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Local induction of spatio-temporal chaos
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A periodic perturbation of one excitable system causes a symmetry-breaking instability in two reversibly coupled neighbors. The resu
applied to a two-dimensional extended system. Tuning of the local perturbation frequency causes a regular target pattern to switch fir
circular chaotic waves and then to chaotic wave fragments. Thus a global order-disorder transition can be induced by local control ir
otherwise homogeneous medium.
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Una perturbadn perbdica de un sistema excitable causa un rompimiento de $armtrdos osciladores acoplados reversiblemente. El
resultado es aplicado a un sistema extendido en dos dimensiones espaciales. Ajustando la frecuencia de l@péstabaa cambia

un patodn regular de ondas circulares primero a ondas circulai@icea y despés a fragmentos de ondastiaos. En consecuencia, una
transicbn global orden-desorden se puede inducir bajo control local en un medio homogeneo.

Descriptores: Caos espacio-temporal; transiniorden-desorden; control local.

PACS: 05.45.Ac; 05.45.Jn; 05.45.Xt

Order-disorder transitions in biological excitable media, likeglobal influences are responsible for the transition. Unless
the onset of heart fibrillation [1] or the cessation of epilep-(static) spatial heterogeneities are introduced in to the mod-
tic seizures (see.g. Ref. 2), appear to occur spontaneously.els, parameters have to be adjusted globally in the chaotic
There is no evidence of global changes, either of global padomain, to obtain spatio-temporal chaos [9].

rameters or of global external perturbations. The crucial

factors that Id t for th i i th i An exception is the suggested mechanism for pattern
actors that could account for tnese transitions are thus Sy, ysitions in frog eggs, where axcitablechaotic system
unknown (see Refs. 1 and 2 in the case of fibrillation an

‘was introduced [10]. This model system undergoes global

ehplleéo S{; rﬁspectl\llely). g‘ Eon_ceptulally simple hypotheseTI IE.Irder-disorder transitions as a function of local periodic per-
that both the regular and the irregular pattems are controlief), ,ajong, However, the chaotic solution was composed

by the activity of the same local pacemaker. In pnnuple,only of subthreshold oscillations, and did not contain any

order-disorder transitions could then be due to altered dynan%'uprathreshold excitation. (Here and later on the term “sub-
ics of this pacemaket.e. due tolocal parameter changes. So threshold” means that the internal excitation threshold of an

far, however, no explicit model has been available for StUdy'excitable system is not crossed. In contrast, if the threshold

ing such a hypotheses.- . . Is crossed, the term suprethreshold is used.eSgdref. 11
In autonomous excitable systems, transitions to spatiog, details.)

temporal chaos have been observed experimentally as a func-
tion of the overall experimental conditions. Accordingly, the ~ To show that complex pattern transitions can indeed be
proposed exp|anati0ns emp|oyed a g|0ba| Change (a Chang@der the control of nOthing but the pacemaker dynamiCS,
in many or all sites) in at least one model parameter. ExamWe first investigate how spatio-temporally non-synchronized
ples are the models to explain chaos can be induced in a prototype of three coupled, ex-
citable units. Then we apply the results to a spatially ex-
i) chaotic patterns in the Belousov-Zhabotinsky reactended model and demonstrate transitions from regular to
tion [3]; chaotic excitation patterns as a function of the frequency of a

. . . . local periodic forcing.
ii) the spiral break-up during the CO oxidation on plat-

inum crystals [4]; The FitzHugh-Nagumo (FHN) model is used in the fol-
lowing form:
iii) the transition to heart fibrillation [5]; and
iv) the dynamics of epileptic seizures [6]. % =Xi(a—-X)(X1-1) Y1 + 1,

It is also possible to experimentally induce transitions to
spatio-temporal chaos by external perturbations [7], or by
feedback perturbations [8], but in all cases the whole sys-  dYi

tem (or a large part of it) has to be perturbed and thus, again,  dt

+Dx(Xo+ X3 —2X1) + ASin(t/T)

