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A formal, physical analogy between plastic deformation, mainly dislocation creep, and Relativistic Cosmology is presented. The physical
analogy between eight expressions for dislocation creep and Relativistic Cosmology have been obtained. By comparing the mathematical
expressions and by using a physical analysis, two new equations have been obtained for dislocation creep. Also, four new expressions have
been obtained for Relativistic Cosmology. From these four new equations, one may determine the neutron energy,uN , by knowing of the
present value of the universe radius and the Einstenian gravitational constant. Another new expression gives the neutron radius,rN , as the
present value of the universe radius,ROU divided by 1040.
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Se presenta una analogı́a formal y f́ısica entre la deformación pĺastica, principalmente termofluencia por dislocaciones y cosmologı́a rela-
tivista. Se muestran la analogı́a f́ısica entre ocho expresiones de termofluencia por dislocaciones y cosmologı́a relativista. Con la comparación
entre las expresiones matemáticas y el uso del análisis f́ısico se encuentran dos expresiones nuevas para termofluencia por dislocaciones y
cuatro nuevas expresiones para Cosmologı́a Relativista. De entre las cuatro nuevas ecuaciones una permite determinar la energı́a del neutŕon,
uN , a trav́es del conocimiento del radio actual del Universo y de la constante Einsteniana de gravitación. Otra expresión define el radio del
neutŕon rN como el radio actual del universoROU dividido entre 1040.

Descriptores: Deformacíon pĺastica; termofluencia por dislocación; cosmoloǵıa relativista.

PACS: 61.50.-f; 02.40.Dr; 62.20.Dc; 61.72.Lk; 62.20.Hg; 14.20.Dh; 04.20.-q; 98.80.-k; 01.55.+b

1. Introduction

Since time inmemorial human kind has been watching the sky
and wondering about its meaning and origin. In those days
the information obtained from the skies was used for practical
porpouses of orientation: in terrestial space, or for the culti-
vation of crops. For most human history it has been thought
that stars were fixed to some sort of sphere or were pinholes
in that sphere, permitting glimpses of a universal fire burrned
beyond. Whatever the model of the universe (Plato, Aristo-
tle, Ptolemy. . . models), man was at the center (quite natural
in view of the fact that the celestial spheres seems equidistant
in all directions). The concept of our central position in the
cosmos has been tenacious.

Only after the work of Nicolai Copernicus on a hypo-
thetical scheme of the movements, of the heavens the Earth
was theoretically displaced form the center of the universe,
with the sun as the center of the planetary system and, of
course of the universe. Later, Galileo’s observations of outer
space by using a telescope for the first time caused an im-
mense stir that led to an unavoidable conflict with the geo-
centric dogma upheld by Catholic theologians. Galileo saw
sunspots, the moons of Jupiter and the phases of Venus. All
this factual information established, once and for all, that the
heliocentric system proposed by Copernicus was a reality,
and could no longer be considered to be merely a compu-
tationally convenient hypothesis. Newton, after identifying

the Keplerian orbit of the moon with the Galilean trajectory
of a ballistic projectile, reached a theoretical understanding
of Kepler’s phenomenological laws by establishing the uni-
versal law of gravitation. Newton also considered the uni-
verse infinite in extension and in duration on time (as con-
sidered before by Lucretius in “De Rerum Naturae”). At the
beginning of the twentieth century the general vision among
astronomers was that everything visible in the heavens be-
longed to “our” galaxy [1].

In 1917 Einstein, starting from the equality between
the inertial and gravitational mass of material objects, con-
structed his general theory of gravitation, which for the first
time allows one to deal with the whole universe [2]. Einstein
himself developed a model in which he postulated a cosmic
repulsion force, “the cosmological constant” term in the grav-
itational field equation. The role of such a repulsive force was
to balance gravity and yield a static model for the universe.
After Hubble’s discovery of the expansion of the universe,
Einstein considered that the introduction of the cosmological
constant was his “biggest blunder” [3]. With Friedmann’s [4]
and Lemaitre’s [5] works published in 1922 and 1927 respec-
tively, the first relativistic cosmological models describing
the expansion of the universe began to appear (both models
use the cosmological constant term in their field equations).
The next big step in cosmology was crystallized in the Big
Bang theory, which is usually associated with Gamow. He
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provided cosmology with a link between the science of the
universe and nuclear physics [6]. There are three different
types of experimental data which support the Big Bang the-
ory. The expansion of the universe according to Hubble’s law,
which describes the radial velocity of galaxies and other cos-
mic systems as a function of the distance from any observer,
provides direct evidence for an explosive beginning [7-10].
The Nucleosynthesis prediction for the light elements in the
first minutes of the Big Bang have been verified by obser-
vation of the abundance light elements [11-16]. And also
the observation of the cosmic microwave background gives a
fundamental support for the Big Bang theory [17-23]

Also a long time ago, the standard Big Bang Nucleosyn-
thesis theory was complemented by the theory of stellar ele-
ment formation [24], which solves the problem of generating
elements heavier than helium, by explaining in a general way
the abundance of practically all the isotopes or elements from
helium through uranium by synthesis in stars and supernovae.

From 1965 to the fall of 1997, research in cosmology
evolved as expected, without surprises, until Professor Saul
Perlmutter, at the beginning of 1998, announced that he and
an international team of observers of supernovae, uses super-
novae as beacons to judge how the cosmic expansion rate has
changed over time. Not only did the results support the earlier
evidence that the expansion rate has slowed too little for grav-
ity ever to bring it to a stop; they also hinted that something is
nudging the expansion along. This discovery introduced im-
portant evidence that there is a cosmological constant [25].
The first detailed publications on the subject support the ac-
celeration of the expansion of the universe [26,27].

A review of recent observations suggests a universe that
is lightweight (matter density about one - third of the critical
value), spatially flat and accelerating [28,29].

The acceleration of the expansion of the universe requires
the existence of an energy to overcome the gravitational self -
attraction of matter. The cosmological constant - also called
lambda (written asλ or Λ) has long time been a candidate
for serving as this energy reservoir. In 1967, Zel’dovich [30]
showed that the energy density of the vacuum should act pre-
cisely as the energy associated with the cosmological con-
stant. Lately, theorists have been dusting it off again and
speculating about sources for the energy based on the fleeting
particles that wink in and out of existence in vacuum space,
according to quantum mechanics. But calculations based on
that idea lead to lambda’s that are 120 orders of magnitude
greater than the energy contained in all the matter in the uni-
verse [31-35]. So theorists are playing with alternatives. For
instance, some workers consider that the cosmological con-
stant arises from different possibilities: local voids or non-
homogeneities in the expansion of the universe [36,37], a true
Casmir effect on a scalar field filling the universe [38], the
acceleration of the universe [39]; or give alternative scenar-
ios to a pure cosmological constant provided by a classical
scalar field known as quintessence [29,40-44], also the self
- tuning bran scenario in an attempt to solve the cosmolog-
ical constant have been used [45], and some people use the

anthropic principle trying to explain the small value of the
cosmological constant [46,47]. As far as we know, there are
no experimental data which give conclusive support to any
of the previous models for the cosmological constant prob-
lem. In other words, this problem and also associated with
the acceleration of the expansion of the universe still remains
unsolved.

