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Analytic partition function for plasmas
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The partition function for atoms in a gas with partial ionization is obtained by assuming that the internal and atomic linear energy densities
are equal, and considering that the kinetic energy per degree of freedom is sufficient to ionize the upper levels of the atoms, and, at the same
time, approximating the sum by an integral, which we solve using the mean value theorem for integrals. The resulting function reproduces
the behavior of the partition function in the region of validity of perfect gases; it is also analytic and compact.
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La funcion de particdbn paraatomos en un gas con ionizéani parcial se obtiene suponiendo que las densidades lineales dménenga

y atbmica son iguales, y considerando que la erecirética por grado de libertad es suficiente para ionizar los niveles superiores de los
atomos y al mismo tiempo, aproximando la suma por una intergral, la cual resolvemos usando el teorema del valor medio para integrales. La
funcion resultante reproduce el comportamiento de la fumdie partiobn en la reghn de validez de los gases perfectos, a@ees andica

y compacta.

Descriptores: Funcibn de particdn; plasmas; ecuami de estado; atasferas estelares.

PACS: 05.70.Ce; 52.25.Kn; 97.10.Ex

1. Introduction mental concepts of statistical mechanics and of the thermody-
namics of a perfect gas, the internal energy, and on the other
The partition function, called the sum over the states or granfland, from the basic physical concepts of atomic structure,
sum (Zustandsumme) by Boltzmann, is the sum of the prodihe internal energy of the atom. In the calculation of the ther-
ucts of the statistical weights of the energy states of an atothodynamic properties of a gaseous system, it is necessary to
multiplied by the Boltzmann factors, Eq. (1) below. This know the partition function for each chemical species in its
sum diverges for an isolated atom due to the existence of agifferent states of ionization in order to determine the popu-
infinite number of energy levels where the Boltzmann factorgations in plasmas, planetary and stellar atmospheres. From
remain practically constant and the statistical weights growne partition function, one can obtain the Helmholtz free en-
with the increase in energy of the levels. We are interestedygy and from this the other thermodynamic variables. In all
in evaluating the partition function of the atoms and ions in athese applications, it is necessary to evaluate repetitively the
partially ionized perfect gas in thermodynamic equilibrium. partition function for each ion of all the chemical elements of
To carry out this evaluation, it is necessary to find the last inthe mixture in the gas. Most of the previous methods intro-
ternal level an atom or ion can have under the temperature angice the electrical interactions among the atoms to explain
pressure conditions in the gas. Therefore, we want to find thghe apsence of high energy levels. When the gas is very di-
maximum level that the atoms can attain. Furthermore, oncgte and at a low temperature, there are few ionizations and,
the maximum level is known, one should attempt to find atherefore, there are few charged particles, and consequently
way of evaluating the sum, developing a fast, efficient methodhe atom would behave as the theoretical atom with an in-
to calculate the partition function many times, for a greatfinjte number of levels. The perfect gas by definition does
number of chemical elements in different states of ionizanot allow interactions among the particles. In the gas, the
tion, in the iterative processes necessary to evaluate the stgigrticles are immersed in a medium with a finite temperature

equation for plasmas and stellar atmospheres. This will bgnd therefore governed by the internal energy of the gas. On
achieved, on the one hand, by considering one of the funda-
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the other hand, traditionally, the sum that defines the partisponding volume in the gas [2,3,4]. There have been different
tion function is evaluated, taking into account very few termsphysical models that consider the disturbances of the most
of the power series expansion of the exponentials, and furexternal levels of the atom by the electrical forces produced
thermore, this does not produce compact analytical solutionky the charged particles in the surrounding medium. Robert-
necessary for the repetitive calculations that we mentionedon and Dewey [5] , Lanczos [6], Pannekoek [7], and Inglis
before, where one must pay attention to the numerical behawand Teller [8] studied the problem of the merging of the hy-
ior of the processes. In what follows, we present in Sec. 2 thdrogen lines; Unald [1], de Jager and Neven [9], Rogers,
physical model and the principal assumptions made to findsraboske and Harwood [10], Fischel and Sparks [11], and
the maximum level that could exist in an atom or ion with Hummer and Mihalas [12] solved the problem for the equa-
respect to the main variables of the system. The assumptiori®n of state calculations. From the internal energy of a per-
and mathematical development to find the approximate partifect gas, together with the free energy that is proportional to
tion function are derived in Sec. 3, as well as the derivativeshe logarithm of the partition function, one can obtain the en-
of the partition function with respect to the temperature andropy, the enthalpy, the specific heats, as well as the rest of
pressure in the gas. The results of the calculations are préhe most important parameters of thermodynamics. With the
sented in Sec. 4, where we show the behavior of our moddinear energy density within the volume for each particle, we
with respect to other models as well as the comparison witliake into account the properties of the medium and with the
the exact partition function for hydrogen. Finally, in Sec. 5,atomic linear energy density we consider the atomic proper-

