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A simple method for changing the state of polarization from elliptical into circular
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Changes of polarization occur as a consequence of the interaction of light and the various optical elements through which it passes. A
circularly polarized light beam may change its state to slightly elliptically polarized for many reasons. To correct this is not always easy
but we show a very simple method for correcting circular polarization that has changed slightly into elliptic polarization. In this paper we
propose to restore the circular state of polarization of an elliptically polarized light beam back to circular by means of a glass plate properly
oriented while polarization is being measured. The basic idea is to modulate the transmittances of the electric field in both the major and
minor axes of the ellipse of polarization. It is done by means of glass plates at non-normal incidence. Experimental results are consistent
with theory.
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Al pasar la luz a trav́es de diferentes elementosópticos, ocurren cambios de polarización. Un haz circularmente polarizado puede cambiar
ligeramente a elı́pticamente polarizado por muchas razones. Corregir esto puede ser complicado. Aquı́ mostramos un ḿetodo sencillo para
recuperar la polarización circular del haz de luz cuando ha sufrido pequeños cambios de polarización. El ḿetodo consiste en atravesar una
placa de vidrio convenientemente orientada mientras medimos la polarización del haz. La idea b́asica es modular las transmitancias del
campo eĺectrico en los dos ejes de la elipse de polarización. Esto se logra con una placa de vidrio a incidencia no normal. Los resultados
experimentales son consistentes con la teorı́a.

Descriptores:Interferencia, polarización; polarizadores; interferómetros; interferometrı́a.

PACS: 06.60 Vz; 42.79 Ci; 42.25 Hz

1. Introduction

When designing an experiment, it is important to preserve
the state of polarization, but sometimes it is not possible to
avoid complications. The interaction with optical elements
changes the state of polarization to a certain degree. Although
most photodetectors are almost insensitive to polarization, a
change in the state of polarization could be important in in-
terferometry and other fields. The methods we show here are
based on the fact that glass windows modify the state of po-
larization of a light beam passing through them, as demon-
strated by Holmes in his study on rotary compensators [1].

A problem indirectly related to polarization effects sim-
ilar to those described here is considered by Schechner [2],
who considered a problem of image recovery where two
white light images overlap. This problem arises when a poly-
chromatic scene is imaged through a glass plate. The main
scene, illuminated by white light, is transmitted, but a sec-
ondary overlapping scene is reflected by the glass plate. In
order to eliminate the spurious image or to separate them, the
glass plate reflectance is calculated fors andp polarizations.
Finally, in a digital iterative procedure, the magnitude of the
cross correlation between the two images is calculated and
used to eliminate the spurious image. So the cross correlation
between them is zero. Considering these aspects allowed the
authors to construct better images.

To control the state of polarization of light, many light
phenomena can be used. For example, it is possible to in-

troduce a variable phase delay by means of a Soleil compen-
sator or a modified Babinet compensator, the Faraday Effect
modulator [3], the Kerr [4] and Pockels cells [5], wave plate
retarders, etc. Zhuang [6], shows a method for changing any
state of polarization of light from one arbitrary state to an-
other. He uses three liquid crystal cells to vary the state of
polarization along three lines on the Poincaré sphere by mod-
ulating the birefringence of the liquid crystal cells.

In this work, we use the change of the state of polarization
of a light beam that has passed through a glass plate [1]. For
a circularly polarized light beam that has slightly changed its
state to elliptically polarized, we propose to restore the cir-
cular state of polarization by means of a glass plate properly
oriented while polarization is being measured. It can be done
under certain considerations by utilizing the difference in the
transmittances fors andp polarization components of light
modifying the major and minor axes of the ellipse until it
becomes a circle. The analysis is made for monochromatic,
spatially and temporally coherent light.

We must take into account the interference between the
main transmitted beam and those transmitted after multiple
reflections. This phenomenon is used for measuring angles
by fringe counting [7], in which a light beam is directed onto
an oblique glass plate that partially reflects the light at both
the first and second surface by using a Murty lateral shearing
interferometer. The glass plate is slowly rotated, producing
interference oscillations in the intensity of the reflected light.
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By measuring these changes in intensity, it is possible to cal-
culate the change in angle of incidence.

Other work related to polarization compensation was re-
ported by Azzam [8, 9]. He proposes using a thin layer on a
glass substrate in order to control the ratio ofs andp trans-
mittances. By selecting of an appropriate material for the thin
layer, depending on the substrate, he made a beam-splitter
that does not change the state of polarization in either the re-
flected or the transmitted beam. Nevertheless, the ratio of
transmittance to reflectance is 50-50% for only one angle of
incidence. He also designed a beam splitter that introduces
a retardation of half a wave in the reflected beam. In both
cases, the thin layer could be thought of as a Transmittance
Modulator (TM), except that it is immersed in different me-
dia.

