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In this work, the cubic anharmonic coefficients are computed analytically in high symmetry directions considering central potential interac-
tions up to fifth nearest neighbors for crystals with the diamond structure. Itis found that certain channels of decay are forbidden. Furthermore
particular relations between the different polarizations of the optical phonon for the cubic anharmonic coefficients are presented. Using these
results, the validity of the so-called Peierls approximation is discussed.
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En este aftulo, se calculan de manera dtiah los coeficientes anafmicos cibicos en direcciones de alta simatconsiderando interac-

ciones centrales de primeros a quintos vecinos para cristales con estructura de diamante. Se encuentra que ciertos canales de decaimien
estin prohibidos. Aderas, se presentan relaciones entre los coeficientes anaws dibicos correspondientes a las diferentes polarizaciones

del fonbn 6ptico. A luz de estos resultados, se discute la validez de la aproximdeiPeierls.

Descriptores: Aproximacibn de Peierls; la transformada de Fourier de los coeficientes anmws; estructura de diamante; canales de
decaimiento del fobn dptico

PACS: 63.20.Dj; 63.20.Ry

1. Introduction other calculations, especially the Peierls approximation were
discussed in Refs. 16 and 17. These results will be contrasted

Many important experimental investigations of anharmonicwith our theoretical calculations in order to discuss the va-
processes in crystals with the diamond structure by Ramalidity of the anharmonic coefficients obtained in this paper
spectroscopy have been reported before [1-4]. In the pastithout doing any approximations.
ten years, new results have been published on the anhar- In a previous work [12], we computed numerically the
monic properties in silicon germanium alloys and hetero-anharmonic coefficients and established that, when the op-
structures [5,6]. Anharmonicity is responsible for the in-tical phonon decay into two LA phonons along the [q00]
teraction between phonons modifying phonon frequencies idirection, these coefficients were identical to O, considering
two ways: first causing a phonon frequency shift, and secup to fourth-neighbor central interactions so that these chan-
ondly giving a determined lifetime because of the phononnels of decay are forbidden, in contrast with previous results,
phonon interaction. These effects have been extensively stufer example Meéndez and Cardona [3]. To the best of our
ied both theoretically and experimentally. An essential ingreknowledge, however, analytical expressions for these anhar-
dient for the theoretical models, developed in order to explaimonic coefficients in a cubic crystal with diamond structure
the experimental observations, are the Fourier transformeldave never been obtained. In the present work, because of the
anharmonic coefficients that enter into the expressions of thiack of such calculation, we decided to study the cubic anhar-
phonon self-energy, the damping constant, and the frequenayonic coefficients in high symmetry directions considering
shift, among others. In many calculations of the propertiesentral potential interactions up to the fifth nearest neighbors.
of anharmonic crystals, it is necessary to evaluate sums ovélife show that it is possible to give analytical expressions in
wave vector of the Fourier transformed anharmonic coeffiseveral cases of interest. In addition, particular relationships
cients or its magnitude squared multiplied by various func-between the expressions corresponding to different polariza-
tions of the wave vector [7-12]. These computations ardions of the optical phonon are established.
rather complex and frequently have been simplified by ap-
prqximating the corresponding expressio_ns by simplgr onesy Anharmonicity in crystals
This is the case, for example, of the Peierls approximation
[15], where the anharmonic coefficients are considered corgor a system whose equilibrium positions are specified by:
stant. - - .

Previously, closed form expressions for the anharmonic (i, k) = B(1) + F(x) @)
coefficients within a central force model for a diatomic lin- Whereﬁ(l) = 1,71 + 1275+ 1373, 7; are primitive translation
ear chain were obtained. The differences between these anector,/; are integers, andk(x) is a vector of the basis; the
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vibrational Hamiltonian can be written as:
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whereu,,(Ix) is the displacement component along a direc’ annihilation operators,
tion of atom (Ix) from its equilibrium position andp,g,
®,5, and P, 3.5 are the second, third and fourth order har-
monic force constants, respectively. The first two terms in
Eq. (2) are the harmonic Hamiltonid,, and the remain- Byj = by — bﬂqj (6)

ing terms being the anharmonic Hamiltoniah,. We diag-

onalize the harmonic Hamiltonian by means of the normaAfter making the normal coordinate transformations, the

