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The data for elastically scattered charged pions from few nuclei, namely16O, 28Si, 30Si, 32S, 34S, 40Ca,43Ca,56Fe,58Ni, 64Ni and 90Zr
have been analyzed by obtained potentials using a suggested scaling procedure. Originally theπ± - 12C elastic scattering data at 50 MeV
was nicely fitted by a parameterized simple local optical potential extracted from available phase shifts using inverse scattering theory. The
potential parameters of theπ± - 12C systems were scaled toπ± - 16O systems and then successively to other few systems covering the
scattering of charged pions from target nuclei and isotopes, namelyπ± - 28Si, 30Si, π± - 32S, 34S,π± - 40Ca,48Ca,π± - 56Fe,π± - 58Ni,
64Ni andπ± - 90Zr. For all these systems, the obtained scaled potentials showed a remarkable success in explaining the available elastic
scattering data at 50 MeV. For the first time, simple scaling relations are well established, and are used in explaining successfully the elastic
differential and integral cross sections. This motivates using the scaling procedure to predict pion-nucleus potentials capable of explaining
measured angular distributions for the scattering of charged pions off other target nuclei, and few isotopes, at energies in the low energy
region.

Keywords: Pion-nucleus potential; Klein-Gordon equation; elastic scattering; inverse scattering theory; phase shift analysis; scaling; method;
low-energy physics.
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1. Introduction

In the last few decades, a great attention has been given to
pion physics, mainly in using the pion as a probe to glean
important nuclear information [1]. This is due to its intrinsic
properties [2] as spin, charge and mass, in addition to other
gained properties as kinetic energy which is provided by the
pions’ producing facilities. These properties have given it
superiority over other probes, as electrons and protons, to in-
vestigate the interior of the nucleus as well as the peripheral
areas. As such, pion factories and associated facilities [3]
have been used in providing a great deal of accurate pion-
nucleus scattering data. In fact these data are considered cor-
rect points, and the success of any theoretical model is mea-
sured by its capability in explaining these data points.

It is well-known that the pion’s mean free path,λ,
changes non-monotonically with its incident kinetic en-
ergy, Tπ. Obviously in the delta resonance energy region
(Tπ = 200 ± 100 MeV), λ is less than the inter-nucleon
distanced and, as such, the incident pion faces a complete
absorption at the surface,i.e. the nucleus surface acts as a
complete black disc [4]. On the contrary, and in the low en-
ergy region, (Tπ < 100 MeV), λ is of few Fermis and, as
such, the pion penetrates deeply inside the nucleus,i.e. the
nucleus is transparent to pions [5]. Such a merit gave the pion
a better prospect to reveal nuclear mysteries and solve subtler
effects.

Coping with a wealth of pion-nucleus scattering data,
provided by available pion facilities, many theories and the-
oretical models [6] have been proposed to explain these data.
It is well known that Klein-Gordon equation is the appro-

priate one to describe the relativistic scattering process of
spinless particles, as pions, from target nuclei. The solu-
tion of this equation is solely based on the determination
of the pion-nucleus potential which has an explicit appear-
ance in the equation. Hence, many theoretical approaches
had competed to provide the most adequate potential which
provides a better explanation for available pion-nucleus data.
The most recent of these potentials is Satchler’s [7] simple
local potential of Woods-Saxon form for both real and imag-
inary parts. The limitations of Satchler’s potential have been
rectified by using a new simple local potential [8] guided by
inverted potential points obtained from available phase shifts
using inverse scattering theory within the framework of the
full Klein-Gordon equation.

Unfortunately, the inverse scattering theory is of no use
if phase shifts are absent. As such, this obligated the
need for an alternative method based on benefitting from
cases with available phase shifts for ones without available
phase shift analyses. For several non-relativistic nucleon-
nucleus, alpha-nucleus and nucleus-nucleus systems, a scal-
ing method [11-15] was used to obtain the potential parame-
ters for one system from the potential parameters, used suc-
cessfully in explaining the measured angular distributions, of
a nearby system. Guided by this, we will scale the potential
parameters for a pion-nucleus system, at 50 MeV, from an-
other nearby successful one. The extent of success for this
method is measured by the capability of the scaled potential
to account for the experimental angular distributions. To test
the method, we have scaled theπ± - 16O potential parameters
from π± - 12C potential parameters [16,17]. The obtained
potentials by scaling are compared to the ones from inverse
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scattering theory. Both are in a good agreement, and they fit
the measured angular distributions reasonably well. With this
reasonable agreement, the use of the scaling method is then
continued successively to cover the scattering of charged pi-
ons, with 50 MeV incident kinetic energy, from other target
nuclei as28Si, 32S, 40Ca,56Fe,58Ni, 90Zr and few isotopes
as30Si, 34S,48Ca and64Ni. Our results are encouraging, and
they strongly support the generalization of the method to be
used in studying low-energy pion-nucleus scattering cases.