We begin with a brief review of the theory behind the
proposed method for changing polarization. Then we will
describe two methods for preserving a circular polarization
state.

2. Theory

For the polarization of a TE (Transverse Electric), a
monochromatic and uniform wave can be represented in a
right hand coordinate systemx, y, z, as in Fig. 1. Here, the
electric waveE(z, t) moves along thez axis, normal to the
page and pointing at the reader. The electric waveE(z, t) ro-
tates in thex, y surface describing an ellipse whose major and
minor axes are in thex′ andy′ directions respectively. The
orientation of the ellipse in thex, y plane is defined byα, the
angle between the major axis of the ellipse and the positive
direction of thex axis.

FIGURE 1. Electric wave elliptically polarized.

Mathematically, the electric waveE(z, t) can be repre-
sented as

E(z, t) = [Ex cos(ωt− kz − δx)]x̂

+[Ey cos(ωt− kz − δy)]ŷ, (1)

where the electric wave vector is the superposition of two
orthogonal wave vectors, the first with amplitudeEx, oscil-
lating in the direction of the unit vector̂x, and a second with
amplitudeEy, oscillating in the direction of the unit vectorŷ.
Both waves have the same angular frequencyω, the same
wave numberk = 2π/λ (whereλ is the wave length), but
can have different initial phasesδx andδy. If we use a Jones
representation for polarized light, we can write from Eq. (1)

E =
[

Ex e−jδx

Ey e−jδy

]
. (2)

This representation allows us to see that any elliptical polar-
ization can be represented either by differences between the
initial phasesδx andδy, the amplitudesEx andEy, or a com-
bination of the two.

Under certain circumstances, an elliptical polarization
can be transformed into a circular one by means of a trans-
mittance modulator (TM) given as

T’ =
[

tx′ 0
0 ty′

]
, (3)

wheretx′ is the transmittance in amplitude for the component
of an electric wave oscillating in thex′ direction, andty′ is
the transmittance for they′ component.

When an elliptically polarized light beam passes through
a transmittance modulator, the output electric wave as a func-
tion of x′, y′ is

Eo=
[

Eox′ e−jδox′

Eoy′ e−jδoy′

]
=
[

tx′ 0
0 ty′

]
·
[

Eix′ e−jδix′

Eiy′ e−jδiy′

]

=
[

tx′ 0
0 ty′

]
·
[

cos(α) sin(α)
− sin(α) cos(α)

]
·
[

Eix e−jδix

Eiy e−jδiy

]
, (4)

whereδox′ = δix′ , δoy′ = δiy′ and, since we suppose thatT’
does not have any phase term,δox′ − δoy′ must be equal to
90◦ in order to have circular polarization.

Equation (4) shows that the electric field as a function of
x′, y′, z′ is amplitude modulated as indicated by the Jones
matrix T’ . It is clear from Fig. 1 that, after a rotation is
applied and expressed in the coordinate systemx′, y′, z′, to
have circular polarization we require thatEox′ = Eoy′ . So,
with this method, the amplitudesEix′ andEiy′ are both re-
duced in magnitude.

3. A First Solution

A first step toward making a TM like the one represented in
Eq. (3) is to consider a single interface. From the Fresnel
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equations we have that, for non-normal incidence, the trans-
mittance is different for thep ands planes of polarization:

tp =
2ni cos θi

ni cos θt + nt cos θi
, (5)

and

ts =
2ni cos θi

ni cos θi + nt cos θt
, (6)

where,ni is the refractive index of the medium of the incident
beam,nt is the refractive index of the medium after the inter-
face andθi andθt are the angles of incidence and refraction
given by Snell’s law. Figure 2 is a plot ofts, tp and its ratio
versus the angle of incidenceθi for an air-glass interface, say

FIGURE 2. Amplitude transmittance coefficients for an air-glass
interface (ni = na = 1 andnt = n = 1.5).

FIGURE 3. Transmission through a glass plate (na = 1 and
n = 1.5).

the first surface in Fig. 3. The refractive index of air is
ni = na = 1, the refractive index for the glass isnt = n =
1.5, θi = θ1 andθt = θ2.

For example, in order to change the ellipticity,e = tp/ts,
from any arbitrary value, saye = 0.89, to e = 1, we must
insert the air-glass interface in the beam with an angle of in-
cidenceθi = 64◦. This gives ustx′ = ts = 0.535 and
ty′ = tp = 0.601, that is,ts/tp = 0.89.

