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A perturbative nonlinear procedure is used to account for the conversion efficiency of the third harmonic reflected from a dense plasma
illuminated by a short laser pulse. It is found that the power ratio of the third harmonic to that of the fundamental is given byP3/P0 ∼
a4
0 (ω0/ωp)2, wherea0 is the amplitude of the incident wave, andω0 andωp are the optical and plasma frequency, respectively. This

power ratio was found to be in agreement with particle-in-cell (PIC) simulations. Furthermore, the model presented here predicts a resonant
enhancement around a density four times critical. This effect is captured as well by numerical simulations, and proved to be a distinctive
feature in the radiation spectra.
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Se emplea un ḿetodo perturbativo para calcular la eficiencia en la emisión del tercer arḿonico por reflexíon de un plasma denso en la
interaccíon de un pulso corto de luz láser. Se encuentra que la potencia emitida está dada porP3/P0 ∼ a4

0 (ω0/ωp)2, dondea0 es la
amplitud de la onda incidente,ω0 y ωp son las frecuenciaśoptica y del plasma, respectivamente. La potencia obtenida se encuentra en
concordancia con aquella observada por medio de la simulación nuḿerica de partı́culas. Adeḿas, el ḿetodo aqúı presentado predice un
efecto resonante alrededor de una densidad de plasma que corresponde a cuatro veces su valor crı́tico. Este efecto se observa, ası́ mismo, en
las simulaciones nuḿericas, siendo una caracterı́stica distintiva en los espectros de emisión.

Descriptores: Interaccíon plasma-ĺaser; generación de arḿonicos

PACS: 52.50.Jm; 52.65.Rr; 52.25.Os

1. Introduction

The physics of laser-dense plasma interaction involves a vast
number of phenomena that may occur when a target medium
is irradiated by a light source. Among the physical processes
that can be found in these types of interactions we have, for
instance, ionization, generation of large amplitude plasma
waves, magnetic field generation, hole boring, particle accel-
eration, collisional absorption, and vacuum heating. Thresh-
old intensities of these interaction phenomena have been well
known throughout the development of laser technology.

The main aspect of interest to us in the interaction physics
of laser pulses with overdense plasmas is harmonic gener-
ation. Radiation emission from targets irradiated by laser
pulses may offer promising applications in many research
fields, such as those for the development of short coherent
x-ray sources [1,2].

Harmonic radiation has been under study over the past,
and a considerable amount of research work is now reported
in the literature. The first report on strong emission detect-
ing up to the 46th harmonic was due to Carman and co-
workers [3,4], from the irradiation of carbon targets by CO2

laser pulses at intensities of above5 × 1014 W/cm2. The
emission spectra from those observations showed a cutoff at
a maximum harmonic number that was interpreted as corre-
sponding to the upper shelf density of the steepened plasma
profile, with emission due to nonlinear resonance absorp-
tion. Later numerical simulations provided no evidence of
a cutoff for higher input intensities, with emission extending
to regions in the xuv regime [5]. Moreover, laboratory ex-
periments have detected emission at high harmonic orders,

showing a rolloff of emission lines. For instance, harmonic
emission at orders up to the 75th for obliquely incident Nd
light pulses of duration 2.5 ps at1019 W/cm2 has been ob-
served [6]. Further experiments have confirmed high order
laser harmonics emitted with conversion efficiency decreas-
ing in intensity with increasing order [7,8]. Another possible
source of emission is known as vacuum heating [9], which
corresponds to the acceleration of electrons that are pulled
out of the plasma by the longitudinal component of the laser
electric field. In a time of about half an optical cycle, the
electric field reverses its direction and reinjects the electrons
into the plasma. This strong acceleration takes place near the
plasma-vacuum interface, and is thought to be responsible
for part of the emission. Another mechanism for harmonic
generation suggests a phase modulation of the reflected laser
light from an oscillating interface [10]. Using a ‘moving mir-
ror’ model, Lichterset al. [11] modulated the surface oscilla-
tions using Fourier components of adjustable amplitudes, and
reproduced the spectra computed numerically. A complete
account of harmonic emission can be found in the review pa-
per by Gibbon [12].