Agj = bgj + bJr—qj (5)

coordinate transformation: Hamiltonian take the form
1/2 i . . o ) + ) 1
@(lk) = h Z e(x|qj) eizj’oR(l)qu. 3) Hy = Zhwqj (bquqy + 2) (7)
2MN ) = (wgy) 2 i
) N . Ha= >, V@I513"7") AgAgy Agri
P(lli):—i ( 2NI€> Z(wqj)1/26(5|§j)elqOR(l)qu- (4) a3.q'5".q" §"
aJ + Z V(q»jlq/jlwuju‘q—wlj///)

Herew; ; is the normal-mode frequency for wave vecgor aJseea™ 3"
and branch indey, é(k|q, j) is the polarization vector for the X AgjAgrjr Agiin Agrjm + -+, (8)

normal mode},. is the mass of atom, andN is the number

of unit cells in the crystal. As usual, the field operatdrg ~ where Hy and H 4 stands for the harmonic and anharmonic
andB,; are specified in terms of the phonon creation and  parts of the vibrational Hamiltonian, and the anharmonic co-
| efficients are given by:
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—

(1 if §=06
Ad) = { 0 otherwise. (10)

3. Anharmonicity in crystals: central potential interactions

Let us now restrict our analysis to central potentials and consider only the cubic term in the vibrational Hamiltonian:

1
s, = o Z Z Z Gapy (LRI E Yua (16| Yug (161K Yuy (I&|U'K), (11)

L,k U,k afy
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where sub-lattices, while even order neighbors belong to the
’t Lalpy | i 3¢ (r)  3¢L,.(r) same sub-lattice. Consider the expression (16) and par-
PUnll'r) = — 35— |:¢mi/(r) -t 3 } ticularly the factor [e,(k|0j) — eq(x’|07)]. This term
vanishes clearly for atoms belonging to the same sub-
o (@adsy + Tp0ay +290ap) lattice, so thatV,2"(0j; ¢/, j';¢",5") = 0. This result can
2 be generalized to higher order anharmonic processes thus
. oL (r) V20554, 554", 5" ...) = 0.

. <¢”"”"(T) o ) Physically, the fact that neighboring atoms of even order
do not contribute to the disintegration of the optical phonon
can be seen by noting that optical branches are due exclu-

ﬁ(lﬂlllﬁl) - E(ln) _ E(l’n’) (13)  sively to relative displacements of atoms belonging to dis-
tinct sub-lattices. In Fig. 1, the phonon dispersion curves are
shown for the case of silicon; we have obtained this curves
using the harmonic part of our model (consisting of central

(b/(r):d ¢u(r):d2¢(7") ¢m(r):d3¢(7°) nearest neighbors, angle bending and dipole interactions) as

dr ’ dr? ’ dr3 described in Ref. 13. In this figure some possible channels of

In this work, we are particularly interested in the disintegra-decay in high symmetry directions for the Raman phonon are

tion of the optical phonon at the zone-center (Raman modepdicated (dotted lines).

into two phonons (cubic process). The zone-center phonon . . o o

has a zero wave vector, so that the conservation laws of e?.  Cubic anharmonic coefficients in high sym-

ergy and momentum give in this case: metry directions

— -/ ! -l .
@, 7) i@’ ") = w(0.9) In high symmetry directions, it is possible to obtain simpler
7+q" =7 =-¢, (15)  expressions for the cubic anharmonic coefficients. Let us la-
bel the phonon branches as follows= 1,2, 3 for the TA,
yI'A2 and LA branches respectively;= 4,5, 6 for the TG,

(12)

F=Z(Ik|l'Kk")

with 7= 3" z.é, and

and

. (14)

thus, the corresponding anharmonic coefficients are given b

O it o N (D 3/2 TO, and LO branches respectively. Furthermore we consider
Vi0,5:4, 5% -4,3") = 12 \an first nearest neighbor interactions only. The position vectors
—1/2 () o for this case are given in Table I.
X (W5 Wa itwW_g P 0,k|l', Kk
( o : «%z%; o ( | ) The cubic anharmonic coefficients for this case can be
= = written as:
% [eall0,5) = eal'10.5)]
x {65(’%‘6).7.) _eﬁ(’{qé’vj)e_i[@ﬁ(lﬁ)]} (O N S-S - /A N h 3/2
V (Ovjaqv.])*qa )*7 g ——
< Jey (sl = 2.5") — ey (W]0.5)e=FRO)] a6) 6 A2
! K X (Wﬁ‘ijcj‘,j’w—zf,j”)_lpz Z CI)Q%A/(O,OMZ',U
afyl'kk!