=bX| —cY; + Dy(YQ +Y; — 2Y1)
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Thus, in the black area, a difference in initial conditions of

e oscillators 2 and 3 is sufficient to break their spatial symme-
— =Xoa—Xo)(Xo—1)—-Yo+ 1, try dynamically and observe desynchronized behavior. The
dt scan Fig. 1 was found to be qualitatively independent of the
+ Dx (X1 + X3 — 2X5) choice of initial conditions. At the borders, particularly be-
dYs tween the black and grey area, there is a thin region where
e bXo — cYs + Dy (Y1 + Y3 — 2Y3) numerically it could not be decided whether there exists a
region of bistability because transients tend to be very long.
dXs =Xs(a— X3)(X5—1) = Y3+ 1, However, we verified that the location of the border does not
dt change depending on the choice of initial conditions or on the
+ Dx (X1 + X2 — 2X3) choice of transient time.g. the part of the dynamics that is
dYs not evaluated).
T bX5 — cYs + Dy (Y1 + Y — 2Y3) (1) We calculated bifurcation diagrams as a function of forc-

ing period?" in the plane of Fig. 1. At constant forcing ampli-

In the absence of external perturbationd=0), and tudeA=0.075, awindow of chaotic behavior (7<4T < 8.6)
with parameters=0.14,=0.01, ¢c=0.02, each isolated unit is hemmed in by periodic solutions of period 1 and period 2,
(Dx = Dy = 0) has one stable focus fdy, < 0.044. At  respectively. Comparing the results for maximaXofwith
I, =~ 0.045 a subcritical Hopf bifurcation occurs. At this those obtained fodifferencesof maxima (X, — X3) re-
point the region of bistability (coexistence of limit cycle and veals two regions of synchronization, 41" < 7.75 and
fixed point) that started df, ~ 0.044 ceases to exist and the 8.4 < T < 8.6. Both lie within the chaotic windovi,e. they
stable limit cycle is the only attractor in phase space. By fur-occur in the presence of a positive Lyapunov exponent. In
ther analyzing the bifurcation behavior as a function of othetthe intermediate region (7.75 T' < 8.4), oscillators 2 and 3
parameters, we found that with the given set of parameterare not only chaotic but also desynchronized. Fig. 2 displays
the system is located near the region of supercritical Hopf biPoincaé cross-sections of the synchronized and the desyn-
furcation in parameter spacieg( no bistability between limit  chronized chaotic attractor projected on to fig/ X3 plane.
cycle and fixed point). The synchronized dynamics (Fig. 2a) consequently stays on

In the coupled system, the three oscillators are arrangethe diagonal. The desynchronized dynamics (Fig. 2b) shows
in a triangle with reversible mutual couplings. Oscillators 2increased density of intersection points near the diagonal, but
and 3 are symmetric with respect to the perturbation in osetherwise covers a square area in a multiply folded sheet pat-
cillator 1: they receive the same positive inpit X;. If  tern. Before applying the criterion of differences between
their initial conditions are chosen to be identical, they will
therefore behave identically. In this case the system reduces .
to two oscillators. The perturbed two-oscillator subsystem 0.08
shows a large variety of quasiperiodic, complex periodic, and
chaotic solutions as a function of the perturbations parame-
ter, comparable to the case of a single perturbed nonlineal
oscillator [11]. A

Next, we shall consider the full system (Eq. (1) with non-
identical initial conditions in oscillators 2 and 3). Fig. 1 is
a two-dimensional parameter scan of forcing amplitude and
frequency. The two features evaluated are 0.07 1

1) whether the system generates spikies (whether or
not variablesX cross a threshold after they have set-
tled on the attractor); and

2) whether oscillators 2 and 3 are synchronized or not.

It should be noted that in this range of forcing frequencies,

the system’s threshold minimum is at amplitudes®01 for 0.06 T
sinusoidal forcingi.e. the amplitudes in Fig. 1 are above this 7.0 8.0 9.0
minimum. In the chosen area of the parameter plane, there T

?s an island _of r?on—spik_ing behavior (the.white r_egion), ad-£GuRe 1. Scan of parameter plarE/A in Eq. (1). White:
jacent to which is a region of desynchronized spiking (blackng excitation, synchronized. Grey: excitation, synchronized.
region). The rest of the plane (grey) exhibits synchronizedsjack: excitation, desynchronized. Parameters0.14, v=0.01,
spiking (periodic or chaotic). Numerically we did not ob- ¢=0.02,7,=0.042x=0.08,Dy=0. Synchronization is defined as
serve desynchronized behavior in the non-spiking regions(Xs — X») < 0.01 after a transient time of 500,000 time units.
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The question is whether the induced chaos in oscilla-
tors 2 and 3 is such that it can in turn induce an equivalent
symmetry-breaking transition in other neighbors. If so, the
instability might invade a system composed of a large num-
ber of coupled units. This hypothesis was tested using one
perturbed excitable unit (like oscillator 1) surrounded by two
rings, an inner ring of 6 and and outer ring of 12 diffusively
L , 5 coupled FHN units in a hexagonal arrangemeéet the cen-

