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The partition function for atoms in a gas with partial ionization is obtained by assuming that the internal and atomic linear energy densities
are equal, and considering that the kinetic energy per degree of freedom is sufficient to ionize the upper levels of the atoms, and, at the same
time, approximating the sum by an integral, which we solve using the mean value theorem for integrals. The resulting function reproduces
the behavior of the partition function in the region of validity of perfect gases; it is also analytic and compact.
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La función de particíon paraátomos en un gas con ionización parcial se obtiene suponiendo que las densidades lineales de energı́a interna
y atómica son iguales, y considerando que la energı́a cińetica por grado de libertad es suficiente para ionizar los niveles superiores de los
átomos y al mismo tiempo, aproximando la suma por una intergral, la cual resolvemos usando el teorema del valor medio para integrales. La
función resultante reproduce el comportamiento de la función de particíon en la regíon de validez de los gases perfectos, además es analı́tica
y compacta.

Descriptores: Funcíon de particíon; plasmas; ecuación de estado; atḿosferas estelares.

PACS: 05.70.Ce; 52.25.Kn; 97.10.Ex

1. Introduction

The partition function, called the sum over the states or grand
sum (Zustandsumme) by Boltzmann, is the sum of the prod-
ucts of the statistical weights of the energy states of an atom
multiplied by the Boltzmann factors, Eq. (1) below. This
sum diverges for an isolated atom due to the existence of an
infinite number of energy levels where the Boltzmann factors
remain practically constant and the statistical weights grow
with the increase in energy of the levels. We are interested
in evaluating the partition function of the atoms and ions in a
partially ionized perfect gas in thermodynamic equilibrium.
To carry out this evaluation, it is necessary to find the last in-
ternal level an atom or ion can have under the temperature and
pressure conditions in the gas. Therefore, we want to find the
maximum level that the atoms can attain. Furthermore, once
the maximum level is known, one should attempt to find a
way of evaluating the sum, developing a fast, efficient method
to calculate the partition function many times, for a great
number of chemical elements in different states of ioniza-
tion, in the iterative processes necessary to evaluate the state
equation for plasmas and stellar atmospheres. This will be
achieved, on the one hand, by considering one of the funda-

mental concepts of statistical mechanics and of the thermody-
namics of a perfect gas, the internal energy, and on the other
hand, from the basic physical concepts of atomic structure,
the internal energy of the atom. In the calculation of the ther-
modynamic properties of a gaseous system, it is necessary to
know the partition function for each chemical species in its
different states of ionization in order to determine the popu-
lations in plasmas, planetary and stellar atmospheres. From
the partition function, one can obtain the Helmholtz free en-
ergy and from this the other thermodynamic variables. In all
these applications, it is necessary to evaluate repetitively the
partition function for each ion of all the chemical elements of
the mixture in the gas. Most of the previous methods intro-
duce the electrical interactions among the atoms to explain
the absence of high energy levels. When the gas is very di-
lute and at a low temperature, there are few ionizations and,
therefore, there are few charged particles, and consequently
the atom would behave as the theoretical atom with an in-
finite number of levels. The perfect gas by definition does
not allow interactions among the particles. In the gas, the
particles are immersed in a medium with a finite temperature
and therefore governed by the internal energy of the gas. On
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the other hand, traditionally, the sum that defines the parti-
tion function is evaluated, taking into account very few terms
of the power series expansion of the exponentials, and fur-
thermore, this does not produce compact analytical solutions
necessary for the repetitive calculations that we mentioned
before, where one must pay attention to the numerical behav-
ior of the processes. In what follows, we present in Sec. 2 the
physical model and the principal assumptions made to find
the maximum level that could exist in an atom or ion with
respect to the main variables of the system. The assumptions
and mathematical development to find the approximate parti-
tion function are derived in Sec. 3, as well as the derivatives
of the partition function with respect to the temperature and
pressure in the gas. The results of the calculations are pre-
sented in Sec. 4, where we show the behavior of our model
with respect to other models as well as the comparison with
the exact partition function for hydrogen. Finally, in Sec. 5,
some conclusions are presented.