4. Anharmonicity in crystals having the dia-

(010, 5) — eq(1]0, j
mond structure 8 [e (00,3 = eal] ])}

. | C x [eal00) — ep(11.5)e )
In the diamond structure, which has two atoms per unit 5
cell, nearest neighbors of odd order belong to distinct X [67(0| —,§") = ey (1] = 4, §")e' @ i)} 17)

[100] [110] [111]

Phonon frequencies w(rad/sec)

wave vector q

FIGURE 1. Phonon dispersion curves for silicon using Wanser model, the dotted lines indicate possible channels of decay.
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TABLE |. Position vectors of the first, third and fifth nearest neigh-

bors (NN).

1°t NN 3T NN 5% NN

R(d1,1]0,0)
R(d2, 1]0,0)
(83, 1]0,0)
(64, 1]0,0)
(71,1]0,0)
(72,1]0,0)
(73,10, 0)
( )
( )
( )
( )
( )
(

=== - -

74,1|0,0

75, 1|0,0

76, 1|0,0

77,1|0,0

78, 1|0,0

79, 1|0, 0)
(710,10, 0)
(111, 1]0,0)
(712, 1]0,0)
(p1,110,0)
(p2,110,0)
(ps, 110,0)
(p4,110,0)
(ps,1]0,0)
( )
( )
( )
(

=== -

R
R

= N -

ps,1]0,0
p7,1]0,0
ps, 1]0,0
po,1]0,0)

=

R
R(p10,1(0,0)
R(p11,1/0,0)
R(p12, 1]0,0)

eit+esxtes
—e;—extes
e|—ex—es3
—ei1t+ex—es
e;—ex+3e3
ei1—3ez+e3
3ei1—eztes
—e;+ex+3es
—e;+3extes3
—3ei1+ez+te3
e1t+ex—3es
3ei+ez—es
e;+3ezx—es3
—e;—ez—3es
—3e;1—ez—es
—e;—3ex—e3
Jei1+3ex+es
e1+3ea2+3es
3ei1+eax+3es
—3e;—3ex+e3
e;—3ex—3e3
—3e;1t+ex—3es
3e;—ex—3es
—e;+3ex—3es
—3e;1—ex+3es3
—e;—3ez+3e3
—3e1+3ex—e3

391—362—63

For higher order neighbors the expressions are analogous.

455

where we have used the so-called normalization condition.
The cubic anharmonic coefficients can then be written as:

. N/ B \?
VH0,5:4,3;—-7,3) = — | ——
(aj7 » Yy ) ) 8 (QNM)

" sin23(qa) (

% D07 @an(0,0061,1) [ea (010) — ea(1]05)] . (18)

—1/2
WG, ;Wg,LA)

In fact, this is the 3D generalization of Eq. (20) from
the Held and Pfeiffer article [17], where these authors, dis-
cussed the problem of anharmonicity in a linear diatomic
chain. Now, using the results given in Tables | and Il it is
easy to show that:

> ®au(0,0(5:,1)

thus

VH0j50,3;—¢,3) =0 for  j=4,5.6
Therefore, this channel of decay is forbidden, in full
agreement with the diatomic linear chain case (see Eqgs. (20)
and (21) from Ref. 17). In order to compute the correspond-

ing anharmonic coefficients for higher order neighbof8, 3
and 3" nearest neighbors, we use the information given in ta-
bles I to IV. In this way, we obtain for the cubic anharmonic
coefficients along this channel of decay that:

V*(05; ¢, 3;

—q3)=0 for j=4,56 and

i=1,3,5. (19)

5.2. Decay of the optical phonon into one LA and one

TA phonon in the [100] direction

The eigenvectors for the LA branch in the [100] direction
were given in the previous paragraph, meanwhile for a TA
branch in the [100] direction we have:

€a(0|(T, 2) = a(5a2 - 6@3)

Special care must be taken in considering the corresponding
position vectors as it will be shown later. In the next sec-
tions, we calculate analytical expressions for the cubic an-
harmonic coefficients along high symmetry directions. All
of the eigenvectors appearing in these calculations have bedmbLE Il. Cubic harmonic force constants for first nearest neigh-
obtained previously applying symmetry operations and thebOrS Wlthal =c A1 +3d By, ap = 61A1 +di1B1, az = —c1 4y,

o), = al): o = o). l) = @) fori =1,2,3,4,and
ory of groups [22]. o §30: %5 2237 Paz1 & 2

Al = ‘:I>11”(7'1) — 3(13'/1/(7‘1)/7“1 + 3‘19 (T1)/7‘1

ea(1]7,2) = b(8az — a3)e’?(@/D) (20)

5.1.