Now we proceed to a solution in the simple case in which
we use a thick plane-parallel glass plate to alter the polariza-
tion of a laser beam. The glass plate must be thick enough
so that the main transmitted laser beam,Eo1 in Fig. 3, can be
isolated from the multiple reflection beams. The condition
for this separation is

c

cos θ1
≤ 2d tan θ2, (7)

where, from Fig. 3,c is the beam diameter,θ1 is the angle
of incidence,θ2 is the angle of refraction, andd is the glass
thickness. The total transmittance for the main beam is the
product of both transmittances calculated at the air-glass (t)
and glass-air (t′) interfaces. Both transmittances must be cal-
culated forp ands by means of Eqs. (5) and (6).

4. Thin Plane-Parallel Glass Plate in a Wide
Light Beam

Assume that a flat, infinitely wide, coherent wavefront strikes
an oblique plane parallel glass plate as shown in Fig. 4. The
glass plate, with thicknessd and refractive indexn, is im-
mersed in airna = 1 and is inclined at an angleθ1 in the
y′, z′ plane, Fig. 1. If the glass plate is perfectly plane and
parallel, then the angle of refractionθ2 in the interface air-
glass is also the angle of incidence in the interface glass-air,
and consequentlyθ3 = θ1. Then, several rays from the inci-
dent wavefront contribute, after multiple internal reflections,
to the light ray transmitted at point P,

Ẽt =
∞∑

m=0

Eim t r′ 2m t′ e−jmδ, (8)

whereEim is the amplitude of the incident electric wave at
a given point indexed bym (m goes from 0 to infinity),t
andt′ are the amplitude transmittance coefficients for the air-
glass and glass-air interfaces respectively,r′ is the internal
reflectance coefficient, andδ = δd + δF , is the relative phase
delayδd, due to the optical path difference (OPD), in addition
to the phase changeδF , which occurs for internal reflection
under certain conditions that will be shown later. We must
remember that Eq. (8) must be solved for bothp ands polar-
izations. The result is a measure of the interference between
the directly transmitted ray and those transmitted after multi-
ple reflections.
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FIGURE 4. Several points from the incident wavefront contribute
to the output wavefront at point P.

We must use Eqs. (5) and (6) to calculatet andt′ in or-
der to solve Eq. (8). This must be done for both interfaces
and both polarizationss andp. To calculater′, we need the
Fresnel amplitude reflection coefficients

r′p =
cos θ2 − n cos θ1

n cos θ1 + cos θ2
, (9)

and

r′s =
n cos θ2 − cos θ1

n cos θ2 + cos θ1
, (10)

both expressed only for internal reflection.
The OPD between the rayEi(m+1) and the rayEim is

given by

δd = 2 k n d cos θ2. (11)

The phase change due to internal reflection can be calcu-
lated with the help of the Fresnel equations [10]. From Fig. 4,
we can see that the rayEi(m+1) suffers two more internal re-
flections thanEim, so that the total phase change for thep
polarization is

δFp =
{

2π 0 < θ2 < θ′p
0 θ′p < θ2 < θc

, (12)

whereθ′p is the internal polarizing angle [10] andθc occurs
whenθ1 = π/2. But a phase change of2π is equivalent to
zero due to coherence, and no phase change occurs for thes
component. We can then setδF = 0 in all cases, indepen-
dently of polarization.

Finally, assuming that the incident electric field is uni-
form, that is,Eim = Ei(m+1) = Ei for anym, from a geo-
metric progression we can represent Eq. (8) as

Ẽt =
Ei t t′

1− r′ 2 e−jδ
, (13)

or

Ẽt = Ei tt e−jδt , (14)

where

tt =
t t′√

1− 2 r′ 2 cos δd + r′4
, (15)

and

δt = tan−1 r′ 2 sin δd

1− r′ 2 cos δd
, (16)

hereδd is defined in Eq. (11). As expected, the total transmit-
tancett changes with the angle of incidenceθ1. In addition,
the cos δd term in the denominator produces an oscillation
in amplitude asθ1 increases. Figure 5a shows the theoreti-
cal total transmittancestts and ttp for a platen = 1.5239,
d = 147µ andλ = 632.8nm. These data were chosen equal
to those from a real plate used later to experimentally demon-
strate the method. From Eq. (11), we can see that the fre-
quency of the oscillation depends on the thicknessd, the wave
numberk, and the refraction indexn, and it is modulated
by cos θ2. The maximum frequency occurs at approximately
θ1 = 48◦ and the minimum frequency whenθ1 is nearly 0◦

or 90◦, in good agreement with Ref. 7 for a similar plate.
Figure 5b shows a detail of this oscillation. Notice that there
are many angles for which the plate is completely transpar-
ent, and the transmittance for both thes andp components

FIGURE 5. a) Theoretical total transmittances vs. angle of inci-
dence (in deg) for a platen=1.5239, d=147µ andλ=632.8nm.
b) Detail and c) total phase change introduced by the plate (in radi-
ans) vs. angle of incidence (in deg).
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becomes unity. The minima for both transmittances have a
ratio ttsmin/ttpmin that decreases as the angle of incidence
θ1 increases. This is plotted in Fig. 5a. In a first approxi-
mation, it is sufficient to find a proper ratiottsmin/ttpmin in
order to obtain an ellipticity close to unity.