In the following section, theory is outlined. In its subse-
quent section, light is shed on results and discussion. The last
section contains the concluding remarks.

2. Theory

The theory of this work is very much similar, especially the
relations, to that of our recent published paper [17]. This is
due to the similarity of the topics. Nevertheless, it is again
outlined here for emphasis and completeness.

As usual, the potential,V (r), which has been adopted
in analyzing successfullyπ± − 12C elastic scattering data
[16,17] consists of a nuclear term,VN (r), in addition to the
Coulomb one,VC(r):

V (r) = VN (r) + VC(r) (1)

The nuclear part is a sum of three well-known phenomeno-
logical terms, two real terms and one imaginary term, and has
the following analytical form:

VN (r) =
V0

1 + exp
(

r−R0
a0

) +
V1[

1 + exp
(

r−R1
a1

)]2

+ i
W3 exp

(
r−R3

a3

)

[
1 + exp

(
r−R3

a3

)]2 (2)

The first term is an attractive Woods-Saxon (WS) while
the second one is a repulsive Squared Woods-Saxon (SWS),
and the third is the surface Woods-Saxon. The Coulomb
term, VC(r), is considered due to a uniformly insulating
charged sphere. For the scattering of an incident charged pion
from a stationary target nucleus of atomic numberZT , VC(r)
has the following form:

VC(r) =





±ZT e2

8πε0RC

(
3− r2

R2
C

)
r ≤ RC

±ZT e2

4πε0r
r > RC

(3)

The Coulomb radius,RC , is numerically estimated by
RC = 1.2A1/3 whereA is the atomic mass of the target
nucleus in atomic mass units. The constantse2 andε0 are
the squared electron charge and permittivity of free space;
ande2/4πε0 is taken 1.44 MeV.fm in nuclear units. For the
purpose of calculating scattering quantities as the scattering

amplitude, the differential and reaction cross sections,V (r)
is implemented in the radial part of Klein-Gordon equation:

[
d2

dr2
+ k2 − U(r)− l(l + 1)

r2

]
Rnl(r) = 0 (4)

with k2 andU(r) are given by

k2 = (E2 −m2c4)/~2c2 (5)

U(r) =
2E

~2c2
[V (r)− V 2(r)/2E] (6)

The quantitiesE, m, ~ = h/2π andc are the actual pion
total energy, effective pion mass, reduced Planck constant
which equals Planck’s constanth(h = 6.626 × 10−34 J· s)
divided by2π and the velocity of electromagnetic wave in
vacuum (c = 3.0× 108 m/s), respectively. To avoid singular-
ities and to put Eq. (4) in a more familiar convenient math-
ematical form and an easier computational format,Rn`(r) is
transformed intoϕn`(r) by the following substitution:

Rn`(r) = (kr)`+1ϕn`(r) (7)

So Eq. (4) reads:

[
d2

dr2
+

2(` + 1)
r

d

dr
k2 − U(r)

]
ϕnl(r) = 0 (8)

To calculate the previously mentioned scattering quanti-
ties, one needs first to find the phase shift,δ`, for each con-
tributing partial wavè . This is usually done by matching
the inner and outer solutions of Eq. (8), namely the logarith-
mic derivatives, at the surfacer = R which is also called
the matching point or the cutoff radius. The outer solution,
i.e. for r ≥ R, is the well-known Coulomb wave function
expressed as

ϕnl(r) =
1

(kr)`+1

{
F`(η, kr) +

exp(2iδ`)− 1
2i

× [G`(η, kr) + iF`(η, kr)]
}

(9)

whereF` andG` are the regular and irregular Coulomb wave
functions, respectively. Although the effect of using the rela-
tivistic versions of these Coulomb wave functions compared
to the non-relativistic ones is negligible, we have used the rel-
ativistic ones, as it should be, generated by the code when the
nuclear part turns off [18,19]. The parameterη is Sommer-
feld parameter given by,