More recent work has reported modulation for the har-
monic emission at high intensities from solids irradiated by
femtosecond laser pulses [13]. The modulation was shown
to be produced by high order oscillation modes of the critical
plasma frequency, and proved to be dependent on both the
initial scale length and field amplitude. This radiation phe-
nomenon could provide a means of studying the dynamics of
the critical layer, and would offer a diagnostic technique in
experiments.
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Plasma emission from overdense plasmas has recently
been observed from laser-produced plasmas by Teubneret
al. [14], and PIC simulations by Lichterset al. [15] and On-
darzaet al.[16-17]. The harmonic spectra, in these cases, are
characterized by a strong emission at the plasma frequency.

In this paper, we report on the conversion efficiency for
the third laser harmonic reflected from an overdense plasma
irradiated by a short laser pulse at normal incidence. The
power ratio is obtained from a perturbation model that uses
the amplitude of a relatively weak laser field, calculated at the
critical layer of a dense plasma. We have employed a simi-
lar procedure to the one followed in the model proposed by
Wilks et al. [18], but used a different method and approxima-
tion to solve the equations that govern the density fluctuation.

The remainder of this work presents, in Sec. 2, the pertur-
bation analysis used for the calculation of the reflected power
of the third harmonic. In Sec. 3, a brief account of the sim-
ulation method is given. The discussion of the results is pre-
sented in Sec. 4, and conclusions are addressed in Sec. 5.

2. Perturbation analysis

We consider a dense plasma of a very steep density profile
irradiated by an electromagnetic plane wave, linearly polar-
ized, propagating in thez direction, with the ion densityn0

regarded as a neutralizing uniform background. The inci-
dent wave can be described by the electromagnetic vector
potentiala, whereas the electron dynamics by a cold fluid
model under the assumption that the electron quiver velocity
vvv = caaa /γ is greater than the electron thermal speed. Here,
aaa = eAAA/m0 c2 is the normalized vector potential with mag-
nitudea ∼ 8.5 (I18)

1/2
λL, whereI18 is the field intensity

(measured in units of1018 W/cm2) andλL the wavelength
in microns. The speed of light in vacuum is represented byc,
m0 ande are the electron rest mass and charge, respectively,
andγ is given byγ =

[
(1 + a2)/(1− v2

z)
]1/2

, with vz being
the parallel velocity.

Using Maxwell equations and the conservation of canon-
ical momentum, the electromagnetic wave equation can be
expressed as

¤2 aaa = k2
p

n

n0

aaa

γ
, (1)

where

¤2 =
∂2

∂z2
− 1

c2

∂2

∂t2
,

kp = ωp/c,

ωp = (4 π n0 e2/m0)
1/2

is the plasma frequency andn the electron density.
We follow a perturbative expansion and express the vec-

tor potential to second order asa = az,0 + ε az,3 + O(ε2),
whereaz,0 andaz,3 represent the fundamental wave and the
third laser harmonic, with amplitudesa0 anda3, respectively.

The parameterε is used to separate the terms among dif-
ferent orders. The density perturbationδn gives a relation
n = n0 + δn, to first order. The basic assumption is to con-
sider botha2

0 ∼ ε and δn ∼ ε. Using this ordering, the
expansion of Eq. (1) is given by
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where we have obtained the wave equations for the funda-
mental, the 3rd and 5th harmonics to orders 0,ε andε2, re-
spectively. We leave for another publication the calculation
for the fifth harmonic.

The electron dynamics is described by the set of equa-
tions

∂n

∂t
+

∂

∂z
(n vz) = 0, (5)

∂2φ

∂z2
= k2

p

(
n

n0
− 1

)
, (6)

∂pz

∂t
+

∂

∂z

(
m0 c2 γ − e φ

)
= 0, (7)

whereφ(z) is the electrostatic potential.
Using the equations above, we arrive, after linearizing the

continuity equation and eliminating the terms of second or-
der, at the dynamic equation forδn

∂2δn

∂ t2
+ ω2

p δn =
n0

2
c2

∂2 a 2
z,0

∂z2
. (8)

To obtain the solution for the density perturbation, we
first calculate the amplitude of the wave at the skin depth
of the plasma. We assume that the incident, reflected, and
transmitted waves can be expressed in the form