The main purpose of this work is to give an isomorphic
analogy between the main results of the deformation of crys-
talline materials and the relativistic cosmology theory for the
expansion of the observable universe; after that, some calcu-
lations and predictions will be made. This is done by consid-
ering with Zel’dovich (1962), [48] our deep conviction that it
would be naive to expect from astronomy new rules or the-
ories about nuclear reactions, the creation of the elementary
particles and the laws of general theory of relativity. The
point is to use existing theories correctly, not to introduce new
ones. In other words, we restrict ourselves to work strictly in
the theoretical and experimental frame work established by
the work of human kind in our terrestrial facilities, knowl-
edge corroborated now and then, or hundreds, thousand or
millions of times in the every day experience of humanity,
trying to follow Occam razor very closely in order to reduce
to a minimum the use of speculative ideas without experi-
mental support of some type.

Before we make the comparison between the deformation
of crystalline materials and Cosmology, and before we ana-
lyze its global implications and in order to make this paper
self-contained, let us make a brief synthesis of both subjects.

2. A brief synthesis of the deformation of crys-
talline materials

It is well known that Hooke’s law describes the elastic lin-
ear deformation of materials under the action of an external
forceF .

Expressed as an axial applied stressσ, such relationship
reads,

σ = Ee (1)

where e is the axial engineering strain,

e ≡ (L− Lo) /Lo (2)

L the length of the deformation sample at timet, and Lo the
initial length before deformation, and E is Young’s Modulus,
usually with values on the order of109 Pa [49]; Eq. (1) is
commonly obeyed for all crystalline materials up to an upper
limit of about e = 0.1% [50].

A simple microscopic explanation about Hooke’s law is
the following: If we take the harmonic oscillator

V (r) = −1
2
kat (r − ro)2 ,
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it describes in a first approximation (for small oscillations)
the potential energy of first neighbors inside a crystalline, cu-
bic lattice of a solid. Herekat is the coefficient which char-
acterizes the potential strength, andro is the equilibrium lat-
tice parameter. With these conditions, the force between two
neighborsFat is given by,

Fat = −∇V (r) = kat(r − ro) (3)

and, if the elastic deformation of the solid is homogeneus,
thenemicro = emacro. Therefore Eq. (3) and (1) imply that,

E =
kat

ro
. (4)

This equations give the stiffness of the crystalline latice or the
stiffness of the crystalline space as a function of the strength
of the interaction potential between adjacent lattice points,
kat and the inverse of the lattice parámeter. Askat grows and
r0 diminish,E tends to grow.

Also, it is possible to show that the stored strain energy
per unit volume,Uσ, due to an axial stressσ acting on a ma-
terial is given by [51],

Uσ = σ2/ (2E) (5)

where E is related to the shear modulusµm by the standard
relation

µm = E/ [2 (1 + γ)] (6)

with γ as Poisson’s ratio.
Note that in the following paragraphs and sections a slight

change has been made in the usual notations for physical pa-
rameters of common fields here mentioned to avoid or reduce
misunderstandings.

In 1926, Frenkel [52] developed a model to explain the
yield stress for metals (the beginning of plastic deformation,
which has an irreversible character). Essentially, he con-
sidered that plastic deformation occurs in the sliding of one
atomic layer over its layer immediately below. The theoret-
ical values (of the order of magnitude of the shear modulus
of the materialµm) were too big when compared with ex-
perimental data (a thousand or one hundred thousand times
greater than the real values), and the model does not take into
account the strain hardening [52,54]. In 1934, Polanyi [55],
Taylor [56], and Orowan [57] propose, independently, the
concept of edge dislocation. In 1939, Burgers [58] proposed
the concept of screw dislocation. Both types of crystalline
defects are required to explain the main and fundamental fea-
tures of plastic deformation in crystalline structures.

In the following paragraph the main topological charac-
teristics of a straight edge dislocation, and their implications
for gliding movement are described. In Fig. 1 a schematic
arrangement of the atoms in a normal plane of a straight edge
dislocation is exhibited. The characteristics of this crystalline
defect produce compressive stresses above the glide plane
and tension stresses below it. The inferior ending edge of

the extra-semi- plane is denoted by the symbol (⊥).Under
the action of a shear stressτσ, the dislocation moves in the
direction of the Burgers’ vector, b; this movement has a tran-
sient phase shown in Fig. 2. Under the action of the shear
stress above the glide plane, the atoms (above the glide plane)
move slightly to the right of their equilibrium positions. Si-
multaneously, below the glide plane, the shear stresses move
the atoms (below the glide plane) slightly to the left of their
equilibrium positions. Events occur in such a way that the
extra-semi-plane 5 displaces to the right, because during de-
formation the plane named 6 -5’ is transformed into the plane
5 - 5’ with a “rupture” of continuity of the plane 6 - 5’ giv-
ing place to an extra - semi plane 6. As the atoms around
the extra - semi plane move very little around their equilib-
rium positions, the interaction potential between them can be
considered harmonic, and because of the symmetry of the
distortions of the atom’s positions by the semi - extra plane,
as a first approximation during the gliding of an edge disloca-
tion there are no net atomic forces acting on the dislocation
(at low gliding velocities as compared with the velocity of
transverse waves of sound in the material) [59-61].

This type of crystalline defect, which is necessary to ex-
plain the plastic deformation of materials, is not in thermody-
namic equilibrium. Therefore, when a pseudo-particle (edge
dislocation) and its pseudo-anti-particle (edge dislocation of
the opposite sign) are very close in position, an annihilation
process develops between them. During this process, the
stored elastic energy of the field of each pseudo particle is
transformed into incoherent sound waves, and the restoration
of the local perfection of the lattice and the local relaxation
of elastic stresses occur, [see Fig. 3].

FIGURE 1. Atomic arrangement in a perpendicular plane of a
straight edge dislocation (Schematic), [61].
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FIGURE 2. (a) Atoms near an edge dislocation. (b) Edge disloca-
tion movement to the right, under the action of a shear stressσ. The
magnitude of the displacement of the edge dislocation isb, [61].

FIGURE 3. A schematic view of the geometrical aspects of an an-
nihilation event between one edge dislocation⊥, and one edge dis-
location of the opposite sign (T). In this figure it is clear that the
spatial superposition of both crystalline defects restore the crys-
talline perfection ( and relaxes the local internal stresses); dissipat-
ing, by phonon emissions, the stored elastic energy of both defects.
Note: for simplicity has been supposed that diffusion phenomena
occurred before the situation here described.

