414
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We can get though some idea of the effect of channel 3
on 1 by going to the limit — oo, where we know that the i 6
final stationary system is established.

We know that when — oo we have [1]

M (\/par, K, t) — exp {z [q\/mr — ;th] } ,

if (—%) <argq < <?ZT) (52)

M(Vlu’lraﬂat)ﬁoa =

) 20 40 60 80 100

3 7 ;
if <7r> < argq < <7r) . (53) time t
4 4 FIGURE 3. Tunneling [in unitsfix/m] as function of time [in

units (m/%ix?)] for different values of the paramet&t and a fixed
T = 10. The values ol are indicated above the curves. (From G.
Scheitler Ph. D. thesis in reference[2], p. 19, Fig. 2.7).

current at x = 0

Thus in Eq. (51) we are left only with the first term in the
curly bracket and

P = (1) ! (54) s ad - -
(7, “\2m ) R R22+ R2(T) ) (1“3/\/@) is ad!usted to different values to influence the
probability density coming from channel 1.

As from Eg. (35) we have Fortunately in his Ph. D. thesis [2], Scheitler also dis-
cussed a potential whose strength can be stopped after a time
I/v) = T1/vp) + Ts/vm), T i.e. where the coefficient of(z) in Eq. (55) is
we see that if(I's/,/3) — 0 then it becomes the stan- (V/t) for0<t<T
dard one level formula in a single channel [6], while for o
(T's/\/Hi3) — oc it vanishes. Thus in a certain way the other (V/T) forT <t <oo. (57)
channel acts as a fully open shutter whi€p//zi3) — 0 and . )
a closed me whefT's //Ji5) — oo. In this case the problem was also solved analytically by

Scheitler [2] and the current far = 0 is plotted in Fig. 3 as
) a function of the time at the different values df' at which
7. The time dependent shutter problem as he potential strength becomes the constaitr), which are
viewed by Kleber and Scheitler indicated above the curves in Fig. 3.

In the present paper; we considered the transient effects in a .
two channel interaction so as to get, in the first channel, som8- Conclusion

of the behavior of a time dependent shutter. T ient ph . i hani i
We mentioned, in the abstract, the difficulties in the math- ransient pnénomena in quantum mechanics are more easily

ematical analysis of an arbitrary time dependent opening of g|scussed if the perturbation is applied suddenly, say at time

shutter. There is one case though, discussed in the papersto’r_’ 0. Thus for timet < 0, we have a fixed time independent

reference [2], in which this can be carried out, which corre-potentlal (let us cal i¥"-), while for ¢ > 0 we have another

sponds to the one dimensional time dependent Schroedinggpe (Ie_t us call 'ﬁ/+_)' If we start W'th t_he eigenstates of the
equation. potentialV_ they will show transient time dependent effects

att > 0 as shown for example in reference[1] for the problem
o 18 Vv of “Diffraction in time” when we suddenly remove a shutter.
{’m + 2922 té(m)} b(a,t) =0, (55) Physically a perturbation can not be applied suddenly so
the situation described in the previous paragraph is an ideal-
where they use units in which = m = 1,V is a positive  jzation.

constant and the initial condition is Thus, in fact all perturbations imply some time dependent
exp(ikr), if z <O0; potentials which_lead to the difficulties mentioned .in the pa-
P(x,0) = { 0 if x>0 (56)  per and, of particular relevance, as the problem is not then
’ ' invariant under time translations the energy is no longer an
This problem is solved in the full interval < ¢ < oo in integral of motion.
the papers of reference 2, in which for= 0 the shutter at In the present paper, we discuss a different way in which
the originz = 0 is fully closed while at = oo is completely  we can make changes in our problem by enlarging the space
open. in which it is described. Thus, we can change the behavior
Obviously, this general solution does not correspond tdn part of the problem we are interested in (channel 1 in the
our previous analysis in which the width in channéle3 present paper) by controlling the parame(gs/,/13) that
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we have introduced in the enlarged part of the space (charAcknowledgements
nel 3).
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While our discussion deals with a particular problem, the
ideas presented in this paper are, in principle, valid for more
general situations.
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