Ai=a0 cos (kz − ω0t) , (9)

Ar=ar cos (−kz − ω0t + φ1) , (10)

At=at e−z/δ cos (−ω0t + φ2) , (11)

wherea0, ar andat are the corresponding field amplitudes,

k = ω0/c andδ =
√

c2/(ω2
p − ω2

0) is the skin depth, withω0

the fundamental frequency. Phasesφ1 andφ2 can be evalu-
ated requiring that the wave and its derivatives be continuous
at the surface, from which we obtain that

tan φ1=
2 δ k

1− δ2 k2
, (12)

tan φ2=− 1
δ k

. (13)
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From these equations, we have that the amplitudes are
related by

ar=−a0,

at=2
(

ω0

ωp

)
a0,

which gives the transmitted wave

At = 2
(

ω0

ωp

)
a0 e−z/δ cos (−ω0t + φ2) . (14)

Equation (14) is a solution of Eq. (2), for propagation in-
side the plasma.

We solve forδn, replacingaz,0 in (8) by At, to account
for the field amplitude that drives the density oscillations, and
get

δn(t) = 4 n0 β2 (1− β2) a2
0 e−2z/δ

{
1 +

1
1− 4β2

× (
2

(
2β2 − 1

)
cos ωpt + cos 2 ω0t

)}
, (15)

whereβ = ω0/ωp.
Thus the electron density oscillates at both the plasma

frequency and at2 ω0, which corresponds to the oscillation
frequency of the ponderomotive force. From this solution,
a resonance effect at a density four times critical can be in-
ferred. Numerical simulations were performed to account for
the reflected emission, with the result of this effect being cap-
tured as well in the spectra.

Considering only the oscillation mode at2 ω0 in Eq. (15)
we get, after substituting in Eq. (3), the source term at fre-
quency3 ω0 that drives the third harmonic wave,

(
¤2 − k2

p

)
az,3 =

3 β2 k2
p a3

0

1− 4 β2
e−3z/δ cos 3 ω0t, (16)

where we have not retained oscillation modes at other fre-
quencies. This equation can be regarded as in the form of
a Klein-Gordon-type equation, for a nonlinear waveu(z, t)
governed by

utt − c2uzz + λ2 u = ε F (u, ut, uz), (17)

wherec andλ are constants andF given by the right hand
side of Eq. (16).

We seek a solution in the form

u = a0 e−z/δ cos ψ + ε e−3z/δ a3(a0, ψ) + O(ε2),

with ψ = ω0t, and follow a perturbative procedure to solve
the wave equation for the third harmonica3.

Retaining all terms of orderε, we obtain the amplitude
for the third harmonic wave as

a3 =
3
8

β a3
0

1− 4β2
cos 3ψ. (18)

The ratio of the power in the nth harmonic,Pn, to the
power in the pump radiation fieldP0, is given by

Pn/P0 = n2 a2
n/a2

0.

Hence, the power ratio for the third harmonic is given by

P3

P0
=

(
9
8

)2 (
ω0 ωp

ω2
p − 4 ω2

0

)2

a4
0. (19)

3. Particle simulations

For plasma simulations we have implemented a 1 1/2-D elec-
tromagnetic particle kinetic code following the numerical al-
gorithms developed by Birdsall and Langdon [19,20]. The
integration of the equations of motion for a large number of
particles is accomplished through efficiently designed numer-
ical algorithms that solve at each time step the interaction of
an external electromagnetic field and the self-consistent field
quantities from the charges in the system and then use the
force to move the plasma particles.

The electrostatic fields are calculated from the initial
charge distribution and current densities and then recalcu-
lated from the new particle positions and velocities. A finite-
difference scheme for the Lorentz equations of motion in a
spatial grid, centered in time, is used to compute the elec-
tric force that accelerates the particles, and then a rotation
of the particle velocities is performed to calculate the mag-
netic force. The code separates the transverse fields into left
and right-going components which are advanced in time by
adding the current densities computed from the particle ve-
locities assigned to the grid. The Poisson’s equation is inte-
grated directly by using fast Fourier transforms of the density
at the grid points, with the longitudinal field obtained from
the gradient of the inverse transform of the scalar potential.
Once the field quantities have been calculated at each time
step, the particles are moved, for the next cycle, with new
positions and velocities.