Usually the external power which causes deformation in-
creases the length of dislocations per unit volumeρ. The
increase inρ causes a decrease in the mean velocity,vg, of
the mobile dislocation densityρm. The strain ratėε is given
by [62,63].

ε̇ =
b

M
ρmvg (7)

whereM is a geometric factor (the Taylor factor) and b is
the modulus of the Burger’s vector. Whenρm andvg, change
very quickly, in order to describe the plastic deformation it is
required to use an equation fordε̇/dt which reads,

dε̇

dt
=

b

M

(
ρm

dvg

dt
+ vg

dρm

dt

)
(8)

and is also known as Fuchs and Ilschner’s equation [64,65].
According to the statistical mechanical analysis of plastic

deformation by dislocations [65-67], the Fuchs and Ilschner’s
equation (Eq. (8)) is related to the volumetric net force,f ,
acting in the center of mass of the mobile dislocation density,

and Eq. (7) describes the volumetric linear momentum,p, of
the mobile dislocation density. In other words, one has

p =
m

Mb
ε̇ (9)

f =
dp

dt
=

m

Mb

dε̇

dt
(10)

where m is the inertial mass per unit length of dislocation.
Until now, there have been no trustable experiments to de-
termine the inertial mass of dislocations. However, by anal-
ogy with the theory of general relativity in which the iner-
tial mass is identical to the gravitational mass of the object,
some authors [60,68] have considered that the inertial mass
of dislocations is identical to the mass arising from the elastic
field expressions for the self-energy of dislocations per unit
length,ud. The inertial mass per unit length of dislocations
is obtained from,

ud = mov
2
s (11)

wheremo is the mean value of the rest mass per unit length
of dislocation in an homogenous material. And the velocity
of transverse sound waves is given by [69],

vs =
√

µm/ρgr (12)

with ρgr as the density of the material in grams per cubic
centimeter.

Usuallyud is expressed [60, 68] as,

ud =
1 (2− γ)

4π [2 (1− γ)]
µmb2 [`n (x/ro) + 0.15] (13)

wherex is a distance which characterizes the more distant
dislocation interactions, andro

∼= 5b is an effective core ra-
dius. Eq. (13) implies that the mass per unit length of dislo-
cation is not a local quantity. The term with 0.15 is due to a
non-linear contribution arising from the core of the disloca-
tion.

The geometrical laws of the continuous linear elastic-
ity theory for static dislocations have by now been estab-
lished in their classical form and one should not expect them
to experience any fundamental change [70]. Also specific
expressions for the static-elastic fields for deformation and
stresses due to dislocations are available in many classical
texts [49,71-73]. And for the case of the dynamical linear
elasticity theories of dislocations the most complete version
is due to Kosevich [74-76]. Equations (9) and (10), are based
on quasi-particle concepts which are usually alien to the
elastic-field theories of dislocations mentioned in this para-
graph.

The quasi-particle concepts for dislocations are based on
an old analysis made by Frenkel and Kontorova in 1939 [77],
they to study the propagation of one unit of displacement in
a unidimensional infinite chain of atoms elastically bonded
between them, which stay above another chain (or similar
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atoms) which remain still. To describe this physical situa-
tion they obtain the following equation (expressed in present
notation),

C2
o

∂2φ

∂x2
− ∂2φ

∂t2
= w2

o sinφ (14)

where Co and wo are the velocity and characteristic fre-
quency of the system. In this equation, from left to right, the
first term represents the elastic interaction energy between
neighboring atoms, the second one their kinetic energy and
the last term the potential energy due to the existence of a
lower chain of atoms which is at rest. This non-linear field
equation, well-known as the Sine-Gordon equation, is invari-
ant under Lorenz transformations with the transverse wave
sound velocity playing the role of the speed of light [78,79].

The solution of this field equation, which does not need
to depend on time, has two parts: one for large amplitudes
where the solution is highly localized in space; and also solu-
tions arising from small amplitudes which are spatially very
extended. The solutions of this field equation called solu-
tion have the dynamic characteristics of particles, and under
the effect of disturbances behaves like deformable particles.
These solutions are topologically stable entities due to a dy-
namical equilibrium between two opposite potential energy
tendencies: the dispersive effects, which tend to spread the
wave package, are balanced by the non-linear terms of the
solution that promote their agglutination. This last effect is
due to a physical process arising from the different velocities
of the Fourier components.

Under non-quantum or realtivistic conditions, the center
of mass of one soliton obeys Newton’s Second Law, as actu-
ally occurs for one dislocation [68]; and the movement of the
center of mass of a system of solitons also obeys Newton’s
Second Law, as actually occurs for dislocation creep [65,66].

When the stresses applied to a crystalline material are
high enough, plastic deformation occurs through the creation,
motion and interaction of dislocations. The dislocation den-
sity can only increase as long as the number of new disloca-
tions and also the length of the previous existing dislocations
grow. The only mechanical way for a dislocation to increase
its length is by gliding in its glide plane. Therefore, from
the nine components of the applied stress tensor, in principle,
only six of them (the shear stresses) are acting on the gliding
planes and are able to create dislocations; the hydrostatic or
pressure components of the applied stress can only produce
vacancies or volumetric defects mechanically. By applying
these ideas for the creation of dislocations recently for the
first time, a new theory appeared for the creation rate of mo-
bile dislocations considered as quasi-particles [60].

This theory is based on the principle of conservation of
energy. For the purpose of creation events, dislocations are
considered as quasi-particles obeying an effective relativis-
tic equation for the self-energy of dislocation per unit length
(Eq. (11), wherēmois the average dislocation mass per unit
length which takes into account that screw and edge disloca-
tions in metals are created in equal number, and also in equal

quantity of both sign of dislocations (dislocations and anti-
dislocations) in both types of dislocations. This is in order
that crystalline deformation can occur in an homogeneously.
The authors also consider that in dislocation creep deforma-
tion, the gliding of mobile dislocations occurs at low glide
velocity as compared withvs, and then the dissipate forces
acting during gliding are absent or negligible [59,80]. With
the use of these main considerations, the authors arrive at the
following equation for the creation rate of the mobile dislo-
cation density,̇ρ+

m,

ρ̇+
m =

σε̇

Mū
(15)

As far as we know, Eq. (15) is the only case of an expres-
sion for the creation rate of dislocations without any free pa-
rameter. This equation has been used to explain many prob-
lems of plastic deformation [60,66,81-84]. For instance, for
Al-11Zn in the region wherėε shows an exponential depen-
dence on stress [85], the theoretical prediction for the creation
rate of the mobile dislocation density and the experimental
data for different stresses are in full agreement with a ratio of
theoretical to experimental data equal to 1.00± 0.03 in the
full range of the applied stress [60].

For power-law creep, the subgrain formation process pro-
ceeds as follow [83]: at the beginning of plastic deformation,
rapid multiplication of gliding dislocations at a rateρ̇+

m oc-
curs and causes the density of mobile dislocationsρm to rise.
The new dislocations glide over a mean free path,Lfp.

