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Local induction of spatio-temporal chaos
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A periodic perturbation of one excitable system causes a symmetry-breaking instability in two reversibly coupled neighbors. The result is
applied to a two-dimensional extended system. Tuning of the local perturbation frequency causes a regular target pattern to switch first to
circular chaotic waves and then to chaotic wave fragments. Thus a global order-disorder transition can be induced by local control in an
otherwise homogeneous medium.
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Una perturbacíon períodica de un sistema excitable causa un rompimiento de simetrı́a en dos osciladores acoplados reversiblemente. El
resultado es aplicado a un sistema extendido en dos dimensiones espaciales. Ajustando la frecuencia de la perturbación local, se cambia
un patŕon regular de ondas circulares primero a ondas circulares caóticas y despúes a fragmentos de ondas caóticos. En consecuencia, una
transicíon global orden-desorden se puede inducir bajo control local en un medio homogeneo.

Descriptores: Caos espacio-temporal; transición orden-desorden; control local.

PACS: 05.45.Ac; 05.45.Jn; 05.45.Xt

Order-disorder transitions in biological excitable media, like
the onset of heart fibrillation [1] or the cessation of epilep-
tic seizures (seee.g. Ref. 2), appear to occur spontaneously.
There is no evidence of global changes, either of global pa-
rameters or of global external perturbations. The crucial
factors that could account for these transitions are thus still
unknown (see Refs. 1 and 2 in the case of fibrillation and
epilepsy, respectively). A conceptually simple hypotheses is
that both the regular and the irregular patterns are controlled
by the activity of the same local pacemaker. In principle,
order-disorder transitions could then be due to altered dynam-
ics of this pacemaker,i.e. due tolocal parameter changes. So
far, however, no explicit model has been available for study-
ing such a hypotheses.

In autonomous excitable systems, transitions to spatio-
temporal chaos have been observed experimentally as a func-
tion of the overall experimental conditions. Accordingly, the
proposed explanations employed a global change (a change
in many or all sites) in at least one model parameter. Exam-
ples are the models to explain

i) chaotic patterns in the Belousov-Zhabotinsky reac-
tion [3];

ii) the spiral break-up during the CO oxidation on plat-
inum crystals [4];

iii) the transition to heart fibrillation [5]; and

iv) the dynamics of epileptic seizures [6].

It is also possible to experimentally induce transitions to
spatio-temporal chaos by external perturbations [7], or by
feedback perturbations [8], but in all cases the whole sys-
tem (or a large part of it) has to be perturbed and thus, again,

global influences are responsible for the transition. Unless
(static) spatial heterogeneities are introduced in to the mod-
els, parameters have to be adjusted globally in the chaotic
domain, to obtain spatio-temporal chaos [9].

An exception is the suggested mechanism for pattern
transitions in frog eggs, where anexcitablechaotic system
was introduced [10]. This model system undergoes global
order-disorder transitions as a function of local periodic per-
turbations. However, the chaotic solution was composed
only of subthreshold oscillations, and did not contain any
suprathreshold excitation. (Here and later on the term “sub-
threshold” means that the internal excitation threshold of an
excitable system is not crossed. In contrast, if the threshold
is crossed, the term suprethreshold is used. Seee.g. Ref. 11
for details.)

To show that complex pattern transitions can indeed be
under the control of nothing but the pacemaker dynamics,
we first investigate how spatio-temporally non-synchronized
chaos can be induced in a prototype of three coupled, ex-
citable units. Then we apply the results to a spatially ex-
tended model and demonstrate transitions from regular to
chaotic excitation patterns as a function of the frequency of a
local periodic forcing.

The FitzHugh-Nagumo (FHN) model is used in the fol-
lowing form:

dX1

dt
= X1(a−X1)(X1 − 1)− Y1 + Ia

+ DX(X2 + X3 − 2X1) + A sin(t/T )

dY1

dt
= bX1 − cY1 + DY (Y2 + Y3 − 2Y1)
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dX2

dt
= X2(a−X2)(X2 − 1)− Y2 + Ia

+ DX(X1 + X3 − 2X2)

dY2

dt
= bX2 − cY2 + DY (Y1 + Y3 − 2Y2)

dX3

dt
= X3(a−X3)(X3 − 1)− Y3 + Ia

+ DX(X1 + X2 − 2X3)

dY3

dt
= bX3 − cY3 + DY (Y1 + Y2 − 2Y3) (1)

In the absence of external perturbations (A=0), and
with parametersa=0.14, b=0.01, c=0.02, each isolated unit
(DX = DY = 0) has one stable focus forIa < 0.044. At
Ia ≈ 0.045 a subcritical Hopf bifurcation occurs. At this
point the region of bistability (coexistence of limit cycle and
fixed point) that started atIa ≈ 0.044 ceases to exist and the
stable limit cycle is the only attractor in phase space. By fur-
ther analyzing the bifurcation behavior as a function of other
parameters, we found that with the given set of parameters
the system is located near the region of supercritical Hopf bi-
furcation in parameter space (i.e. no bistability between limit
cycle and fixed point).