In our simulations, the plasma occupied a simulation box
extending over 4-6 laser wavelengths with 2000 spatial grid
cells containing2 × 106 particles. These simulation param-
eters made it possible to achieve an acceptable resolution for
resolving a Debye length. The density profile was chosen to
have a scale length of only a fraction of a laser wavelength
to simulate a very steep density gradient at the front bound-
ary. Two vacuum gaps of half a wavelength were placed to
the left and right of the plasma boundary, to allow for particle
and wave propagation.

4. Results and discussion

It follows from Eq. (19) that the conversion efficiency de-
pends on the ratioβ =

√
nc/ne and scales with the wave

amplitude asa4
0. In Ref. 18, the power ratio was obtained as

P3/P0 ∼ 0.1(a0 β)4, which implies a higher power forβ.
In that paper the physical assumption for this expression to
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be valid was thata0 β ¿ 1, in contrast with the less strict
conditiona0 < 1, required for the perturbation expansion.

In addition, from Eq. (19), we can infer the existence
of a resonance effect at a density four times critical. Fig-
ures 1 and 2 show the reflected power of the third harmonic
as a function of the plasma density for a wave amplitude of
a0 = 0.5 and 0.6, respectively. It is shown that the power
ratio, represented by a solid line, is in good agreement with
PIC simulations. These figures show that resonance effects
characterize the spectral region for low densities, where the
conversion efficiency is higher around the density four times
critical, including a prominent emission at a density that cor-
responds to nine times critical. The source of the emission for
the latter resonance is different from that which we consider
at four times critical, since the third harmonic generated at
the critical density propagates further inside the plasma and
is reflected at a density nine times critical.

From Eq. (19), Fig. 3 shows the conversion efficiency for
the third harmonic, as a function of the laser intensity for dif-
ferent values of the plasma density. This plot shows that the

FIGURE 1. Reflected power of the 3th laser harmonic as a function
of the plasma density, fora0 = 0.5: (a) analytical (solid line) and
(b) from simulation (squares).

FIGURE 2. Reflected power of the 3th laser harmonic as a function
of the plasma density, fora0 = 0.6: (a) analytical (solid line) and
(b) from simulation (squares).

FIGURE 3. Reflected power of the 3th laser harmonic as a function
of a0, for different plasma densities.

FIGURE 4. Reflected power of laser harmonics as a function ofa0,
for ne/nc = 10.

power ratio is consistent with the expected energy saturation
effect that occurs for higher field amplitudes, as shown in
Fig. 4 for a PIC simulation withne/nc = 10. A more com-
plete account of the radiation resonance effect, described in
this paper, can be found in Ref. 21, where harmonic emission
at multiple orders of the fundamental is reported to exhibit
resonance phenomena when a dense plasma is irradiated by
a short laser pulse.

5. Conclusions

A perturbative nonlinear procedure was applied to calculate
the emission power for the third laser harmonic reflected from
a dense plasma, illuminated at normal incidence by a laser
pulse. We shall remark that the perturbation scheme em-
ployed in this analysis does not enable us to treat the case
for a highly intense pulse, and is only limited by the assump-
tion that the field strength fulfillsa0 ≤ 1, with a2

0 ∼ ε, for
the formal perturbation expansion parameter. It was shown
that the density perturbations depend on the quadratic power
of the laser intensity and present oscillation modes at twice
the frequency of the driver. Apart from this frequency and
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intensity dependence, the density was found to resonate at 4
times critical. It was shown that this resonance effect char-
acterizes the emission spectra, as confirmed by PIC kinetic
simulations. With any perturbation expansion, confidence in
the approximation diminishes as the order increases. Nev-
ertheless, we have found in high order calculations that the
pattern of resonant density emission persists, with the num-
ber of resonances increasing with the approximation order.

Furthermore, it was found that the power ratio of the third
harmonic, reflected from the vacuum interface, scales with
the intensity asa4

0 and with the optical and plasma frequen-

cies as(ω0/ωp)
2. The conversion efficiency found in this

work can possibly be employed, as a diagnostic tool, to esti-
mate the plasma density in experimental applications.
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