Ltp = vgtcoll (16)

before they are held up by dislocations of the opposite sign
with an edge component which glides in the opposite direc-
tion under the action of the same applied shear stress.tcoll

is the meantime of collision between opposite signed gliding
dislocation. Their mutual internal stress field promotes local
dislocation movements; and eventually, if the temperature is
high enough to facilitate atomic diffusion, a steady state con-
dition is attained in which the rate of increase of dislocations
in such a region is equal to the annihilation rate of disloca-
tions in the sub grain walls structure. Therefore the creation
of dislocations and anti-dislocations occurs at the center of
sub grains (dislocations and anti-dislocations glide in oppo-
site directions form the dislocation sources), and annihilation
events occur in the subgrain wall structure where gliding dis-
locations and anti-dislocations collide (coming from different
contiguous subgrains).

The subgrain diameter at steady state is given by [83],

dsg =
2

φ2
M

( −
u

σb

)
(17)

whereφM ≡ 1/M. Equation (17) relates the subgrain diam-

eter with the mean energy per unit length of dislocation
−
u.

And for the usual case whereφM = 1/3 andū = µmb2 [60]
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this expression resembles the phenomenological expression,

dsg = K

(
µmb

σ

)
(18)

with Ktheo = 20 for metals and ceramics. These theo-
retical value forK has a difference of 10% and 20% with
the experimental data ofK for metals and ceramics respec-
tively [67,83]. It is the first time, that a theory of subgrain for-
mation has provided an expression which gives the numerical
prediction ofK as a function of basic parameters of plastic
deformation.

The elastic interaction between dislocations decelerates
the mobile ones. For a long time ago [56], we have known
that the internal stress,σi,which opposes to glide (due to the
elastic interaction with other dislocations) is given by

σi = αMµmb
√

ρ

with α as a constant that characterizes the interaction of dis-
locations and depends on the geometrical arrangement of the
dislocation structure as a whole(α ∼= 0.5) [86]. As a first
approximation it remains constant during deformation [87].

This stressσi represents some sort of special average
value of the actual positions of dislocation segments, and the
law that relates the glide dislocation velocityvgto the effec-
tive applied shear stress to the gliding dislocation (this aver-
age is determined in the region existing between the source
of dislocation at the center of the subgrain and the subgrain
wall) [82].

Obviously, the actual internal stress within the whole sub
grain interior must vary with the position and must have a
spatial average that is equal to zero. This is because of the
symmetry of the situation in which in half of the sub grain
volume the actual internal stress points in one direction, and
in the other half of the volume it points in the opposite direc-
tion [88].

Through plastic deformation, a heterogeneous disloca-
tion structure, (which very often appears in many creep theo-
ries, starting from the pioneer work of Weertman [89-90] on
power-law creep and viscous glide at steady state) is created
(see Figs. 4 and 4b). Many other authors [67,92-99] consider
similar arrangements to those which, schematically, could be
represented by Fig. 5, provided that in addition to the dipolar
character of the sub grain wall structure, we add their sources
that lead to this arrangement [83]. From Fig. 5, it is clear
that angles are added (caused by the elastic bending of the
lattice in a region with one signed dislocations, see Fig. 1 in
Ref. 100. In each half of the subgrain, we have that the total
angleθT , caused by the elastic bending on the lattice is,

±θT = ±θm ± θw (19)

where the sign(+) is for the right hand region of the source
of dislocations and the sign(−) is for the left hand region of
the source until the middle region of the subgrain wall struc-
ture is reached. And, because the misorientation anglesθm

andθw are related to the spacing of dislocations within the
sub grain interiordm=1/

√
ρm, and within the subgrain wall

FIGURE 4. Emission of dislocations loops from sources(s) and
subsequent annihilation through climb (diffusion processes asso-
ciated to edge dislocations by Weertman’s model. (a) Three di-
mensions and (b) two dimension’s model, after Weertman’s [89-90]
work.

structure dw=1/
√

ρw we have dm=b/(tgθm);
dw=b/(tgθw) [50]. For θm andθw ¿ 1, thendm = b/θm

and dw = b/θw. Therefore, by using these relations in
Eq. (19)

θT = b
√

ρm + b
√

ρw. (20)

And by multiplying both sides of Eq. (20), by(αMµm)
the following equation for the mean long range internal stress
is obtained:

σi = αMµmb (
√

ρm) + αMµmb (
√

ρw) (21)

whereσi have been defined asρi ≡ αMµmb θT . Eq. (21)
is equal to the simplified version of the soft and hard region
theory [67,82-84].

We note thatσi as given by Eq. (21) arise from an anal-
ysis of the lattice deformation due to the existence of regions
of high elastic energy fields in the form of defects of the
crystalline lattice. Dislocations deform crystalline space in
a more o less static way.

Rev. Mex. F́ıs. 51 (5) (2005) 461–475



ANALOGY BETWEN DISLOCATION CREEP AND RELATIVISTIC COSMOLOGY 467

FIGURE 5. Schematical model for creep substructure as formed
during high temperature plastic deformation; and the topological
characteristics of the dipolar subgrain wall created through colli-
sion and interactions during the movement of mobile dislocations.
Only primary dislocations are shown [104].

With the knowledge of the topological meaning ofσi and
its relation with the associated parameterdsg, its now possi-
ble to expressdsg as a function of the dislocation densityρ,
and also to understand thatdsg separates regions with dislo-
cations of opposite sign.

By considering thatρw À ρm(in general) [82,101] and
settingρw = ρ, then with the use of Eqs. (21) and (17), we
arrive at,

dsg =
2

αMφ2
M

(
u

µmb2√ρ

)
(22)

and by using as beforeφM = 1
M = 1

3 ,
−
u = 1µmb2, α ∼= 0.5,

dsg =
12.4√

ρ
. (23)

This last equations explains experimental data onAl-11
pctZn[85] very well.

With the use of the same condition used before, it is pos-
sible to show that,

ρ =
4 (1 + γ)

α2M2µmb2

( σi

2E

)2

≡ 4 (1 + γ)
α2M2µmb2

Uσi (24)

where Eqs. (5) and (21) have been used. Eq. (24) shows that
the dislocation density is a function of the volumetric density
of elastic energy in the crystalline solid.

Finally, a new technique for scanning electron mi-
croscopy which provides a mesoscopic coordinates system
inscribed in the center of a tension test specimen of 371µm

of gauge length has recently been proposed [102-104].

FIGURE 6. Quantitative flow map of velocities on specimen
through deformation. (a) Real flow in the four (x, y) regions of
sample under deformation. (b) Flow lines obtained by using sym-
metry operations on real data on (a), denoted by arrows. Also is
shown the idealized velocity flow map by which the experimental
data can be described; denoted by the continuous curves. Data on
Zn/20.2% Al/1.8% Cu alloy at room temperature [102-104].