some conclusions are presented. ties. Also, we consider, the ambient energy is capable of ion-
izing the electrons that are above a certain level in the atom.
2 Model These physical assumptions are sufficient to obtain the solu-

tion to the problem of the maximum level, in a simple form,

The partition function is of vital importance in statistical me- &S & function of the temperature and of the total pressure of
chanics, since through the Helmholtz free energy one caHe 9as. For problems where the pressure is obtained from

evaluate the remaining important variables of themodynamﬁhe hydrostatic equation, this solution is important and also
ics. The partition function is defined as when the pressure is the main variable of the system. The

results are consistent with the given physical assumptions.
—Eijk

Ui = k€ BT 1 . .
i ;g”‘ @) 3. Mathematical formulation

whereg; i, is the statistic weight of leveland E;;;, is the ex-  The volume occupied by each particle in the gas is taken as
citation energy of the level with respect to the ground state otubic and of sidd., and so is defined by
the atom or iorj of the element;, andk is the Boltzmann 1 kT

constant. We consider an atom in a perfect gas at temper- L3 =— (2)
atureT" with a total number of particled’ per unit volume N P

or the pressure from the perfect gas equatior= NkpT. . The energy, in absolute value, of a hydrogen atom in state
One of the most important variables of a perfect gas is, as wa IS given by 5 9

have said before, the internal energy that defines the state of E, = ez (3)
motion of the gas particles and is proportional to the temper-  2apn?

ature of the system. From the equipartition theorem of thévheree is the charge of the electron,is the charge of the
energy, one can obtain the energy per degree of freedom aricleus of the atom under study, is the Bohr radio and is

per particle. Each particle in the gas has a natural volumehe principal quantum number of the energy level. The inter-
which we take as cubic. In the cube, the energy density pefal energy in the gas per particle and per degree of freedom
degree of freedom is obtained by dividing this energy by thds 1

side of the cube. Now, the linear energy density in the atom §I<:BT 4)

is equal to the energy of the level divided by the size of the Then. by our first assumption. we equate the enerav den-
orbit of the electron in that level. One of the two main as- 0¥ ption, g oy

sumptions in this work is that these two linear energy densi-smes o obtain the following expression:

ties are equal. The other assumption is that the kinetic energy %kBT E,

of the atoms must be capable of ionizing the electrons that lie L 2 ®)
above a certain level that we will call the maximum level in . . . :

the atom. To find the mathematical solution of the problem,WhereT” is the radius of the orbit for state Since

following Unsld [1], we divide the sum (1) into two parts, B n2ag 6
a sum that takes into account the lowest levels of the atom Tn = P ®6)
and the other that considers the rest of the levels. The sique have
plest and oldest model, with purely geometric suppositions, 9 E, =zL

i : S n® = . )
considers that the atom cannot have orbits outside its corre- %kBT 27ag
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Now, using the difference in energies between the maxi- This integral can be solved approximately, using the mean
mum level in the atom and the last one which is ionized, andralue theorem for integrals, that is,
by our other assumptiol;,, ;1 = (1/2)kgT, we obtain

T * n*

Rhcz? Rhez?
E, 2n+1  (n+1)?2 n?en*ksT dn = e€*ksT | n*dn
i =1+ 2 2 (8)
EkBT n n n' n'
Hence, from (7) and (8) we get _ %e’;‘é‘zi (n+3 —n'3) (16)