2. Model

The partition function is of vital importance in statistical me-
chanics, since through the Helmholtz free energy one can
evaluate the remaining important variables of themodynam-
ics. The partition function is defined as

ujk =
∞∑

i=1

gijke
−Eijk
kBT (1)

wheregijk is the statistic weight of leveli andEijk is the ex-
citation energy of the level with respect to the ground state of
the atom or ionj of the elementk, andkB is the Boltzmann
constant. We consider an atom in a perfect gas at temper-
atureT with a total number of particlesN per unit volume
or the pressure from the perfect gas equationP = NkBT .
One of the most important variables of a perfect gas is, as we
have said before, the internal energy that defines the state of
motion of the gas particles and is proportional to the temper-
ature of the system. From the equipartition theorem of the
energy, one can obtain the energy per degree of freedom and
per particle. Each particle in the gas has a natural volume,
which we take as cubic. In the cube, the energy density per
degree of freedom is obtained by dividing this energy by the
side of the cube. Now, the linear energy density in the atom
is equal to the energy of the level divided by the size of the
orbit of the electron in that level. One of the two main as-
sumptions in this work is that these two linear energy densi-
ties are equal. The other assumption is that the kinetic energy
of the atoms must be capable of ionizing the electrons that lie
above a certain level that we will call the maximum level in
the atom. To find the mathematical solution of the problem,
following Uns̈old [1], we divide the sum (1) into two parts,
a sum that takes into account the lowest levels of the atom
and the other that considers the rest of the levels. The sim-
plest and oldest model, with purely geometric suppositions,
considers that the atom cannot have orbits outside its corre-

sponding volume in the gas [2,3,4]. There have been different
physical models that consider the disturbances of the most
external levels of the atom by the electrical forces produced
by the charged particles in the surrounding medium. Robert-
son and Dewey [5] , Lanczos [6], Pannekoek [7], and Inglis
and Teller [8] studied the problem of the merging of the hy-
drogen lines; Unśold [1], de Jager and Neven [9], Rogers,
Graboske and Harwood [10], Fischel and Sparks [11], and
Hummer and Mihalas [12] solved the problem for the equa-
tion of state calculations. From the internal energy of a per-
fect gas, together with the free energy that is proportional to
the logarithm of the partition function, one can obtain the en-
tropy, the enthalpy, the specific heats, as well as the rest of
the most important parameters of thermodynamics. With the
linear energy density within the volume for each particle, we
take into account the properties of the medium and with the
atomic linear energy density we consider the atomic proper-
ties. Also, we consider, the ambient energy is capable of ion-
izing the electrons that are above a certain level in the atom.
These physical assumptions are sufficient to obtain the solu-
tion to the problem of the maximum level, in a simple form,
as a function of the temperature and of the total pressure of
the gas. For problems where the pressure is obtained from
the hydrostatic equation, this solution is important and also
when the pressure is the main variable of the system. The
results are consistent with the given physical assumptions.

3. Mathematical formulation

The volume occupied by each particle in the gas is taken as
cubic and of sideL, and so is defined by

L3 =
1
N

=
kBT

P
(2)

The energy, in absolute value, of a hydrogen atom in state
n is given by

En =
e2z2

2a0n2
(3)

wheree is the charge of the electron,z is the charge of the
nucleus of the atom under study,a0 is the Bohr radio andn is
the principal quantum number of the energy level. The inter-
nal energy in the gas per particle and per degree of freedom
is

1
2
kBT (4)

Then, by our first assumption, we equate the energy den-
sities to obtain the following expression:

1
2kBT

L
=

En

2πrn
, (5)

wherern is the radius of the orbit for staten. Since

rn =
n2a0

z
, (6)

we have
n2 =

En
1
2kBT

zL

2πa0
. (7)
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Now, using the difference in energies between the maxi-
mum level in the atom and the last one which is ionized, and
by our other assumption,En+1 = (1/2)kBT , we obtain

En
1
2kBT

= 1 +
2n + 1

n2
=

(n + 1)2

n2
(8)

Hence, from (7) and (8) we get

n2 =
(n + 1)2

n2

zL

2πa0
(9)

Manipulating this expression produces the second degree
equation

n2 −
√

zL

2πa0
(n + 1) = 0, (10)

whose solution is

n∗ =
q

2

[
1 +

√
1 +

4
q

]
(11)

with

q =
√

zL

2πa0
=

√
zk

1
3

2πa0

(
T

P

) 1
6

. (12)