In the coupled system, the three oscillators are arranged
in a triangle with reversible mutual couplings. Oscillators 2
and 3 are symmetric with respect to the perturbation in os-
cillator 1: they receive the same positive inputDXX1. If
their initial conditions are chosen to be identical, they will
therefore behave identically. In this case the system reduces
to two oscillators. The perturbed two-oscillator subsystem
shows a large variety of quasiperiodic, complex periodic, and
chaotic solutions as a function of the perturbations parame-
ter, comparable to the case of a single perturbed nonlinear
oscillator [11].

Next, we shall consider the full system (Eq. (1) with non-
identical initial conditions in oscillators 2 and 3). Fig. 1 is
a two-dimensional parameter scan of forcing amplitude and
frequency. The two features evaluated are

1) whether the system generates spikes (i.e. whether or
not variablesX cross a threshold after they have set-
tled on the attractor); and

2) whether oscillators 2 and 3 are synchronized or not.

It should be noted that in this range of forcing frequencies,
the system’s threshold minimum is at amplitudes A<0.01 for
sinusoidal forcing,i.e. the amplitudes in Fig. 1 are above this
minimum. In the chosen area of the parameter plane, there
is an island of non-spiking behavior (the white region), ad-
jacent to which is a region of desynchronized spiking (black
region). The rest of the plane (grey) exhibits synchronized
spiking (periodic or chaotic). Numerically we did not ob-
serve desynchronized behavior in the non-spiking regions.

Thus, in the black area, a difference in initial conditions of
oscillators 2 and 3 is sufficient to break their spatial symme-
try dynamically and observe desynchronized behavior. The
scan Fig. 1 was found to be qualitatively independent of the
choice of initial conditions. At the borders, particularly be-
tween the black and grey area, there is a thin region where
numerically it could not be decided whether there exists a
region of bistability because transients tend to be very long.
However, we verified that the location of the border does not
change depending on the choice of initial conditions or on the
choice of transient time (i.e. the part of the dynamics that is
not evaluated).

We calculated bifurcation diagrams as a function of forc-
ing periodT in the plane of Fig. 1. At constant forcing ampli-
tudeA=0.075, a window of chaotic behavior (7.4< T < 8.6)
is hemmed in by periodic solutions of period 1 and period 2,
respectively. Comparing the results for maxima ofX2with
those obtained fordifferencesof maxima (X2 − X3) re-
veals two regions of synchronization, 7.4< T < 7.75 and
8.4< T < 8.6. Both lie within the chaotic window,i.e. they
occur in the presence of a positive Lyapunov exponent. In
the intermediate region (7.75< T < 8.4), oscillators 2 and 3
are not only chaotic but also desynchronized. Fig. 2 displays
Poincaŕe cross-sections of the synchronized and the desyn-
chronized chaotic attractor projected on to theX2/X3 plane.
The synchronized dynamics (Fig. 2a) consequently stays on
the diagonal. The desynchronized dynamics (Fig. 2b) shows
increased density of intersection points near the diagonal, but
otherwise covers a square area in a multiply folded sheet pat-
tern. Before applying the criterion of differences between

FIGURE 1. Scan of parameter planeT/A in Eq. (1). White:
no excitation, synchronized. Grey: excitation, synchronized.
Black: excitation, desynchronized. Parameters:a=0.14, b=0.01,
c=0.02,Ia=0.042,DX=0.08,DY =0. Synchronization is defined as
(X3 −X2) < 0.01 after a transient time of 500,000 time units.
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FIGURE 2. Return maps constructed from maxima of the two sym-
metrically equivalent oscillators 2 and 3. a)T=8.45; b)T=8.35.
A=0.075, other parameters as in Fig. 1.

maxima, we verified that it actually represents synchroniza-
tion of the attractors, and that the number of maxima found
with this criterion in the nonsynchronized dynamics is van-
ishingly small.