Consider the presence of the phase term in the transmit-
tance in Eq. (14). This phase term has been plotted for each
polarization in Fig. 5c. From Eqs. (15) and (16) we can see
that the phaseδt is zero exactly at the minima and maxima
of the transmittancestt, which allows us to make the above
mentioned first approximation. In order to improve that first
approximation, a solution to the following parametric equa-
tions must be found:

|Eoy′ | − |Eox′ |
=|Eiy′(α′)tty′(θ1)|−|Eix′(α′)ttx′(θ1)|=0

|δoy′ |−|δox′ |
=|δix′(α′) + δtx′(θ1)|−|δiy′(α′)+δty′(θ1)|=90◦, (17)

wheretty′ = ttp, ttx′ = tts, δty′ = δtp, δtx′ = δts can be
obtained from Eqs. (15) and (16), andα′ is the angle between
x andx′. We calculateEiy′ , Eix′ , δix′ andδiy′ with the help

FIGURE 6. a) Ellipticity e vs. angle of incidenceθ1 with α′ = α,
and b) Solutionsα′, θ1 wheree ∼= 1.

of Eq. (4), whereα is now substituted forα′. In fact, there
are many solutions to Eq. (17) that imply circular polariza-
tion. Finding these requires an iterative method as shown
next.

To give an experimental demonstration we use a glass
plate withn = 1.5239 and thicknessd = 147µ to change the
polarization of a laser beam (λ = 632.8nm) from a measured
ellipticity e = 0.89 andα = 90◦ to e = 1. The first step is to
calculatee vs. θ1 maintainingα′ = α, as shown in Fig. 6a.
This permits us to find a first approximation for the angle of
incidence at the glass plate equal toθ1 = 37.7◦. In order to
reduce the ellipticity as much as possible and make it nearly
circularly polarized we must iteratively adjustα′ as well as
θ1. Following this procedure, as Fig. 6b shows, we can find
multiple solutions to Eq. (17) forθ1 between37.7◦ and90◦.
As we see, we can find one of these solutions whenα′ > α,
and another whenα′ < α. The iterative procedure is the
same since for anyθ1 greater than37.7◦, we are necessarily
in the vicinity of one of these maxima. Any maximum gives
circular polarization. So it is enough to iteratively change the
values ofθ1 andα′. This allows us to find the nearest peak
that is one of the multiple solutions.

From experimental results, perfectly plane parallel plates
are not necessary, but they must be sufficiently thin and paral-
lel as to maintain uniformity in wavefront polarization. It was
sufficient to use a microscope cover glass to demonstrate this
method. In Figure 7 we compare experimental and theoretical
data. The experimental data were measured with a Thorlabs
polarimeter, model PA410. The theoretical data are obtained
from zones where the polarization reachese ≥ 0.995. With

FIGURE 7. Experimental solutions (dots) vs. theoretical ones (con-
tinued) fore ≥ 0.995, it means e=1 in the PA410 polarimeter.
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this minimum ellipticity, we can find one additional solution
for θ1 less than37.7◦. We also note that the first solutions for
θ1 greater than37.7◦ are approximately the same, because
the method’s sensitivity to errors inα′ is considerably less
than forθ1. As we can see, theory is in agreement with ex-
periment.

5. Conclusions

A simple method for changing the state of polarization from
elliptical to circular was applied. It is useful for restoring
slight changes in circular polarization occurring due to the
interaction of light and the various optical elements through
which it passes. The method is simpler than other known
methods, and it is based on what we call a Transmittance
Modulator (TM). It consists of a homogeneous plane paral-
lel glass plate oblique to the light beam. The TM modulates

the transmittances of the electric field in both major and mi-
nor axes of the ellipse of polarization. The theoretical analy-
sis was made for coherent light. The polarization change in
transmission and reflection through the surfaces of the plate
is given by the Fresnel equations. The interference was also
taken into account. In order to restore the state of polariza-
tion to circular, the TM was properly oriented while the po-
larization was being measured. From experimental results,
we show that it is possible to obtain a high degree of circular
polarization even with low quality plane parallel plates such
as common microscope cover glass plates.
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