_Decay of thg opt_ical phonon into two LA phonons By =&} (r)) — ®\(r1)/r1 and r = (V3/4)a
in the [100] direction = (a/)% )13, dy = (a/4)/r2.
In this direction:q’ = ¢é,, and the eigenvectors are given by: D117 Doz P3zz Piiz Priz Poar Dios
1= —Q1 —Q —Q —Q2 — Q2 —Q2 a3
€a(0lg;3) = bda1 = (i;% i=2 o o —aq Q2 —a o2 as
ea(17.3) = beiq<a/4)5a1 _ eiq(a/4)5ail’ 1=3 - a1 o1 o2 Q2 —Q2 O3
2 =4 ag - a1 —a (e %) (o2 as
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TABLE IlI. Cubic harmonic force constants for third nearest neigh- TABLE |V. Cubic harmonic force constants for fifth nearest neigh-
bors WheI'Eﬂl = c3A3 + 3d3Bs, ﬁg = 27c3Asz + 9d3 B3, bors Where’)q = 27c5A5 + 9d5Bs, Yo = csAs + 3dsBs,
B3 = c3As + d3Bs, B4 = 9c3As3 + d3Bs, G5 = 3c3As3 and ’Y3:27C5A5 + 3ds5Bs, ’)/4:365145 + 3d5Bs, ’75:965A5 + d5 Bs,

Y6 = —9¢5 A5 and

Ay = DY (r3) — 305 (ra) /ra + 30 (1) /3 As = DY (r5) — B0L (rs) /rs + 30 (r5) /2

By = ®Y(r1) — ®5(r3)/rs and r3 = (vV3/4)a Bs = &% (r5) — ®y(r5)/rs and 75 = (V3/4)a

= (a/4)’/r3, ds = (a/4)/r3. s = (a/4)*/rs, ds = (a/4)/r3.

D111 Paoa P3zz Pri2 P13 Poor Paos Pzt Psze Pios D111 P22z P33z Pr12 P11z Poor Pooz Psz1 Paze Pios
i=1 —p B —B2 B3 —3Bs —Ps =303 —B1 Ba Bs t=1 —y1 =7 =72 =73 =5 Y3 —V5 —V4 —V4 Yo
1=2 —p1 B2 —b61 305 —B3 —Ba —Ps —B3 383 P =2 —v2 -7 =71~ —Y4 —Y5 Y3 —Y5 Y3 Y6
t=3 —f2 B1 —P1 Bs —Ba —3B3 —Bs =303 Bz PBs =3 —m —Y2 —Y1 Y5 T3 T4 V4~ 5 Ve
i=4 P —p1 —B2 =03 =303 B3 —30s Ba —P1 PB5 i=4 m M =2 Y3 —V5 Y3 —V5 Y4 V4 V6
t=5 p1 —P2—01 3065 —Bs Ba —Ps B3 —303 Bs i1=5 —v2 M M Y Y4~ Y3~V Y3 Ve
i=6 P2 =01 =01 —Ba —P1 305 —P3 3063 —B3 P =6 m -2 M — Y3 Y4 Y4 Y3 —V5 Ve
1=7 =01 =01 P2 —P3 303 —fF3 303 —Ps —Pa Ps =T =71 Y2 M Y5 Y3 Y4 Y4 —V3 V5 Ve
1=8 —f2—P1 B —Ba Bs —3B3 B3 —3B3 —Bs PBs =8 Y2 —m Y Y4 Y4 Y5 Y3 Vs T3 Ve
i=9 —fi =P b1 =303 B3 —Pa Pa —P3 =303 Fs =9 M 2 M Y Y Y4 Y4 Y3 V5 Ve
i=10 B B B2 Bs 383 —Bs 3Bs Bar Ba Bs 1=10 72 M -M Y v Y5 VB V5 V3B Y6
t=11 B2 B1 B Ba Ba 3063 Bz 3063 Bz Bs t=11 v —y 7v2 =y Y Y3 V5 Y4 —Va Ve
1=12 81 B2 P1 3083 Bz Ba Ba B3 30z Ps =12 —m M 2 Y B B B V4 Y4 Yo