Equation (11) gives us the maximum number of levels
that the hydrogenic atom can have for temperatureT and
pressureP of the gas. The hydrogenic equation (11) is valid
for the conditions of the perfect gas; furthermore, the formu-
las for the hydrogenic atoms are exact. For the other atoms
and ions, the expressions change due to the fact that the re-
maining internal electrons of the atom shield the nucleus, as
we shall see below. As is to be supposed, this equation (11)
is not valid for large densities where the gas ceases to be per-
fect. In the problem of evaluating the sum, following Unsöld,
expression (1) for the partition function is split into two parts.
The first, as mentioned before, considers a reduced number
of low levels of the atom and the second takes into account
the range from the last level of the previous sum until the
maximum level found in (11). That is,

ujk =
n′∑

i=1

gijke
−Eijk

kBT +
n∗∑

i=n′
gijke

−Eijk
kBT = u + u′ (13)

The excitation energy of leveli = n in the atom is repre-
sented by

Eijk = χjk − Rhcz2

n2
, (14)

where χjk is the ionization potential of the ionj of the
chemical elementk, andRhc is the energy of one Rydberg.
The second sum can be approximated by an integral, since
the higher levels are close together so that they appear to
be a continuum; furthermore, using the statistical weights
gnjk = 2n2 for a hydrogenic atom and the second part
of (13), one finds the following integral:

u′ = 2e
− χjk

kBT

n∗∫

n′

n2e
Rhcz2

n2kBT dn. (15)

This integral can be solved approximately, using the mean
value theorem for integrals, that is,

n∗∫

n′

n2e
Rhcz2

n2kBT dn = e
Rhcz2

ξ2kBT

n∗∫

n′

n2dn

=
2
3
e

Rhcz2

ξ2kB (n ∗3 −n′3) (16)

with (n′ ≤ ξ ≤ n∗). By numerical tests comparing our re-
sult with the second sum of (13), we propose thatξ = n∗;
therefore,

u′ =
2
3
e
−

(
χjk
kBT − Rhcz2

n∗2kBT

)
(n ∗3 −n′3) (17)

Using (14), we obtain finally

u′ =
2
3
e
−En∗jk

kBT (n ∗3 −n′3). (18)

For the hydrogenic atoms, one can taken′ = 2, and then
equation (13) is converted into

ujk = g1jk + g2jke
−E2jk

kB +
2
3
e
−En∗jk

kBT (n ∗3 −8), (19)

whereE2jk andEn∗jk are the excitation energies of level2
and of leveln∗, respectively. For the hydrogenic atoms, one
can begin the integral (15) from any level above2, since the
formulas for the hydrogenic atoms are exact, except that to go
from the sum to the integral one supposes that n is large; how-
ever, from comparisons with the exact formulas, the errors are
not large as we shall see in the results. For the other atoms
and ions, the sum should start from levels higher than level2.
The derivatives of the partition function with respect toT and
P are obtained from the first part of (13) and from (18), pro-
ducing the following expressions:

dujk

dT
=

n′∑

i=2

Eijk

kBT 2
gijke

−Eijk
kBT +

2
3
e
−En∗jk

kBT

×
[
En∗jk

kBT 2
(n ∗3 −n′3) + (3n ∗2 − Rhcz2

n ∗3 kBT
)
dn∗
dT

]
, (20)

where we have

dn∗
dT

=
1
2

dq

dT




(
1 +

√
1 +

4
q

)
− 4

q
√

1 + 4
q


 (21)

and
dq

dT
=

q

6T
(22)

together with

dujk

dP
=

2
3
e
−En∗jk

kBT

×
[
3n ∗2 − (

n ∗3 −n′3
) Rhcz2

n ∗3 kBT

]
dn∗
dP

, (23)
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where

dn∗
dP

=
1
2

dq

dP




(
1 +

√
1 +

4
q

)
− 4

q
√

1 + 4
q


 (24)

and
dq

dP
= −Pq

6
. (25)