08 -02 08 tral unit and the inner ring having 6 nearest neighbors, and

x2 X2 the outer ring having 3 and 4 nearest neighbors). Under con-
ditions as in the three-unit prototype, a transition from reg-

FIGURE 2. Return maps constructed from maxima of the two sym- ¢ 1o chaotic excitations, and subsequently the symmetry-
Z‘fg'g?gy ;?]Z'ya[:rgtr:;(grgs 2Ff"’mdl3' 2)8.45; b)T=8.35. breaking of the chaotic solution, is observed as a function of
e P nHg. L. forcing frequency. Both transitions occur in the inner as well

. ified that it actuall N hroni as in the outer ring. This observation was also repeated with
:_naxw?r;,] wetglerltle adltr?ct Ltjr? y repLesenfs sync r?mza-he perturbation placed in a position other than the central
lon ot the attractors, and that theé number of maxima found,,, - e corresponding instabilities are thus able to prop-

with this criterion in the nonsynchronized dynamics is Van'agate to more distant units. We demonstrate this in an ex-

ishingly small. tended system of diffusive coupled FHN units.

Two aspects of the result in Fig. 2 deserve discussion. The chosen system has two spatial dimensions, zero-flux
First, as deterministic chaos requires the instability of peri,oyndaries, and randomly chosen initial conditions. In the
odic orbits, it is normally found in the self-oscillating region apsence of an external perturbation, the system settles into its
of parameter space [11]. The reason our excitable systemcitable resting state, a stable focus. A periodic perturbation
(with non-oscillatory resting state) can become chaotic undefzs in oscillator 1 of Eq. (1)) is applied to only one of the units
periodic perturbation is its location near the border to superi, the plane. We analyze the system’s patterns as a function
critical Hopf bifurcation in parameter space. And secondly,qf the forcing period for constant amplitude =0.075. The

calculating spectra of Lyapunov exponents for Eq. (1), Weppserved sequence of patterns for decreasing p@risd
find that the sum of the three largest exponents fulfills the

Kaplan-Yorke condition [12] for dimension increase for both 1) & window of period 1 excitation waves where
the synchronized and the desynchronized dynamiesthe each period in the perturbation causes one wave
dimension is larger than 3, whereas a dimension less than 3~ (9.0< T < 10.0);
is expect_ed for dynamics that does not f_uIIflllthe condition. i) a window of chaotic excitation wave patterns
Thus, neither a new source of exponential divergence nor a .

) . ) . (7.9< T <9.0); and
sudden increase of the fractal dimension can explain the tran-
sition between the two types of dynamics. iif) a window with no excitation waves (no suprathresh-

Synchronization-desynchronization transitions related to ~ 0ld oscillations at a distance of more then 2 oscillators
the one in Fig. 2 were reported in coupled chaotic oscillators ~ from the perturbation point) in 6.8 7' < 7.9.
as a function of coupling strength [13]. Similar to these CasesFigure 3 displays snapshots of the system with perturbation
in our system we find a sudden transversal instability of theparameters in the chaotic window.
synchronized state accompanied by a change of sign of the
transverse Lyapunov exponent [14], with typical on-off inter-
mittent behavior near the instability [15]. A difference is that
in our case, there is no chaos prior to external perturbation,
either in the individual unit or in the autonomous coupled sys-
tem. Therefore, we assume that the creation of chaos in the%
vicinity of a supercritical Hopf bifurcation plays an important &
role for the transition to occur. Once the chaos is induced, the
transversal instability occurs as in coupled chaotic systems.

Notably, the chaos is created by the perturbation of a unit
that is not considered in the symmetry-breaking. In this new | 1
prototype, thesourceof the symmetry-breaking instability 1 space 50 1 space 50
and its measurable effect are separated from each other. /'}fsl‘GURE 3. Snapshots of chaotic patterns in the periodically per-

each affected unit (oscillators 2 and 3) in turn is a possiblgyrmed hexagonal 2D system of 5050 FHN units as in Eq. (1)
source of this instability, there is no reason to assume thakith pacemaker in oscillator [25,25]. &) =8.9. b)T =8.6.