where a and b are normalization constants. Next we choose

for the optical phonon the following polarizations: fori =1,3,5 with
3/2
da1 dp2 17 k. = N h —1/2
%62 VY0,5,¢,2 —3) = — ( = G5WaL AW,
(O|O 4) = \/ﬁ’ (0|0 5) = ok (0,5:¢,2; —q3) 6 \onNar (WiswaLawg,ra)
7oy 043 dal1 ) )
e4(0[0,6) = Nok ea(110,4) = ok % [(a _ bem(a/4)) (1 _ ezq(a/4)) (—2d,By)
0p2. 03
es(1)0,5) = ==;  e,(1[0,6) = —=; (21) , ,
V2 V2 + (a—be_"I(a/4)) (1—6“1(“/4)) (401A1+2d131)} (23)
For this case the anharmonic coefficients can be written
as:
VY0,5:4,2;—q.3) = N ( h ) (wg wirAw_gra)? In a completely similar fashion, we found that, for the
6 \2NM 7 ’ third nearest neighbors, the corresponding relation is:
x 30> @l (0,018:,1) [ea(0107) - ea(0]05")] ) N o[ B\ s
i by V3(0,5;¢,2; —q3)= 3v3 \aNIl (Wgswarawga)
X [((552 — 553)@ — ((552 — 5@3)6i6§16iq(a/4)}
B —peta(a/D)) (1 — gia(a/4) ) (239¢42 Aq — 4da B-
) [5 - e—w«»-e—mw/aﬂ [(a (@) (1 - 9@/ (~32c5 A5 — 4ds By)
V2

after performing the summations one obtains the following + (a - beSW(“/“)) (1 - efgiq(am) (—12c3A3 — 6d3B3)
relations between the cubic anharmonic coefficients:

VZ(O 44,2, —G3) =0 + (a _ be*iq(a/él)) (1 _ 6iq(a/4)> (8¢3As 4 4dsBs)

Vi0,6;4,2;—q3) = —V*(0,5: 4,2 —@3)  (22)
+ (= et/ V) (1 gatesn) (6d3B3)} (24)
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Finally for the fifth nearest neighbors we have: with j = 4,5,6, and where4, and B; are given in Table .
N h 3/2 For the third nearest neighbors the corresponding expression
iq(a/4) iq(a/4) 3(5 N B\ 2 1/2
[(a — be' " ) (1 —e ' ) (—dsBs) V2(0,7:4,3; —¢3) = 33 <2NM) (w5 w7.4) "
_ pediala/d) _ e 31(a/4) ) (190 Ar — 6d= 1
+ (a be ) (1 € ) (—12¢545 — 6d5B5) X — — 2bccos V3qa (—b54c3As — 54d3 B3)
_ , 3 4
+ (a — be_l‘I(“/4)) (1 — e“l(a/4)> (18¢5A5 + dsBs)
1 \/gqa
i (a B b673iq(a/4)) (1 B €3iq(a/4)) + <3 — 2bccos 2 ) (csAs + 9d3Bs)
% (48¢5 A5 + 6ds Bs) (25) 1 5V/3qa
5A5 5D5) | - + 3~ 2bc cos 13 (125¢3A3 + 45d3B3) |, (28)
where the coefficientd,, A3, As, B1, Bs, Bs, c1, ¢3, ¢5, d1,
ds, d5 are given in Tables II-1V, respectively. and for the fifth nearest neighbors we have:
5.3. Decay of the raman mode into two LA phonons in se IN Ao\ 32 s 1
the [111] direction V(0,5 4,3; —¢3) = 32 <2N]\4> (w5 jwg.a)

In this direction:q = (¢/v/3)(€1 + & + &). Also, the eigen- 1 V3qa
vectors are given by: X 3~ 2bc cos 13 (c5As + 9d5Bs)

ea(0|§a 3) = b(5a1 + 5042 + 6&3); \/»

- 1 7V3qa
ea(0|(Ta 3) _ C(5a1 T 6o + 5,13)6“/3(1((1/4). - (3 — 2bccos D ) (10905A5 + 9d5B5) . (29)