Following Fischel and Sparks [11] for the non-
hydrogenic atoms, one can take the hydrogenic approxima-
tion for the statistical weightsgnjk = mjkn2, wheremjk

is a numerical factor that depends on the atomic structure of
each ionj of the elementk, for examplem02 = 4 for neutral
helium. In Eqs. (15) to (19) and in (20) and (23), the factor2
should be replaced bymjk and for the effective charge we
takez∗ = z − S, whereS is the screening parameter that
takes into account the effect of the electrons that surround
the nucleus with charge z. For the case of very high levels
that are close to hydrogenic, we havez∗ = j + 1 ( j = 0,
for neutrals). Then, in all the previous equations, one should
substitutez by z∗ to take into account all types of neutral
and ionized atoms. In this case, it is necessary to emphasize
that all the expressions are valid forn À 1. The higher lev-
els of the atoms are spaced very close to each other, which
has permitted us to transform the second sum of (13) to the
integral (15). This integral should be solved in order to ob-
tain the partition function. Uns̈old [1] was one of the first to
evaluate the integral (17) approximately, expanding the ex-
ponentials in the powers series and integrating the resulting
series term by term. The first term of his development, his
equation (6), is similar to our equation (17) except that his
formula does not contain the exponential term that appears
in our formula. He also takes into account other terms in the
expansion, but without changing the results much. Also, Fis-
chel and Sparks [11] make a similar development but with
more terms. These approximations do not guarantee more
precision and, furthermore, they are not compact, and it is
not known if one must evaluate as many terms as those of
the original sum. Sum (1) can be solved directly, since the
maximum level has been found above. When we have many
levels, one can have problems of precision from numerical er-
rors due to rounding. Furthermore, when one has to evaluate
the partition functions of many ions in the iterative processes
for the calculations of the equation of state in the various ap-
plications, it is necessary to have efficient analytical methods,
where one could know the contribution of each term at each
stage of the calculation. In many calculations only the first
term of the equation (1) has been used; for certain cases this
was thought to be necessary, above all, if the structure of the
atom is not known, but as a rule it is not correct to do so be-
cause is a very rough approximation. When one obtains the
sum (1) directly for very many levels, the process is not as
efficient as our approximation of the partition function, espe-
cially for the non-hydrogenic atoms, because we do not know
the numerical behavior of the statistical weights.

4. Results of the calculation

The Expression (17) is quite general for hydrogenic atoms
and it can be applied without restrictions, except where the
gas does not behave as a perfect gas. For the non-hydrogenic
atoms, in addition to the conditions of the validity of the per-
fect gas assumptions, the integral u’ must begin from higher
levels, let us say 5 or 6, so that the levels are close to hydro-
genic. The compact analytical formulas found for the maxi-
mum level that can exist in an atom under the temperature and
pressure conditions in a gas are quite general for the hydro-
genic atoms, since there are no approximations whatsoever.
For the other atoms and ions, it is approximated and it is valid
only for very high levels in the atom. The transformation of
the sum to an integral is an approximation valid when the lev-
els are very close to each other, as we have said above. These
results are attractive for calculations of the equation of state
because they are a function of the temperature and of the to-
tal pressure only, usually the main variables of interest in the
gas. Our expression for the maximum number of levels is
similar to that of the geometric model in which it is function
of T and P, though the latter has a different functional form
and is obtained from geometric suppositions; as we shall see
below in the numerical results, its behavior is different. The
models that use the perturbation by charged particles are a
function of the number of electrons,e.g.Hummer and Miha-
las, and Uns̈old; and of the number of electrons and ions, as
in Inglis and Teller, de Jager and Neven, and in Fischel and
Sparks. Where one could make a real comparison among all
these models, is at low densities, where the differences are
more significant among all the models as we will see in what
follows in this section.

Our numerical results of the maximum number of levels
is presented in Figs. 1, 2, and 3, for the temperatures2×103,
104, and107 ◦K respectively, and vary with the logarithm of
the electronic pressurePe.

FIGURE 1. The maximun level n* that an atom can have as a
function of the logarithm of the electronic pressurePe(Pa), for
tempartureT = 2000◦K for different models: geometric (g), our
model (o), Inglis and Teller (it), Fischel and Sparks (fs), Unsöld (u),
and Hummer and Mihalas (hm).
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FIGURE 2. Same as Fig. 1, for temperatureT = 104◦K.

FIGURE 3. Same as Fig. 1, for temperatureT = 107◦K.

FIGURE 4. The partition function for the exact evaluation of equa-
tion (1) (e) and our formula (18) (o), with respect to the logarithm
of the electronic pressurePe(Pa), for temperaturesT = 104, 105,
and107◦K.