Two aspects of the result in Fig. 2 deserve discussion.
First, as deterministic chaos requires the instability of peri-
odic orbits, it is normally found in the self-oscillating region
of parameter space [11]. The reason our excitable system
(with non-oscillatory resting state) can become chaotic under
periodic perturbation is its location near the border to super-
critical Hopf bifurcation in parameter space. And secondly,
calculating spectra of Lyapunov exponents for Eq. (1), we
find that the sum of the three largest exponents fulfills the
Kaplan-Yorke condition [12] for dimension increase for both
the synchronized and the desynchronized dynamics,i.e. the
dimension is larger than 3, whereas a dimension less than 3
is expected for dynamics that does not fullfil the condition.
Thus, neither a new source of exponential divergence nor a
sudden increase of the fractal dimension can explain the tran-
sition between the two types of dynamics.

Synchronization-desynchronization transitions related to
the one in Fig. 2 were reported in coupled chaotic oscillators
as a function of coupling strength [13]. Similar to these cases,
in our system we find a sudden transversal instability of the
synchronized state accompanied by a change of sign of the
transverse Lyapunov exponent [14], with typical on-off inter-
mittent behavior near the instability [15]. A difference is that
in our case, there is no chaos prior to external perturbation,
either in the individual unit or in the autonomous coupled sys-
tem. Therefore, we assume that the creation of chaos in the
vicinity of a supercritical Hopf bifurcation plays an important
role for the transition to occur. Once the chaos is induced, the
transversal instability occurs as in coupled chaotic systems.

Notably, the chaos is created by the perturbation of a unit
that is not considered in the symmetry-breaking. In this new
prototype, thesourceof the symmetry-breaking instability
and its measurable effect are separated from each other. As
each affected unit (oscillators 2 and 3) in turn is a possible
source of this instability, there is no reason to assume that
the symmetry-breaking is restricted to immediate neighbors
of the perturbed unit in spatially extended systems.

The question is whether the induced chaos in oscilla-
tors 2 and 3 is such that it can in turn induce an equivalent
symmetry-breaking transition in other neighbors. If so, the
instability might invade a system composed of a large num-
ber of coupled units. This hypothesis was tested using one
perturbed excitable unit (like oscillator 1) surrounded by two
rings, an inner ring of 6 and and outer ring of 12 diffusively
coupled FHN units in a hexagonal arrangement (i.e. the cen-
tral unit and the inner ring having 6 nearest neighbors, and
the outer ring having 3 and 4 nearest neighbors). Under con-
ditions as in the three-unit prototype, a transition from reg-
ular to chaotic excitations, and subsequently the symmetry-
breaking of the chaotic solution, is observed as a function of
forcing frequency. Both transitions occur in the inner as well
as in the outer ring. This observation was also repeated with
the perturbation placed in a position other than the central
one. The corresponding instabilities are thus able to prop-
agate to more distant units. We demonstrate this in an ex-
tended system of diffusive coupled FHN units.

The chosen system has two spatial dimensions, zero-flux
boundaries, and randomly chosen initial conditions. In the
absence of an external perturbation, the system settles into its
excitable resting state, a stable focus. A periodic perturbation
(as in oscillator 1 of Eq. (1)) is applied to only one of the units
in the plane. We analyze the system’s patterns as a function
of the forcing period for constant amplitudeA =0.075. The
observed sequence of patterns for decreasing periodT is:

i) a window of period 1 excitation waves where
each period in the perturbation causes one wave
(9.0< T < 10.0);

ii) a window of chaotic excitation wave patterns
(7.9< T < 9.0); and

iii) a window with no excitation waves (no suprathresh-
old oscillations at a distance of more then 2 oscillators
from the perturbation point) in 6.0< T < 7.9.

Figure 3 displays snapshots of the system with perturbation
parameters in the chaotic window.

FIGURE 3. Snapshots of chaotic patterns in the periodically per-
turbed hexagonal 2D system of 50× 50 FHN units as in Eq. (1)
with pacemaker in oscillator [25,25]. a)T =8.9. b) T =8.6.
DX =0.012,DY =0.001, other parameters as in Fig. 2. Grey cod-
ing of variablesX from –0.2 (white) to 0.8 (black).
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The excitation pattern in Fig. 3a is obtained for a forcing
period that lies close to the period 1 regular waves. Here the
circular symmetry of the waves is preserved in a “target” pat-
tern. The amplitudes of consecutive waves are not identical,
however. Notably in the picture is a so-called “missing beat”,
i.e. a wave of small amplitude that corresponds to a sub-
threshold near-harmonic oscillation of a single element (grey
ring). The proximity in parameter space to the period 1 so-
lution is recognizable in occasional “bursts”, series of up to
10 almost periodic spikes separated by non-spiking periods.
Both the number of missing waves and the periods between
them are irregular. In spite of the circular symmetry, the time
series of all units are chaotic.