5 (n+ 1)2 zL . . .
n=— s — (9)  with (n’ < ¢ < nx). By numerical tests comparing our re-
0 sult with the second sum of (13), we propose that nx;
Manipulating this expression produces the second degre@erefore,

equation ) .
_( Xik_ _ _Rhez? )
w2\t =0, (10) =2 B e ) )
2mag

whose solution is Using (14), we obtain finally

1 B
n¥ = g {1 +4/1+ q] (11) u = ge_ Rt (n+3 —n/3). (18)
with For the hydrogenic atoms, one can take= 2, and then

zL k¥ (TS equation (13) is converted into
2mag 2mag \ P Esjk 2 Pk

o o Pt 3 _

Equation (11) gives us the maximum number of levels ik = 91k T g2ik¢ "5 + g€ Fo7 (n+"=8), (19
that the hydrogenic atom can have for temperafiirand here 4E h I . f leval
pressureP of the gas. The hydrogenic equation (11) is valid W"€r€£2jk and Lk are the excitation energies of leve

and of levelnx, respectively. For the hydrogenic atoms, one

for the conditions of the perfect gas; furthermore, the formu- i i .
b g Ejin begin the integral (15) from any level ab&yesince the

las for the hydrogenic atoms are exact. For the other atom .
and ions, the expressions change due to the fact that the r rmulas for the hydrogenic atoms are exact, except that to go
om the sum to the integral one supposes that nis large; how-

maining internal electrons of the atom shield the nucleus, a . :
we shall see below. As is to be supposed, this equation (13ver, from comparisons with the exact formulas, the errors are

is not valid for large densities where the gas ceases to be p p’;l_arge 315 we Sh?}” slede Itn tthfe reslults.l Fh(_)r;hetﬁthe[aatolms
fect. In the problem of evaluating the sum, following Bits _?_?] '(;)”?’ t'e sun;tsh ou t_st_ar fromt_ eve sthlg er ;tn (;/e
expression (1) for the partition function is split into two parts. € derivatives ot the partiion function with respecttan

The first, as mentioned before, considers a reduced numbdr &€ ot;]talfmlald fr_om the flrst.part.of (13) and from (18), pro-
of low levels of the atom and the second takes into accoun(?ucmgt € following expressions.
the range from the last level of the previous sum until the

’
n

maximum level found in (11). That s, dujn _ Bijr -k | 2 -Smgk
dT o kBTQ.gzjke BT + 36 B
nzl _ Bijk i _ Bijk , = )
Ujk = Y Gijke "BT + gijke *BT =u+u' (13) Enjk, 3 13 o Rhez® | dnx
— = < T (n > —n"?) + (3n * 35T kBT) o | (20)
The excitation energy of levél= n in the atom is repre- where we have
sented by ,
Rhez
ik = Xik — ——— d 1d 4 4
Bk = X0 = = (14) dLT* = id—; (1 /14 ) -—— (21)
where x ;i is the ionization potential of the ior of the q a1+
chemical element, and Rhc is the energy of one Rydberg.
The second sum can be approximated by an integral, sinc&nd dg q
the higher levels are close together so that they appear to T = 6T (22)
be a continuum; furthermore, using the statistical weights,[ h ith
gnjk = 2n? for a hydrogenic atom and the second part ogetherwi
of (13), one finds the following integral: dujr 2 _ Ensin
— kpT
e ar 3% "
9 ‘5"?/ 2¢ 957 g (15) Rhez2 7 dns
u = 2e kB n-emksT dn. 2 3 _ 73 d anx
J x|3n** — (n+* —n )n*3kBT 1P (23)
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where 4. Results of the calculation
dnx  1dg 1 4 The .Expression (1'7) is 'quite gengra! for hydrogenic atoms
<P =533P (1 +4/14+ > —— (24)  and it can be applied without restrictions, except where the
9 a1+ gas does not behave as a perfect gas. For the non-hydrogenic

atoms, in addition to the conditions of the validity of the per-
and fect gas assumptions, the integral u’ must begin from higher
dq __Pq (25) levels, let us say 5 or 6, so that the levels are close to hydro-

dP 6 genic. The compact analytical formulas found for the maxi-

mum level that can exist in an atom under the temperature and
dressure conditions in a gas are quite general for the hydro-
genic atoms, since there are no approximations whatsoever.