Among other studies, with this technique it is possible,
for the first time, to build up the mapping of the granular flow
during superplastic deformation as can be seen for instance
in Fig. 6. From the analysis of these data in terms of the sec-
ond law of Newton, it is clear that grains flow along the force
lines; the aleatory deviations around the force lines are due to
the finite size of the elements of the flowing material and to
the mechanical interaction between the flowing grains. From
an elastic point of view, the tension acting along thex-axis
induces a compression lateral stress in the deforming solid.
Together such stresses are responsible for the flow of matter.
In other words, in the plane of Fig. 6, the grains are flow-
ing along the force lines corresponding to a transverse sound
wave travelling along thez - axis.

One we have presented the main ideas behind crystalline
deformation, we now move on to our next topic. Relativistic
cosmology, like plastic deformation, is a very broad subject
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to study, so in the next section we restrict ourselves to de-
scribing only the results that will be compared with the ma-
terial previously described in this section.

3. A brief synthesis of relativistic cosmology

In Newtonian physics, space-time is an infinitely rigid con-
ceptual grid. Gravitational waves cannot exist in this the-
ory. They would have infinite velocity and infinite energy
density because in Newtonian gravitation the metrical elas-
tic modulus of space is infinite. Conversely general relativ-
ity introduces a finite coupling coefficient between the curva-
ture of space time, described by the Einstein curvature tensor,
and the stress energy tensor which describes the mass-energy
which gives rise to the curvature. This coupling is expressed
by the Einstein equation.

T =
C4

8πG
R (25)

whereT is the stress-energy tensor,R is the Einstein curva-
ture tensor,C is the speed of light andG is Newton’s grav-
itational constant. The coupling coefficientC4/(8πG) is an
enormous number, on the order of1043. This expresses the
extremely high stiffness of space which is the reason that the
Newtonian law of gravitation is an excellent approximation
in normal circumstances, and why gravitational waves have
a small amplitude, even when their energy density is very
high. The existence of gravitational waves is intuitively ob-
vious as soon as one recognizes that space-time is an elastic
medium [105].

The gravitational wave equation [106] for a gravitational
plane wave propagating along thez-axisin the positive direc-
tion is

(
∂2

∂z2
− 1

C2

∂2

∂t2

)
hk

i = 0 (26)

where all thehk
i are functions of(t - z/c), with the gravitational

waves propagating at the speed of light to within a fractional
accuracy of5 ∗ 10−11 [107].

Einstein, takes an experimental fact from classical me-
chanics namely that the gravitational mass of a body is equal
to its inertial mass and, by making a Gendanken experiment
with a local elevator, shows that it is not possible to distin-
guish by simple mechanical observations whether a system
is in a local uniform gravitational field or whether it is in a
gravity-free region, but subjected to a constant acceleration
of the appropriate magnitude and direction.

With this analysis, he shows the conceptual necessity of
the law of the equality of inertial and gravitational mass. He
also proposed that this equivalence be a fundamental princi-
ple of nature, and that all laws of physics be in agreement
with it [108].

To develop his general theory of gravitation, which for the
first time deals with the whole universe Einstein in principle
needed to compute the motions of discrete masses (galax-
ies, etc.) separated by vast empty spaces under their mutual

interactions, which is still a problem bristling with extreme
difficulties. Instead of this mathematical situation, he consid-
ered the actual discrete matter distribution as a homogeneous,
continuous distribution, one like a fluid or a tenuous gas. This
is no doubt an extreme idealization, but it yields what can be
regarded as a first approximation to the actual problem.

Einstein’s equation obtained in his 1915 formulation:

Rmn − 1
2
gmnR = −8πG

C4
Tmn (27)

whereRmn denotes the Ricci curvature tensor, andR is a
invariant curvature derived fromRmn. The components of
the metric tensorgmn are functions of the coordinates in the
sense that they specify the space-time geometry, the invariant
distancedsbetween two neighboring points in space-time be-
ing ds2 = gmn dxm dxn, where the Einstein convention about
repeated indices has been used [109].

Usually the quantity

8πG/C4 ≡ K, (28)

is called the Einsteinian gravitational constant. Finally,Tmn

is the energy momentum (or energy-stress) tensor. The physi-
cal meaning of Eq. (27) is that it relates the tensors describing
the geometry of space-time (left-hand side) with the energy-
momentum tensor arising from the physical content of the
universe. These equations tell us in quantitative terms how
the physical content of the universe (sources of energy, matter
and momentum) stresses the space-time structure and causes
its geometrical deformation. Conservation of energy and mo-
mentum is guaranteed by the zero divergence of the left-hand
side of Eq. (27).

These equations of general relativity, permitted models
for homogeneous and isotropic universe which could not be
static. In order to ensure a universe that was static in time,
Einstein was led to an important change in his original equa-
tions. According to Einstein [110], on the left-hand side of
the field equations we may add the fundamental tensorgµν

(in our casegmn) multiplied by a universal constant,- λ, at
the present unknown, without destroying the general covari-
ance. In place of the field equation Eq. (27) we write:

Rmn − 1
2
gmnR− λgmn = −KTmn (29)

where the dimension of the universal cosmological constant
is that of the inverse of the square of a distance. This field
equation, withλ sufficiently small, is in any case compatible
with the fact of experience derived form the solar system, and
it also satisfies the laws of momentum and energy conserva-
tion [110]. Theλ - term introduces a force of repulsion be-
tween two bodies that increases in proportion to the distance
between them. In this scheme, the evolution of the universe is
determined by the competition between the cosmic repulsive
λ - force and the attractive Newtonian gravitational force. In
Einstein’s static model of the universe (λ >O), the two forces
are in balance, in unstable equilibrium.
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Most of the work on the standard model in cosmology to-
day is based on the early work of Friedmann [4], which was
not fully appreciated at first, because it lacked information
about observational consequences and his entire discussion
was limited to mathematics, with no attempt to incorporate
physics or astronomy. These characteristics meant that sci-
entists in both areas failed to pay attention to the points that
were later seen to be the essential message of the paper [111].
From that time until the present, different space-time line el-
ements have been used to analyze gravitational field equa-
tions [2,4,5,112].