η =
ZT αE

k
(10)

whereα is the fine structure constant. On the other hand, the
inner solution for Eq. (4) is obtained by integrating the equa-
tion numerically, from the originr = 0 to the cutoff radius
r = R, using Numerov’s method [20].
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Knowing δ`, one can calculate the full elastic scattering
amplitude,f(θ), at angleθ, in the center of mass system, us-
ing the relation :

f(θ) = fc(θ) +
1

2ik

∞∑

`=0

(2` + 1)e2iσγ

× [e2iδ` − 1]P`(cos θ) (11)

where fc(θ) is the pure Coulomb scattering amplitude,
P`(cos θ) is the Legendre polynomial, andσγ is the Coulomb
phase shift defined by [21] :

σγ = arg Γ
(

γ +
1
2

+ iη

)
− 1

2
π

(
γ − 1

2
− `

)
(12)

and the dimensionless parameterγ is given by:

γ =

√
` +

(
1
2

)2

− Z2
T α2 (13)

It is clear that the second term under the square root is
very small compared to the first term, except for` = 0.
As such it can be neglected, andγ can be approximated
asγ ≈ (` + (1/2)). With this logical approximation, the
Coulomb scattering for the relativistic case,σγ , reduces to
the Coulomb scattering for the nonrelativistic scattering case,
σ` [22].

The elastic differential cross section,dσ/dΩ, which
equals the absolute square of the scattering amplitude, is ex-
pressed mathematically as :

dσ

dΩ
= |f(θ)|2 (14)

Also the reaction cross sections,σr, can be calculated using
the well-known definition:

σr =
π

k2

∞∑

σ`=0

(2` + 1)
[
1− |S`|2

]
(15)

whereS` = e2iδ` is the S-matrix, andδ` is complex.

3. Results and Discussion

The scaling method pointed out by Haider and Malik [11],
which was only concerned with non-relativistic scattering
problems, shows the dependence of the potential parame-
ters, mainly the radii and the depths of the potential terms,
on the geometry of the two colliding nuclei. Such a scal-
ing method has been adopted in determining the potential pa-
rameters for a certain alpha-nucleus or nucleus-nucleus nu-
clear system from another nearby similar one. Following
this strategy, the potentials for several two-nucleus systems
had been determined by scaling the potential parameters of a
successful nuclear nearby system. In fact, the potential pa-
rameters for16O - 16O system [9] have been scaled from

12C - 12C potential parameters. Alsoα − 32S, 34S poten-
tial parameters [12] have been scaled fromα- 28Si poten-
tial parameters [10]. In 1995, Shehadeh [8] has reempha-
sized the power and success of the scaling procedure in de-
termining the correct potentials capable of providing nice
fits to the experimental scattering data for34S- 64Ni, 36S -
58,64Ni, 40Ca-48Ca and27Al - 58Ni nuclear systems [13-15].
Guided by the success of the scaling method for all the above
mentioned non-relativistic scattering cases, described by the
Schr̈odinger equation, we have applied it here to test its suit-
ability and capability in explaining low-energy pion-nucleus
elastic scattering data. This is based on obtaining the poten-
tial parameters for a certain pion-nucleus scattering case by
scaling the potential parameters used successfully for another
nearby similar system. Here we have first scaled the parame-
ters ofπ±− 12C potentials [16,17] to obtain the potential pa-
rameters of systems [23]. The obtained potential parameters
of π± − 16O sistems. Cases have determined the exact na-
ture of the potential and have nicely explained the measured
angular distributions. In addition, it is very interesting to see
the good match between the scaled potential and the param-
eterized one based on the inverted potential points obtained
from available phase shifts [24, 25] using inverse scattering
theory [26]. Such a pleasant success motivates the use of
the scaling method to determine approximately the nature of
other pion-nucleus systems and, then, fit the data. This scal-
ing method has been implemented with a start fromπ±−12C,
and then carried out to cover the elastic scattering of charged
pions from few nuclei, namely16O, 28Si, 32S, 40Ca, 56Fe,
58Ni, except for90Zr nuclear target in a successive manner.
The potential parameters along with calculated and measured
reaction cross sections are listed in Table I; and the scaled
potentials are shown in Fig. 1. Correspondingly the cal-
culated and measured differential cross sections [27-32] for
both charged pions scattered elastically from all nuclei un-
der consideration are depicted in Fig. 2, and the agreements
are very reasonable. With no doubt, a remarkable improve-
ment can easily be achieved by slight adjustment of one or
two parameters,i.e. by increasing the number of free pa-
rameters. In Fig. 3 the scaled potentials, real and imaginary
parts, are drawn along with the calculated differential cross
sections, compared to the measured ones [29-32], for the 50
MeV incident charged pions scattered off the four isotopes
30Si, 34S, 48Ca and64Ni. Nevertheless, the agreement be-
tween the calculated and measured reaction cross sections is
very obvious except for nuclear target where theory under-
estimates measured values for pions of both polarities. This
is clearly depicted in Fig. 4. The potential parameters and
the calculated reaction cross sections, including quasi-elastic
cross sections [32], compared to the measured ones where
available [33-38], are indicated in Tables I and II.