Using the normalization condition we hav&: + ¢ = 1/3;

therefore, the cubic anharmonic coefficients can be Writte% 4. Decay of the optical phonon into one ta and one la

as. phonon in the [111] direction

Lm N o\ -1/2
V(0,5 q,2;—43) (wg jwqLawgLa)

6 \2NM For a TA phonon in the [111] direction we have:
x 30300 (0,006, 1) [ea(010)) — ea(110)] ea(017.2) = a(651 + 6,
i oafy
ea(11q,2) = d(0,1 + 6 ei\/gQ(“/‘l),
X (0p1 + 02 + 033) (041 + 0y + 0y3) (11g:2) = d(Gn +652)
1 V3qa . with: a? + d? = 1/2 from the normalization condition. The
7 — 2bccos 1 +q-0: - eigenvectors for the LA mode in the [100] direction are given
by the expression (20). The corresponding formula for the

After performing the sums one finds: cubic anharmonic coefficients is:
V(0,40,3;—¢,3) = V'(0,5;4,3;—q,3) 3 N/ R\
=V'(0,6;¢,3;-¢,3),  (26) Vi0.5:02-8) =5 (2]\/‘]\4) (w5 wgra) "1
cdual in s case fo the tree st polarzations of e~ 2 o0 Pk (0. 01 1 [enO) = (1)
optical phonon: '
N X (81 — dp2) (a — dei‘/gq(“/‘l)ei‘j'g")

o N )
V0,533 —q3) = 7 <2NM> (w5 jwgpa)”?

X (814 Oy + 8y3) (b — cetVEul0 DT
1 3
(3 — 2bccos \/;qa> (—=3c1A1 — 3d1By)

X

Evaluating the sums leads to the following relations:

V3qa
12

Vl(07 4; q, 2; —q, 3) = _Vi(()? 5; q, 2; —q, 3)

1
+ (3 — 2bc cos ) (2c1Ay = 3d1By) |, (27)

V(0,65q,2;—¢,3) = 0, (30)
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fori =1,3,5, with:

N

V1(0,5;4,2;—3) = —= ( h

2NM

—1/2

3/2
2 ) (w5 ;wgraw-g,LA)

X

[\

(ab +ed — aceV3(aa/1) _ bdeiﬁ(aq/‘*)) (—3d, By)

i <ab +ed — ace=1V3(0a/12) _ pgoiv/3aa/ 12)) (4e1 Ay +3d:B1)|,  (31)

for the third nearest neighbors we have:

. N ho\*? s
V3(0,5;¢,2; —3) = 23 <2NM> (w5 jwgTAaw-gL4)” /

[ (ab + ed — ace™V3(aa/Y) 4 bde*i\/g(“qﬂl)) (72c3As + 18d3Bs3)
+ (ab + ed + ace™1V3(ea/12) | bdei\/g(aq/u)) (—16c3A3 — 3d3Bs)
+ (ab + cd + ace”BV3(@a/12) 4 pei5V3(aa/ 12)) (=20c3A3 — 15d3Bs)|. (32)

Finally, for the fifth nearest neighbors the expression is given by:

~ N
V(0,5 ¢,2; -3 :(
0.5:4.2-63) = =%

[ (ab +ed + ace~iTV3(aa/4) | bde‘"‘/g(“q“)) (28¢5 A5 + 21d5Bs)

h

_ —1/2
2N M

3/2
6, _
> (wg;waraw—gra)
+ (ab + cd + ace~i7V3(aa/12) 4 bde”‘/g(aq/m)) (—80c5 A5 — 24d5Bs5)

+ (ab + cd + ace™V3(aa/12) 4 peiv3(aa/ 12)) (—56¢5A45 — 6d5B5)} . (33

5.5. Decay of the optical phonon into two TA phononsin
the [110] direction

carrying out the sums one obtains:
In this direction the eigenvectors for the TA phonons which

are orthogonally polarized both the z axis and the direction 16N b2 no\ 32
of propagation are given by: V0,672 —7,2) = — — [ ——
) ) ) ) ) 3 \/i 2NM
ea(0|(f, 2) = b(5a1 + 6042)7
} (wg jwara)”?dy By sin® <qa> . (35)
ea(1]7,2) = b(6y1 + 642)e V30D (34) : 42

the corresponding anharmonic coefficients can be written as:
The preceding results can be extended to the third nearest