These figures were calculated for total pressuresP that go
from 10−11 to 1021 Pa for a solar mixture of the chemical el-

ements. These calculations show the behavior of our model
with respect to the models of Inglis and Teller, Unsöld, Fis-
chel and Sparks, and Hummer and Mihalas. For this case, the
results of de Jager and Neven are similar to those of Fischel
and Sparks. As one can appreciate, on the graphs for low
temperatures our results produce few levels compared with
the other model, except the geometric one, due to the fact that
the number of electrons and of ions is low, and, therefore, the
disturbances do not exist and the atoms tend to behave as if
they were isolated. Our results are physically correct, since
the atom is always immersed in the gas where there is a fi-
nite temperature. For higher temperatures and low densities,
our results are similar to those of Unsöld, and for very high
pressures they look like those of Hummer and Mihalas. The
agreement with the model of Unsöld for low density is due
to the type of interaction used by him, which is good for low
densities (Hummeret al., [12]). For very high densities, the
models of Inglis and Teller and of Hummer and Mihalas use
a form of interaction valid for high pressures. The assump-
tions made to obtain our results are simple, physically correct
and sufficient to describe the phenomenon. As can be seen,
the results are robust and represent the state of an atom in a
gaseous medium for any temperature and pressure within the
limits of validity of the perfect gas. In Fig. 4, we have drawn
the partition function, for the same mixture of the elements as
above, as a function of the electronic pressure for total pres-
sures that go from10−11 to 1016 Pa for hydrogen using the
exact sum (1) directly and our approximation (18).

These results show that the approximation is good espe-
cially for low temperatures as in Fig. 4, where the results
are indistinguishable from one another for the temperature
T = 104◦K and for low pressures. For high pressures, they
change behavior due to the small number of levels in the
atoms and our approximation fails. The approximation can
be improved taking into account more terms in the first sum
of (13). Also all, the comparisons with the other methods
show that the model is sufficiently good to describe the be-
havior of the partition function. With this simple formulation,
one succeeds in representing the partition function analyti-
cally in a compact form, something that is very important in
calculating planetary and stellar atmospheric models, and is
also the case in different types of plasmas. The agreement for
our n* with some models is not good, but neither is it good
among some of them, nor for models with similar derivations
as those of de Jager and Neven and of Fischel and Sparks,
also between Inglis and Teller, and Hummer and Mihalas.
Nevertheless, for each pair of those mentioned above, the be-
havior is similar but not equal. Our equations are not appli-
cable to very high densities, but even so the results are com-
parable with the results of other models, particularly those
of Hummer and Mihalas. The suppositions made in order to
transform sum (1) to the integral (15) are for very close levels,
which is only achieved for high principal quantum numbers.
The solution of the integral using the mean value theorem for
the integral gives good results, as we have seen in the figure,
with the advantage that it produces a compact analytical ex-
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pression. The same happens with the approximations made
for the non-hydrogenic atoms. The interactions between the
particles that compose the gas were omitted because, by def-
inition, in a perfect gas the thermodynamic effects dominate.
The comparison with the direct evaluation of the sum shows
that the disagreements are very small, less than1%, as men-
tioned before. It would be conveniente to seek observational
results on the number of lines observed at low temperatures in
the interstellar material using radioastronomical techniques,
in order to make a more general comparison with the other
methods. In the absence of observational data, we made the
comparisons with the direct evaluation of the sum; we believe
that this is the only real comparison that one can make.

5. Conclusions

With two simple fundamental physical assumptions, we have
been able to obtain the maximum level that a hydrogenic
atom can reach in an ionizing gas, a result that is exact and
valid for the perfect gas conditions. For the non-hydrogen
atoms, the results are valid when one considers high lying
levels in order to use the approximate effective charge and

hydrogenic statistical weights. The partition function that we
have found has two parts; the first one is the exact sum of
the lower few levels, the second one is our Eq. (18). This
Eq. (18) is the result of two approximations; the first one is to
transform the sum into an integral, and the second one is the
result of applying the mean value theorem for integrals, given
a lower bound to the integral. Therefore, we have obtained
an approximate partition function for atoms in an ionizing
gas in a compact analytic form. Our model and the resulting
equations are important for the calculation of the equation of
state of partially ionized gases, in plasmas and stellar atmo-
spheres, because they permit the evaluation of the thermody-
namic properties of these systems, monitoring the behavior
of each one of the variables considered. Also, it is possible
to find analytically the derivatives with respect to the temper-
ature and pressure.
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