is a numerical factor that depends on the atomic structure (ﬁor the other a.toms and lons, itis approximated and it IS valid
each ionj of the element;, for exampleng, = 4 for neutral only for very high levels in the atom. The transformation of

helium. In Egs. (15) to (19) and in (20) and (23), the factor the sum to an integral is an approximation valid when the lev-
should be replaced by, and for the effective ,charge we €lsare very close to each other, as we have said above. These
take 2 — » — § wherég is the screening parameter that results are attractive for calculations of the equation of state
takes into account the effect of the electrons that surrounBecause they are a function of the temperature_ and of Fhe to-
the nucleus with charge z. For the case of very high Ievel§a| pressure only, usually the main variables of interest in the
that are close to hydrogenic, we have — j + 1 (j = 0 gas. Our expression for the maximum number of levels is

for neutrals). Then, in all the previous equations, one shoul&imilar to that of the geometric model_ in which it is_ function

substitutez by zx to take into account all types of neutral of T_and P,_though the latter has a dlffgr_ent Tunctlonal form

and ionized atoms. In this case, it is necessary to emphasi%@d is obtained from geometric suppositions; as we shall see
e

that all the expressions are valid fors 1. The higher lev- low in the numerical results, its behavior is different. The
els of the atoms are spaced very close to each other, whiﬂ@c’dds that use the perturbation by charged particles are a

Following Fischel and Sparks [11] for the non-
hydrogenic atoms, one can take the hydrogenic approxim
tion for the statistical weightg,,;x = m;xn?, wherem,y

has permitted us to transform the second sum of (13) to th nction of the number of electrons.g.Hummer and Miha-

integral (15). This integral should be solved in order to ob-.asl’ a?d Un(;él_c:; l?nd (;)f t?e numb((jarNof electrogs_ a?:(.j iohnsl, asd
tain the partition function. Urigd [1] was one of the first to In Inglis and 1efler, de Jager and INeven, and In FISchel an

evaluate the integral (17) approximately, expanding the eX_Sparks. Where one could make a real comparison among all

ponentials in the powers series and integrating the resultin ese moglgls, is at low densities, where the qlﬁ'fereqces are
ore significant among all the models as we will see in what

series term by term. The first term of his development, hi 2 :
follows in this section.

equation (6), is similar to our equation (17) except that his - .
a () d (17) P Our numerical results of the maximum number of levels

formula does not contain the exponential term that appears

S 3
in our formula. He also takes into account other terms in thé® presented in Figs. 1, 2, and 3, for the temperatires0°,

4 7o H H H
expansion, but without changing the results much. Also, Fis0" and10” °K respectively, and vary with the logarithm of

chel and Sparks [11] make a similar development but withthe electronic pressute,.

more terms. These approximations do not guarantee more

precision and, furthermore, they are not compact, and it is 40000 ¢

not known if one must evaluate as many terms as those of 35000 .
the original sum. Sum (1) can be solved directly, since the 30000 | |
maximum level has been found above. When we have many

levels, one can have problems of precision from numerical er- 25000 T = 2000 °K .
rors due to rounding. Furthermore, when one has to evaluate,

the partition functions of many ions in the iterative processes = 20000 |
for the calculations of the equation of state in the various ap- 15000 1
plications, it is necessary to have efficient analytical methods, B | |
where one could know the contribution of each term at each

stage of the calculation. In many calculations only the first 5000 |- i, 1
term of the equation (1) has been used; for certain cases thit o 5 "'--r-—--::'-“. ~~~~~~~~~~~~~~~~~~~~ i

was thought to be necessary, above all, if the structure of the 18 16 14 12 -10 8
atom is not known, but as a rule it is not correct to do so be- LOG P, (Pa)

cause is a very rough approximation. When one obtains the, s ,ze 1. The maximun level n* that an atom can have as a
sum (1) directly for very many levels, the process is not agynction of the logarithm of the electronic pressu?e(Pa), for
efficient as our approximation of the partition function, espe-temparturel’ = 2000°K for different models: geometric (g), our
cially for the non-hydrogenic atoms, because we do not knownodel (o), Inglis and Teller (it), Fischel and Sparks (fs), &ldgu),

the numerical behavior of the statistical weights. and Hummer and Mihalas (hm).
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FIGURE 4. The partition function for the exact evaluation of equa-
tion (1) (e) and our formula (18) (0), with respect to the logarithm
of the electronic pressut®. (Pa), for temperatured’ = 10*, 10°,
and107°K.
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ements. These calculations show the behavior of our model
with respect to the models of Inglis and Teller, Bl Fis-