After the independent work of Robertson [113] and
Walker [114], finally a rigorous approach to cosmological
models emerged. Based on two well-defined considerations,
viz, Weyl’s postulate and the cosmological principle of ho-
mogeneity and isotropy, they were able to obtain the most
general line element as

ds2=C2dt2−a2(t)
[

dr2

1−kr2
+r2

(
dθ2+sin2 θdφ2

)]
(30)

where a(t) is called the radius of the universe, withk , accord-
ing to Perlmutter and coworkers [115] taking valuesk=-1,0
or 1, represents the three possible geometries for the Uni-
verse: open, flat or closed. Here(r, θ, φ) are the constant
commoving coordinates of a typical galaxy. Let us to spec-
ify that the fact that such coordinates can be defined rest on
the assumption that the worldliness of galaxies form a bun-
dle of non-intersecting geodesics diverging from a space-time
point in a remote past. Thus a unique member of the bundle
passes through each space-time point. The time coordinate is
that measured by a galaxy as its proper time. This is Weyl’s
postulate. The cosmological principle tells us that the hy-
persurfacest=constantare homogenous and isotropic. Thus
Weyl’s postulate and the cosmological principle single out a
global coordinate system. The time coordinatet, commonly
called cosmic time, arises in this way. There is no contradic-
tion between this global symmetrical coordinate system and
the local covariance of general relativity [116].

According to Einstein’s general theory of relativity, the
geometrical properties of space are determined by the density
of energy-matter in the universe. The most obvious energy
sources that come to mind are ordinary matter and radiation.
A much less obvious source of energy, which potentially can
have an enormous impact on the structure of the universe as
we figured out is the quantum empty space itself: the quan-
tum vacuum.

Quantum fields theory predicts a huge energy density for
the vacuum, and this high value of energy density should have
very large gravitational effects. A conservative calculation
estimates that space-time geometry appears with severe geo-
metrical distortions over distances of one kilometer or less;
so according to Quantum field theory then we can not see
our own fingers before our open eyes [117]. However these
effects are not observed (even at a distance of about 1023 kilo-
meters), and the discrepancy between theory and observation
of the energy density for the vacuum is of about 120 orders

of magnitude. There is no generally accepted explanation for
this huge discrepancy, although numerous papers have been
written about it [31].

Despite the possible conceptual difficulties in accepting
the reality of the energy density of the vacuum, there is am-
ple experimental evidence for it; all the experiments on the
Casimir effect [118] measure the inward force existing be-
tween two closely spaced conducting plates due to the shift
in local vacuum energy density [119].

The notion of a vacuum energy is also unfamiliar because
that energy cannot be detected by normal techniques. Ener-
gies, as in the case of the Casimir effect, are usually deter-
mined by measuring the change in the energy of a system
when it is modified in some way, or by measuring a difference
in energy between two systems. By convention, energies are
often measured in relation to the vacuum. When it is defined
in this way, the vacuum automatically has zero energy in rela-
tion to itself. The only way to establish an absolute measure
of energy is by using gravity. As mentioned before, in gen-
eral relativity, energy is the source of the gravitational fields
in the same way that electric charge is the source of electric
fields in the Maxwell theory of electromagnetism. Energy
density of any kind, including that produced by fluctuation in
the vacuum, generates a gravitational field that reveals itself
as a change in the geometry of space-time.

In the standard model, as in any quantum field theory,
the vacuum is defined as the state of lowest energy, or more
properly as the state of least energy density. However, this
does not imply that the energy density of the vacuum is zero.
The energy density can in fact be positive, negative or zero
depending on the values of various parameters in the theory.
There are three different terms which contribute to the total
vacuum energy density. First there is the bare cosmologi-
cal constant. That is, the value the cosmological constant
would have if none of the known particles existed and if the
only force in the universe were gravity. The bare cosmo-
logical constant is a free parameter that can be determined
only by experimentally measuring the true value of the cos-
mological constant. Secondly, we have the contribution aris-
ing from quantum fluctuations (this term usually is due to
the local fluctuations in energy allowed by the Heisenberg’s
uncertainty principle). The third term represents the contri-
butions due to additional particles and interactions that may
exist but we do not yet know about. The value of this term is
of course unknown [31,117].

In the Big Bang theory, the effect of ordinary matter on
the expansion of the universe is to decelerate this expansion
at an ever decreasing rate. However, a positive cosmological
constant,λ > 0, would tend to make the galaxies accelerate
away from one another and increase the expansion rate of the
universe, as has recently have been observed [26,27]. This
is the reason behind the renewed interest in the cosmological
constant problem, and all related subjects.

In the following paragraphs, some known expressions in-
volving λ, are presented for purposes of comparison, also
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with expressions from the plastic deformation of crystalline
materials.

As mentioned before, in general relativity the energy den-
sity of the vacuum has an absolute meaning, and it can be
determined by measuring the gravitational field produced not
by matter but by the vacuum itself. According to Einstein’s
theory [2,117], the cosmological constant can be related with
the vacuum energy density,UV , through the following ex-
pression:

λ =
8πG

C4
∗ UV (31)

also, the cosmological constant can be related with the radius,
Ru, of the universe,λ = 1/R2

U [2]. Or in other way,

RU =
1√
λ

. (32)

So, the square root of the reciprocal of the cosmological
constant is a distance, but not any distance. According to
Abbott [117], this distance has a direct physical meaning: it
is the length scale over which the gravitational effects of a
nonzero vacuum energy density would have an obvious and
highly visible effect on the geometry of space an time. So,
in principle, by studying the geometrical properties of the
universe over length scales on the order of that distance, the
value of the cosmological constant can be determined.

All galactic surveys agree that there is no evidence for any
global (non local) space-time distortion to the furthest dis-
tance accessible to astronomers, namely 15,000 million light-
years, or about 1.5*1023 kilometers. According to this last
expression, this implies that the magnitude of the cosmologi-
cal constant must be smaller than: 1/(1.5*1023 kilometers)2.

In another vein, more recently, mainly in connection with
inflationary universe scenarios, cosmological applications of
vacuum decay have been extensively investigated [120-126],
and many authors have also proposed phenomenological
models with a slowly decaying vacuum energy density, con-
sidering that the vacuum energy density is a dynamic vari-
able [127-138].

According to Lima in their study about the thermodynam-
ics of decaying vacuum cosmologies [124], vacuum is re-
garded as a second fluid component transferring energy con-
tinuously to the material component. In other words, the
slow decay of vacuum energy density provides the source
term for matter and radiation. Without going into the de-
tails of Lima’s analysis, we can say that their relevant results
(for our purpose) are as follows: Lima considers that, in or-
der to have a complete fluid description, besides its vacuum
energy-momentum tensor, it is necessary to define the parti-
cle currentNα and the entropy currentSα in terms of the
fluid variables. The currentNα is given by

Nα = nuα (33)

where n is the particle number density of the fluid compo-
nent, anduα as usual is the four-velocity of the particle,

uα = dxα/ds; α = 1, 2, 3, 4, where the vectordxα trans-
forms with the following law∂x̄α = (∂x̄α/∂xβ)dxβ , and
ds is the line element. Since material constituents are con-
tinuously generated by the decaying vacuum, the above four-
vector (Eq. (32)) satisfies a balance equationNα

;α = ϕ or,
equivalently,

ṅ + nθ = ϕ (34)

where the over dot denotes covariant derivative along the
world line (for instance,γ := uaγ;a, with γ as the fluid en-
ergy density) andθ = uα

;α is the scalar of the expansion. And
ϕ is the particle source (ϕ > O) or sinkϕ < O) term. For
decaying vacuum models,ϕ is positive, and must be related
with the variation ofΛ as follows:

− Λ̇C4

8πG
= βϕ (35)

whereβ is a positive-definite parameter in order to guarantee
that forϕ > O, we haveΛ < 0.