Figure 3b is a snapshot at a forcing period farther away
from the period 1 solution and closer to the no-propagation
window. Here, during the initial phase, the circular symmetry
is broken for non-identical initial conditions of the variables.
The result is a mixture of complete circular waves (rare), par-
tial waves and small wave fragments. The time series of any
chosen element is an aperiodic sequence of excitations with
highly irregular inter-spike-intervals and the dynamics is de-
terministic chaos. In addition to the loss of correlation in time
there is a loss of correlation in all spatial directions. This is
the main difference from the case in Fig. 3a with circular
spatial symmetry.

Both hexagonal and cubic geometries were tried to con-
firm the independence of the results from the particular ge-
ometry of coupling. Periodic boundary conditions in one
(cylinder) or two (torus) dimensions were found to produce
the same qualitative results for essentially the same parame-
ters. One difference is that periodic boundary conditions al-
low chaotic wave fragments to re-enter the perturbation zone
and interfere with the wave generation process. In this case,
the curvature of the wave fragments no longer yields clues
about the position of the pacemaker.

If all time series of individual oscillators are at hand, it is
a straightforward matter to distinguish the two chaotic exci-
tation states by comparing their symmetry. However, if only
some integral measurement of the pattern is available, this
is not necessarily the case. We generated artificial “electro-
cardiograms” from the two patterns in Fig. 3, and obtained
highly irregular time series in both cases. The distinct sym-
metries are not discernible in such representations. This is of
importance in physiological research into heartbeat and elec-
tric brain activity, where often only mean-field data (the elec-
trocardiogram and electroencephalogram, respectively) are
used for the evaluation of the dynamics.

The transition between the chaotic patterns in Fig. 3 ap-
pears to be abrupt, as in the case of the 3 oscillator system

Eq. (1). No bistability was observed numerically but, with
parameters very close to the transition point, transients be-
come long, depending on the choice of initial conditions, and
therefore the possibility of a very small region of bistability
may not be excluded at present. If the system is started on the
period 1 attractor with regular excitation waves and parame-
ter T , and then is shifted into the chaotic region of Fig. 3a,
only the periodicity of the original pattern is destroyed. The
symmetry is preserved. If, however, parameterT is switched
into the chaotic region of Fig. 3b, the spatial symmetry of the
original pattern is broken also. These results were confirmed
with a random Gaussian distribution of bifurcation parame-
ter Ia, creating a non-homogeneous net. Thus, a global peri-
odic pattern in a homogeneous excitable medium close to the
transition from subcritical to supercritical Hopf bifurcation
can be generically switched into spatio-temporally chaotic
patterns by the seemingly trivial frequency change of a lo-
cal periodic perturbation.

The reverse disorder-order transition is harder to achieve.
Once the system is in the chaotic state of Fig. 3b, a resetting
of the parameters into the period 1 window does not neces-
sarily mean that the system returns to period 1 waves within
a finite time. The reason is that the present wave fragments
keep breaking newly generated circular waves. This results
in new fragments and this process can continue to hamper the
restauration of the circular symmetry. Only if for a consid-
erable time there happen to beno excitation waves, the local
pacemaker then has a chance to restore, and thereafter main-
tain, a complete circular wave symmetry. One is reminded
of the benefits of a defibrillator in case of fibrillation: a volt-
age shock is used to deliberately eliminateall stray excitation
fragments in order to return the heart to a uniform resting
state before its (natural) pacemaker can successfully resume
its work.

The presented excitable system allows for locally con-
trolled transitions from symmetric periodic to symmetric
chaotic and to asymmetric chaotic patterns. It is possible to
test for this novel property experimentally by introducing lo-
cal pacemakers into experimental systems and scanning their
frequency and amplitude. We suggest that the model offers an
alternative working hypothesis for sudden transitions to fib-
rillation, for the dynamic reorganization of epileptic states,
and possibly even for stimulus-induced order-disorder-order
transitions during cognitive acts in the human brain [16].
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