the symmetry-breaking is restricted to immediate neighborg x =0.012,Dy =0.001, other parameters as in Fig. 2. Grey cod-
of the perturbed unit in spatially extended systems. ing of variablesX from —0.2 (white) to 0.8 (black).
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The excitation pattern in Fig. 3a is obtained for a forcingEg. (1). No bistability was observed numerically but, with
period that lies close to the period 1 regular waves. Here thparameters very close to the transition point, transients be-
circular symmetry of the waves is preserved in a “target” patcome long, depending on the choice of initial conditions, and
tern. The amplitudes of consecutive waves are not identicatherefore the possibility of a very small region of bistability
however. Notably in the picture is a so-called “missing beat”,may not be excluded at present. If the system is started on the
i.e. a wave of small amplitude that corresponds to a subperiod 1 attractor with regular excitation waves and parame-
threshold near-harmonic oscillation of a single element (greyer T', and then is shifted into the chaotic region of Fig. 3a,
ring). The proximity in parameter space to the period 1 so-only the periodicity of the original pattern is destroyed. The
lution is recognizable in occasional “bursts”, series of up tosymmetry is preserved. If, however, paramétas switched
10 almost periodic spikes separated by non-spiking periodsnto the chaotic region of Fig. 3b, the spatial symmetry of the
Both the number of missing waves and the periods betweeariginal pattern is broken also. These results were confirmed
them are irregular. In spite of the circular symmetry, the timewith a random Gaussian distribution of bifurcation parame-
series of all units are chaotic. ter I, creating a non-homogeneous net. Thus, a global peri-

Figure 3b is a snapshot at a forcing period farther awaydic pattern in a homogeneous excitable medium close to the
from the period 1 solution and closer to the no-propagatioriransition from subcritical to supercritical Hopf bifurcation
window. Here, during the initial phase, the circular symmetrycan be generically switched into spatio-temporally chaotic
is broken for non-identical initial conditions of the variables. patterns by the seemingly trivial frequency change of a lo-
The result is a mixture of complete circular waves (rare), par€al periodic perturbation.
tial waves and small wave fragments. The time series of any The reverse disorder-order transition is harder to achieve.
chosen element is an aperiodic sequence of excitations witnce the system is in the chaotic state of Fig. 3b, a resetting
highly irregular inter-spike-intervals and the dynamics is de-of the parameters into the period 1 window does not neces-
terministic chaos. In addition to the loss of correlation in timesarily mean that the system returns to period 1 waves within
there is a loss of correlation in all spatial directions. This isa finite time. The reason is that the present wave fragments
the main difference from the case in Fig. 3a with circularkeep breaking newly generated circular waves. This results
spatial symmetry. in new fragments and this process can continue to hamper the

Both hexagonal and cubic geometries were tried to conrestauration of the circular symmetry. Only if for a consid-
firm the independence of the results from the particular geerable time there happen to be excitation waves, the local
ometry of coupling. Periodic boundary conditions in onepacemaker then has a chance to restore, and thereafter main-
(cylinder) or two (torus) dimensions were found to producetain, a complete circular wave symmetry. One is reminded
the same qualitative results for essentially the same param@f the benefits of a defibrillator in case of fibrillation: a volt-
ters. One difference is that periodic boundary conditions alage shock is used to deliberately eliminaliestray excitation
low chaotic wave fragments to re-enter the perturbation zonfagments in order to return the heart to a uniform resting
and interfere with the wave generation process. In this casétate before its (natural) pacemaker can successfully resume
the curvature of the wave fragments no longer yields cluegs work.
about the position of the pacemaker. The presented excitable system allows for locally con-

I all time series of individual oscillators are at hand, it is trolled transitions from symmetric periodic to symmetric
a straightforward matter to distinguish the two chaotic exci-chaotic and to asymmetric chaotic patterns. It is possible to
tation states by comparing their symmetry. However, if onlytest for this novel property experimentally by introducing lo-
some integral measurement of the pattern is available, thigal pacemakers into experimental systems and scanning their
is not necessarily the case. We generated artificial “electrofrequency and amplitude. We suggest that the model offers an
cardiograms” from the two patterns in Fig. 3, and obtainecRlternative working hypothesis for sudden transitions to fib-
highly irregular time series in both cases. The distinct sym/illation, for the dynamic reorganization of epileptic states,
metries are not discernible in such representations. This is ¢nd possibly even for stimulus-induced order-disorder-order
importance in physiological research into heartbeat and eledtansitions during cognitive acts in the human brain [16].
tric brain activity, where often only mean-field data (the elec-
trocardiogram and _electroencephalqgram, respectively) arAcknowIedgements
used for the evaluation of the dynamics.

The transition between the chaotic patterns in Fig. 3 apThis work was supported by CONACyYT, Mexico (project no.
pears to be abrupt, as in the case of the 3 oscillator systed0885-F). G.B. thanks Sven Sahle for the discussion.
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