According to a recent analysis due to Chao–Guang
Huang, Lia Liu and Bobo Wang [139] for a static de Sitter
universe where its line element of universe is

ds2=− (
1−H2r2

)
dt2− (

1−H2r2
)−1

dr2+r2dΩ2 (36)

r being the radial coordinate:

r ≤ H−1 =
√

3/Λ (37)

(Here Hubble’s parameter which is fixed by the rate of change
of the expansion parameter, is independent of time).

Several other expressions have been obtained, some of
which are of interest in our synthesis.

From the line element Eq. (36), they can define the
“3-volume” of the spatial hypersurface att=constantinside
the event horizon by:

Vvac =
4π

3H3
. (38)

The energy density contribute from the cosmological con-
stant is

UV =
3H2C4

8πG
. (39)

The pressure of the Sitter universe coming from the cosmo-
logical constant is:

Pv = −UV =
3H2C4

8πG
(40)

From the thermodynamically quantities of the de Sitter
universe [139], the area entropy of the horizon satisfies

svac =
2π

H
Evac (41)

whereEvac is the vacuum energy of the Sitter universe within
the event horizon.
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Also in general relativity, the stress-energy tensor has
to satisfy the conservation law expressed by the covariant
derivative ofT k

i ,

T k
i;k = O. (42)

That is,

∂T k
i

∂xk
− Γα

iβT β
α = O (43)

whereΓα
iβ is the Cristoffel symbol. According to Weyl [140],

the first term is the “real” total force per unit volume:

Fi = −∂T k
i

∂ xk
(44)

which, in general, does not vanish but must be counter bal-
anced by the “pseudo force” which has its origin in the met-
rical field, namely:

F̄i = Γα
iβT β

α =
1
2

∂gαβ

∂xi
Tαβ (45)

As we know, two closely related circumstances charac-
terize the “pseudo forces” arising from the metrical field:
Firstly, the acceleration which they impart to a point-mass
situated at a definite space-time point (or, more exactly, one
passing through this point with a definite velocity) is inde-
pendent of its mass,i.e. the force itself is proportional to the
inertial mass of the point-mass at which it acts. Secondly, if
we use an appropriate coordinate system, namely, a geodesic
one, at a definite space-time point, these forces vanish.

Now we have provided all the background required for
our subsequent discussion. In the following section a com-
parison between the results of the two previous sections will
be carried out.

4. A comparison between deformation of crys-
talline materials and relativistic cosmology

Equation (1) and equation (25) have a formal analogy pro-
vided that we identify the following parameters: the axial
applied stressσwith the stress-energy tensorT , the Young
Modulus of the Crystalline material with the “stiffness” of
vacuum space(C4/8πG), and the axial engineering strain e
with the Einstein curvature tensorR. Therefore, an elastic
Young modulus of the vacuum space,E′

Y V M can be defined
by:

E′
Y V M ≡ C4

8πG
(46)

where we note thatE′
Y V M has dimensions of an elastic mod-

ulus time the square of a standard distance. This is due to
the fact that the tensorR, has dimensions of the inverse of a
squared distance.

The currentNα given by Eq. (32) is equivalent to Eq. (7)
if we identify the four-velocity of the particleuα with the

mean value of the gliding velocity of mobile dislocations
vg, andn, the particle number density of the fluid compo-
nent with the mobile dislocation density of dislocationsρm

(whose dimensions are: number of centimeters of disloca-
tions per cubic centimeter). We note, thatε̇/b2 has the dimen-
sions ofNα, and an equivalent physical meaning; therefore
Nα is proportional to the four-momentum density of particle
of the fluid.

By comparing Eq. (24) and Eq. (31), it is clear thatUσi

in dislocation creep plays the role ofUV in Relativistic cos-
mology. In fact, by using Eqs. (12), (2), and (6) in Eq. (24)
it is possible thatρ can be written as:

ρ =
2

[
2
3

(1+ν)
(1−ν)

]2

∗
α2M2b2ρ2

gr

E

v4
s

∗ Uσi
(47)

which clearly exhibits the resemblance respectively between
respective the role ofρ andλ.

Also, from Eq. (23) which describes the length at which
the presence of the dislocation densityρ causes an observable
elastic distortion of the crystal lattice it is clear that this equa-
tion plays an analogous role to equation (32), which describes
the distance at which the presence of a volumetric energy of
vacuum (proportional toλ, Eq. (40)) causes an observable
gravitational distortion of the cosmic space-time geometry.

It is important to note that, also equation (23) and its
equivalent Eq. (17) for dislocation creep indicate that this
distancedsg corresponds to the geometrical region where
this dislocations and opposite-signed dislocations collide af-
ter gliding along their mean free path (see Eq. (16)) from
their respective dislocation sources. In these collision regions
eventually annihilation events eventually occur.

Equation (15), which describes the creation rate of dislo-
cations per unit volume, has the classical form of expressions
for particle-antiparticle creation events of matter in nuclear
physics. This expression (Eq. (15) could be rewritten by us-
ing Eq. (24). In this case:

dρ+

dt
=

4 (1 + γ)
α2M2µmb2

dU+
σi

dt
(48)

where the(+) symbols are used to denote creation events.
After comparing between Eq. (48) and Eq. (15), it is

clear that

dU+
αi

dt
=

α2M2

4 (1 + γ)
∗ σε̇. (49)

This analysis suggests that for Relativistic Cosmology the
equation corresponding to Eq. (48), will be,

dλ+

dt
=

8πG

C4

dU+
V

dt
. (50)

If λ is associated to the dislocation densityρ, then the
meaning ofdλ+/dt could be found by multiplying this equa-
tion times(1080/ROU ). Then we have,

dn+
B

dt
≡ 1080

ROU

dλ+

dt
=

1080

ROU

8πG

C4
∗ dU+

V

dt
(51)
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and(1080/ROU )(dλ+/dt) could be considered to be propor-
tional to the creation rate of matter per unit volume,dn+

B/dt.
After comparing between Eq. (48) with Eq. (51), we

note that in Eq. (48) the inverse of an energy per unit length
of dislocation appears(∼ µmb2). Therefore it is possible
to suggest that in Eq. (51) in some way the inverse of the
energy required to form a neutron,uN , is described by the
factor facingU+

V . In other words without taking into account
some minor numerical factors,

uN ≡ mNC2 ∼= ROU

1080
∗

(
C4

8πG

)
(52)

or, in terms of the Einstenian gravitational constant

uN
∼= ROU

K
∗ 1

1080
. (53)

We note that, if the formal analogy here presented has
some deep physical meaning, then Eq. (53) has the following
interpretation: the self energy of a neutron is directly related
to the actual universe radius and to the inverse of the Einste-
nian constant of gravitation. In other words, the value of the
self energy of a quantum particle arising, in principle, from a
quantum field theory, is linked to a universe scale parameter,
ROU and to a general relativistic gravitational constantK.