chel and Sparks, and Hummer and Mihalas. For this case, the
results of de Jager and Neven are similar to those of Fischel
and Sparks. As one can appreciate, on the graphs for low
temperatures our results produce few levels compared with
the other model, except the geometric one, due to the fact that
the number of electrons and of ions is low, and, therefore, the
disturbances do not exist and the atoms tend to behave as if
they were isolated. Our results are physically correct, since
the atom is always immersed in the gas where there is a fi-
nite temperature. For higher temperatures and low densities,
our results are similar to those of Uid, and for very high
pressures they look like those of Hummer and Mihalas. The
agreement with the model of Udlsl for low density is due

to the type of interaction used by him, which is good for low
densities (Hummeet al, [12]). For very high densities, the
models of Inglis and Teller and of Hummer and Mihalas use
a form of interaction valid for high pressures. The assump-
tions made to obtain our results are simple, physically correct
and sufficient to describe the phenomenon. As can be seen,
the results are robust and represent the state of an atom in a
gaseous medium for any temperature and pressure within the
limits of validity of the perfect gas. In Fig. 4, we have drawn
the partition function, for the same mixture of the elements as
above, as a function of the electronic pressure for total pres-
sures that go from0~!! to 10'¢ Pa for hydrogen using the
exact sum (1) directly and our approximation (18).

These results show that the approximation is good espe-
cially for low temperatures as in Fig. 4, where the results
are indistinguishable from one another for the temperature
T = 10*°K and for low pressures. For high pressures, they
change behavior due to the small number of levels in the
atoms and our approximation fails. The approximation can
be improved taking into account more terms in the first sum
of (13). Also all, the comparisons with the other methods
show that the model is sufficiently good to describe the be-
havior of the partition function. With this simple formulation,
one succeeds in representing the partition function analyti-
cally in a compact form, something that is very important in
calculating planetary and stellar atmospheric models, and is
also the case in different types of plasmas. The agreement for
our n* with some models is not good, but neither is it good
among some of them, nor for models with similar derivations
as those of de Jager and Neven and of Fischel and Sparks,
also between Inglis and Teller, and Hummer and Mihalas.
Nevertheless, for each pair of those mentioned above, the be-
havior is similar but not equal. Our equations are not appli-
cable to very high densities, but even so the results are com-
parable with the results of other models, particularly those
of Hummer and Mihalas. The suppositions made in order to
transform sum (1) to the integral (15) are for very close levels,
which is only achieved for high principal quantum numbers.
The solution of the integral using the mean value theorem for
the integral gives good results, as we have seen in the figure,

from 10711 to 10%! Pa for a solar mixture of the chemical el- with the advantage that it produces a compact analytical ex-
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pression. The same happens with the approximations madwg/drogenic statistical weights. The partition function that we
for the non-hydrogenic atoms. The interactions between thbave found has two parts; the first one is the exact sum of
particles that compose the gas were omitted because, by ddahe lower few levels, the second one is our Eq. (18). This
inition, in a perfect gas the thermodynamic effects dominateEq. (18) is the result of two approximations; the first one is to
The comparison with the direct evaluation of the sum showsransform the sum into an integral, and the second one is the
that the disagreements are very small, less tfanas men-  result of applying the mean value theorem for integrals, given
tioned before. It would be conveniente to seek observationa lower bound to the integral. Therefore, we have obtained
results on the number of lines observed at low temperatures ian approximate partition function for atoms in an ionizing
the interstellar material using radioastronomical techniquegjas in a compact analytic form. Our model and the resulting
in order to make a more general comparison with the otheequations are important for the calculation of the equation of
methods. In the absence of observational data, we made tls¢ate of partially ionized gases, in plasmas and stellar atmo-
comparisons with the direct evaluation of the sum; we believespheres, because they permit the evaluation of the thermody-
that this is the only real comparison that one can make. namic properties of these systems, monitoring the behavior
of each one of the variables considered. Also, it is possible
to find analytically the derivatives with respect to the temper-
ature and pressure.

With two simple fundamental physical assumptions, we have

been able to obtain the maximum level that a hydrogenic

atom can reach in an ionizing gas, a result that is exact anAcknowledgments

valid for the perfect gas conditions. For the non-hydrogen

atoms, the results are valid when one considers high lyinyVe acknowledge partial support from CONACYT to project
levels in order to use the approximate effective charge and4564-E.
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