0, ;4. 7, N h e - neighbor interactions giving:
Vl(O,J;q,2;—q,2)=< ) (wg jwara)” 9 giving

6 \2NM
() = =, 3/2
X qu)aﬁy((howhl) |:eoz(0|0]> _ea(lloj)} V3(6 6:q 2: _CT Z)Zgﬁ h (w_‘ _w% )71/2
i oy 5 Uy gy 4y ) 3 \/§ INM 0,7“q,TA
B __iv2q(a/4) id-5;
x b(dp1 — dp2) (1 eV et ) x |(—64c3As + 4ds Bs) sin® (f\%)

X (641 — 0y2) (1 — e_i\/iQ(“/4)e—id"55) ’ v
+ (16¢3 A3 + 8d3B3) sin (4\/5) ] . (36)
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and for the fifth nearest neighbor we obtains: Held et al have obtained in full agreement with our calcula-
3/2 tion for this direction, is completely forbidden.
" 2N b2 h LA-TA phonons
5(3 @79 7oy " S w2 )2 P
Vv*(0.6:4.2-4.2) 3 V2 <2NM) (w5,0774) We must remember that the squared magnitude of the an-

harmonic coefficients is proportional to the probability of dis-
x | (—48¢5 A5 — 24dsBs) sin® (qa) integration. So that, for this case, one phonon polarized along
2v2 the y or z axis have equal probability of decaying into the
.o ( qa pair {LA, T A}; an x-polarized phonon, instead, cannot de-
+ (192¢5 A5 + 24d5 Bs) sin <4\/Q> }7 (37) " cay into one phonon LA and other TA. In fact, as we have
shown in a previous paper, this channel of decay is the most
finally we have for the remaining coefficients the relations: important because of its contribution of about 90% percent to
, , the linewidth in silicon and germanium [13].
V*(0,454,2;-¢,3) = V"(0,5:¢,2;—¢,;3) =0 (38)
. 6.2. [111] Direction
fori=1,3,5.
2 LA phonons
For this case, every allowed polarization of the Raman
phonon had the same probability of decaying into the pair
In this work, we have computed analytically the cubic anhar{LA, LA}. Considering silicon, for example, we can un-
monic coefficients for the diamond structure in high symme-derstand this selection rule because the flattening af
try directions. This has been done considering central poterfranches, especially near the boundary zone, eventually al-
tial interactions from first to fifth nearest neighbors. Theselows that the addition of twd.A phonon frequencies could
calculations lead to the following relations between differente equal tavr 4.

6. Discussion and conclusions

channels of decay: LA-TA phonons
With a similar reasoning like we stated above, this chan-
6.1. [100] Direction nel of decay can be explained; two polarizations are equally

feasible ¢ andy) and the otherz) completely forbidden.
2 LA phonons
This channel of decay (the so-called Klemens channel) i§.3. [110] Direction

forbidden, as it is shown from the following expression
TA, ., phonons

V(i)(ﬁﬂqg‘ —@3)=0 j=4,56; i=1,3,5. Finally, for this channel of decay, only phonons perpen-
dicularly polarized both along the-axis and to the direction

The former result is remarkable, because of the fact thadf propagation contributes for this selection rule. So that, it
previous calculations [3,16] considered to this channel of deis not surprising that the only allowed polarizations (with the
cay the fundamental disintegration process for the Ramasame probability) are theandy axis; therefore-axis polar-
phonon. Mention must be done to the work of Held andization is forbidden.
Pfeiffer [17], where the effect of anharmonicity in the absorp-  Bearing in mind that these Fourier transformed anhar-
tion spectrum of a diatomic linear chain is discussed. Amongnonic coefficients are of primordial importance in many cal-
other things, these authors discuss the validity of the Peierlsulations like phonon dispersion curves, phonon line widths,
approximation; in particular, as well as we have obtainedspecific heats, and frequency shifts we also strongly believe
through all these exact calculations for a three dimensionahat computational efforts needed to carry out these calcu-
lattice, the Peierls approximation is found to be a very rougHations can be dramatically reduced by using the results we
estimation, and its validity is strongly questioned in almosthave obtained in this paper in combination with the symme-
every relevant channel of decay like the Klemens one, that asy properties of the diamond structure.
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