Obviously Eqs. (34) to (35) from some cosmology model
previously described are related to Eqs. (48) to (51).

From Eq. (5) applied forUσi is clear that:

σi = 2E

√(
Uσi

2E

)
. (54)

This expression shows how an elastic volumetric density
of energy inside a crystal causes an internal stress. This fact
is in analogy to Eq. (40), where a volumetric energy aris-
ing from vacuum cosmic space,UV , causes a gravitational
pressure (or stress) in the de Sitter model of the universe.

Also, in a crystalline solid the longitudinal and trans-
verse sound waves obey wave equations [141], which have
the same mathematical structure of the gravitational wave
equation given by Eq. (26).

It is also very interesting that, following in the vein sug-
gested by the previous results, it is possible to obtain some
complementary expressions involvingλ in the cosmology of
the de Sitter universe. If we use Eq. (41) and (38) an area
entropy of the horizon per “3-volume” of the spatial hyper-
surface att = constant inside the event horizon,Sv, can be
defined,

SV ≡ svach

Vvac
=

2π

H

Evac

Vvac
. (55)

Obviously, in this schemeUV, is given by,

UV =
Evac

Vvac
(56)

andSV can be written as:

SV =
2π

H
UV . (57)

And, if for short we renameSV as the entropy per unit vol-
ume of the Sitter universe, then we have that the change with
time of the entropy density in the de Sitter universe is pro-
portional to the time derivative of the density of the vacuum
energy of cosmic space,

dSV

dt
=

2π

H

dUV

dt
. (58)

Therefore, by using Eq. (31) in Eq. (58) the following
relationship fordSV /dt can be obtained,

dSV

dt
=

2π

H

1
K

dλ

dt
(59)

or

dSV

dt
=

C4

4HG

dλ

dt
(60)

Finally, by taking Eq. (17), it is possible to find another
interesting result for cosmology. Equation (17) could be writ-
ten as

σbRsg = M2 ud (61)

whereRsg = dsg/2, andφM = 1/M has been used. Equa-
tion (61) admits the following physical interpretation: as we
know, Ref. 49,σb is the force per unit length acting on a dis-
location. Therefore if such force per unit length acts through
a lengthRsg (corresponding to the subgrain radius), work per
unit length with magnitudeM2ud is developed. In this case,
the swept area isb timesRsg. Equation (61) relates stresses
and distances through which stresses perform work in order
to lead to the creation energy of the unit length of disloca-
tions.

In analogy to the previous case, for cosmology it is obvi-
ous that we have

UV ∗ 4π

3
(ROU )3 = 1080 ∗ uN (62)

where 1080 corresponds to the baryon number of this uni-
verse [48], anduN is used for denoting the creation energy
of one neutron. Eq. (62) can be rewritten as follow:

4π

3
UV

(
ROU

1040

)2

ROU = uN . (63)

This equation, resembles Eq. (61) from dislocation creep,
but in Eq. (61) we have a distance of magnitudeb which
swept an area of magnitudebRsg, and here, we have the
square of a distance(ROU/1040)2, an area which swept a

volume of magnitude(4π/3)
(
ROU/1040

)2
ROU . By tak-

ing into account this situation Eq. (63) may have the fol-
lowing physical interpretation:UV

(
ROU/1040

)2
gives the

force arising from the energy momentum tensorT times an
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area
(
ROU/1040

)2
, and this force timesROU gives the en-

ergy required to create a neutron. If we definerN as,

rN ≡ ROU

1040
(64)

the Eq. (63) may be rewritten as:

ROU =
3
4π

uN

UV r2
N

. (65)

In this regard from Eq. (51) it is clear that it can be inte-
grated over volume, so:

∫

Vou

1080

ROU
dλ+dv =

1080

ROU

8πG

C4

∫

VOU

dU+
V dv (66)

which is integrated and leads to:

1080 =
1080

ROU

8πG

C4
UV

(
4
3
πR3

OU

)
(67)

and by using Eq. (52), the following equation is obtained:

ROU =
3
4π

uN[
UV

(
ROU

1040

)2
] . (68)

Now it is clear that Eq. (51) leads to Eq. (68) or to
Eq. (65) [by using Eq. (64)]. This analysis proves that, as
proposed above,(1080/ROU )(dλ+/dt) is the creation rate of
matter per unit volume, and also shows internal compatibility
between Equation (51) and Eq. (62). The physical analysis
following Eq. (63), and the comparison between Eq. (68)
and Eq. (17) suggest thatrN = (ROU/1040), possibly plays
the same role in Eq. (68) thatb plays in Eq. (17). This fact
suggests the possibility that vacuum cosmic space has a con-
stant characteristic distance calledrN . In other words, there
is a possibility that vacuum cosmic space has a crystalline
structure with a lattice parameterrN = ROU/1040.

The general possibility that vacuum space could have a
crystalline character has been suggested before. See for in-
stance Ref. 142 for the case of a 4 dimensional electromag-
netic space.

5. Discussion and conclusions

As far as we know, a formal, and physical analogy has never
before been established with Relativistic Cosmology in the
almost exhaustive way presented here. Eight mathematical
expressions for dislocation creep resembling cosmological
expressions have been presented.

From the comparison between mathematical expressions,
and by using a physical analysis, two new equations have
been obtained for dislocation creep. Also, as far as we know,
five new expressions have been obtained for Relativistic Cos-
mology. In principle, two of these equations for Cosmology
allow us to determine physical parameters never determined
before. One of them, Eq. (53), makes it possible to calculate
the neutron energy,uN , from the knowledge of the universe
radius (present) and the Einstenian gravitational constant.

The other expression, Eq. (64), defines the radius of the
neutron,rn, as the present universe radius divided by 1040.
Elementary calculations give the right order of magnitude for
eachuN andrN . Reluctant to follow the analogy between
dislocation creep and Relativistic cosmology to the limit, we
feel obliged by the above results to search for the ultimate
implications concerning the possibility that vacuum cosmic
space could have a crystalline structure with lattice parameter
rN = ROU/1040. This investigation into the general impli-
cations of a possible vacuum cosmic space with crystalline
structure will be analyzed in other papers.
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102. J.D. Muñoz-Andrade, A. Mendoza-Allende, G. Torres-
Villaseñor, and J.A. Montemayor-Aldrete,J. Mater. Sci.36
(2001) 795.
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142. G. Torres-Villasẽnor,Rev. Ḿex. F́ıs.45 S1(1999) 141.

Rev. Mex. F́ıs. 51 (5) (2005) 461–475