Hence, one can use the scaling method confidently to
obtain the appropriate potentials that give a reasonable de-
scription for low-energy elastic-scattering data of other pion-
nuclear systems.
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FIGURE 1. The real and imaginary parts of the scaled potentials, drawn as solid and dashed lines, respectively, used in analyzingπ± − 12C,
16O, 28Si, 32S,40Ca,56Fe,58Ni, and90Zr elastic scattering data at 50 MeV. The inverted real and imaginary potential points, obtained from
available phase shifts [24,25], are represented by solid circles and empty triangles, respectively.

FIGURE 2. The calculated differential cross sections, drawn as solid and dashed lines for positive and negative pions, respectively, compared
to the experimental data, represented by solid circles and empty triangles [27-31,33], as a function of center of mass angle at 50 MeV incident
charged pions scattered off12C, 16O, 28Si, 32S,40Ca,56Fe,58Ni, and90Zr nuclei.
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TABLE I. The optical potential parametersR0(in fm), V1(inMeV), W3(inMeV), R1(in fm), R3(in fm) anda3(in fm) used in Eq. (2)
for 50 MeV charged pions incident on target nuclei noted in column one. Also in the caption of Table I, there should be spaces before
the units as MeV and fm so they should be:R0(in fm), V1(inMeV), W3(inMeV), R1(in fm), R3(in fm), a3(in fm), V0 = −37.0,
a0 = 0.324fm, a1 = 0.333fm.

Nucleus R0 V1 W3 R1 R3 a3 σr(theor) σr(exp t)

π+ π− π+ π− π+ π− π± π+ π− π+ π−

Carbon-12 3.67 3.75 83.0 70.0 -53.0 -100.0 3.00 1.70 0.370 119.4 201.5 150±15 193±10

Oxygen-16 3.79 3.90 100.0 75.0 -78.0 -105.0 3.00 1.87 0.370 158.1 248.1 166±19 242±21

Silicon-28 4.20 4.30 121.0 89.0 -135.0 -175.0 3.25 2.25 0.420 328.7 569.8 335±31 557±60

Sulfur-32 4.27 4.52 127.0 94.0 -154.0 -200.0 3.25 2.36 0.420 396.5 670.7 379±24 664±60

Calcium-40 4.50 4.74 137.0 101.0 -193.0 -225.0 3.54 2.54 0.420 450.1 770.3 439±36 770±50

Iron-56 4.82 4.98 157.0 113.0 -270.0 -333.0 3.85 2.84 0.420 586.1 1045.5 Not Available Not Available

Nickel-58 4.86 5.13 159.0 114.0 -280.0 -340.0 3.92 2.86 0.420 609.4 1065.3 554±50 1200±200

Zirconium-90 5.40 5.55 185.0 140.0 -442.0 -533.0 4.50 3.30 0.420 719.1 1442.8 805±70 1869± 147

TABLE II. The optical potential parametersR0(in fm), V1(inMeV), W3(inMeV ), R1(in fm), R3(in fm) anda3(in fm) used in Eq. (2)
for 50 MeV charged pions incident on nuclear isotopes noted in column one. Also in the caption of Table II, there should be spaces before
the unit as:V1 = (in MeV), W3 = (in MeV). In the last line in the caption, columns 8 should be columns 7.

Nucleus R0 V1 W3 R1 R3 σr(theor)

π+ π− π+ π− π+ π− π+ π− π± π+ π−

Silicon-30 4.24 4.45 125.0 91.0 -150.0 -188.0 3.25 3.25 2.31 369.4 626.7

Sulfur-34 4.34 4.62 130.0 98.0 -170.0 -210.0 3.25 3.25 2.40 436.3 714.8

Calcium-48 4.65 4.90 150.0 110.0 -217.0 -268.0 3.60 3.75 2.61 486.2 842.1

Nickel-64 5.00 5.23 164.0 125.0 -311.0 -363.0 3.92 3.92 2.89 635.4 1132.5

From the cases considered herein, the scaling relations
are expressed as:

For both charged pions:

R3
3 = 0.39A + 0.373(fm3) (16)

For positive pions:

R3
0 = 1.39A + 34.3 (fm3) (17)

V 3
1 = 7.27× 104A− 23.1× 104 (MeV)3 (18)

W3 = −4.91A + 2.54 (MeV) (19)

For negative pions:

R3
0 = 1.53A + 38.3 (fm3) (20)

V 3
1 = 3.06× 104A− 15.6× 104 (MeV)3 (21)

W3 = −5.48A− 22.1 (MeV) (22)

For these changed parameters, one may notice the follow-
ing:

a) The parameterR3 shows a significant increase asA in-
creases, which is clearly depicted in Fig. 5. This is
in harmony with the noticeable increase ofσr with A,
which is attributed to the efficiency of absorption.

b) The parameterW3 shows almost a similar behavior as
R3 which is again in harmony with the increase ofσr

with A, but with higher values forπ− compared toπ+.
This is more pronounced for nuclei with neutron ex-
cess, as shown in Fig. 8, becauseπ− favors interaction
with neutrons.

c) The values of the parameterR0, in both π− andπ+

scatterings, are close forN = Z nuclei, but are still
higher forπ− as illustrated in Fig. 6. This is due to the
attraction ofπ− with neutrons that are usually pushed
closer to the surface of the nucleus. As such larger
difference inR0 -values appear for nuclei with higher
neutron excess.

d) Since π+ faces less attraction with neutrons, the
strength of the repulsive part,V1, is greater forπ+, es-
pecially for nuclei with neutron excess. As such, and
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FIGURE 3. In the left side, the calculated differential cross sections, drawn as solid and dashed lines for positive and negative pions,
respectively, compared to the experimental data, represented by solid circles and empty triangles [29-31,33], as a function of center of mass
angleθc.m. for 50 MeV incident charged pions scattered off the four isotopes30Si, 34S,48Ca and64Ni. The calculations are made by using
the scaled potentials, real and imaginary parts, drawn as solid and dashed lines in the middle and right sides of the figure for positive and
negative pions, respectively.

FIGURE 4. The calculated reaction cross sections, drawn as solid
circles and solid triangles, are compared to the experimental ones,
drawn as empty circles and empty triangles, for positive and nega-
tive incident pions, respectively. Empty circles and empty triangles,
which are not clearly displaced in the figure, are overlapping with
solid circles and solid triangles, respectively.

contrary toR3
0 −A andW3 −A lines, one notices that

theV1 − A line for π+ is higher than theV1 − A line
for π− as represented in Fig. 7.

FIGURE 5. The cube ofR3-values versus the atomic mass of the
target nucleus in atomic mass units,A(u). The solid line is just to
guide the eye.

With all these sensible physical interpretations, it is also
worthwhile to mention that the scaling procedure has its the-
oretical roots in the energy density functional theory [12]. So
it combines the solid theoretical background and the derived
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FIGURE 6. The cube ofR0-values versus the atomic mass of the
target nucleus in atomic mass units,A(u). The solid and dashed
lines, for positive and negative pions, respectively, are just to guide
the eye.

FIGURE 7. The cube ofV1-values versus the atomic mass of the
target nucleus in atomic mass units,A(u). The solid and dashed
lines, for positive and negative pions, respectively, are just to guide
the eye.

relations based on explaining experimental points. Both are
trademarks for a promising suggested scaling method that ex-
pected to contribute to advances in nuclear physics.

4. Conclusions

This study establishes the strength of using the scaling
method in obtaining low-energy pion-nucleus reliable poten-

FIGURE 8. TheW3-values versus the atomic mass of the target nu-
cleus in atomic mass units,A(u). The solid and dashed lines, for
positive and negative pions, respectively, are just to guide the eye.

tials. The method is first tested for the twoπ± − 12C, 16O
systems with available phase shift analyses. The agreements
between the scaled potentials and the ones obtained by in-
version are exceptional, and both of them have provided a
nice fit to the low-energyπ± − 12C, 16O elastic scattering
data. Hence the use of the scaling procedure has been ex-
tended to cover other few pion-nucleus scattering cases with
measured angular distributions but no available phase shifts.
In addition toπ± − 12C andπ± − 16O, cases, successful
results have also been achieved in analyzing the data for 50
MeV charged pions scattered elastically from28Si, 32S,40Ca,
56Fe, 58Ni, and 90Zr and the isotopes30Si, 34S, 48Ca and
64Ni. The scaled potentials, for the above mentioned nu-
clear cases, have shown positive simultaneous results sum-
marized in describing differential and integral cross sections
and, also, in matching the inversion potentials where possi-
ble. Such a remarkable success forms a strong motivation
to use the scaling method to comprehensively analyze low-
energy pion-nucleus elastic scattering data. With no doubt,
and for the first time, these results confirm the scaling method
as a strongly nominated alternative / complementary method
to the inverse scattering method.
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