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There is an increasing interest in the question of why typical quantum mechanical properties, such as those connected with the superposition
of states or diffraction patterns for material systems, are not observed on the classical macroscopic level. By discussing two simple model
problems connected via the free-particle propagator, we show under what circumstances typical quantum effects that show up in these systems
can attain significant magnitudes so as to have a chance to be observable. The influence of the interaction with a dissipative environment will
also be considered, and the time scale where the effects reach their maximum and how they decay afterwards will be discussed. Furthermore,
a comparison with recent scattering experiments will be given.

Keywords: Transition from quantum to classical behavior.

Hay actualmente interés en el problema de por que propiedades tı́picas de mećanica cúantica, tales como las conectadas con la superposición
de estados o esquemas de difracción para sistemas de materiales, no se observan en el nivel macroscópico cĺasico. Discutiendo dos modelos
simples de problemas conectados por el propagador de partı́cula libre, mostramos bajo qué circunstancias efectos cuánticos t́ıpicos que surgen
en esos sistemas pueden alcanzar magnitudes significativas que dan la posbilidad de ser observables. La influencia de la interacción con un
entorno disipativo será tambíen considerada y la escala de tiempo donde los efectos toman su valor máximo y como decaen posteriormente
tambíen seŕa discutida. Adeḿas la comparación con experimentos recientes de dispersión seŕa analizada.

Descriptores: Transicíon del comportamiento clásico al cúantico.

PACS: 03.65.Bz

1. Introduction

Recently, increasing interest has been shown in the transi-
tion from the quantum mechanical to the classical world, not
least of all because the region on the borderline of these two
domains is not only of interest to the developing field of nan-
otechnology, but also in the process of becoming more and
more experimentally accessible. New fields of physics and
engineering - such as quantum computation, quantum cryp-
tography and teleportation - gain experimental, as well as the-
oretical, interest. In particular, one wants to understand why
typical quantum mechanical properties, like coherent super-
positions of states, quantum entanglement or diffraction pat-
terns of material systems, do not show up at the classical
level. Most experiments investigating these problems usu-
ally consider that quantum systems, which are carefully iso-
lated from their environment,e.g., ultracold ions caught in
magneto-optical traps, keep the quantum properties intact for
a long enough time to allow for measurements to be taken.
This is necessary because of the so-called decoherence (see,
e.g., [1,2]), a process that is assumed to destroy the quantum
effects due to disturbances of the quantum states by interac-
tion with an environment which can simply be represented
by the measuring apparatus [3–6]. Therefore, it is widely
believed that some quantum effects like coherent superposi-
tions or entanglement are unimportant and/or not accessible
to experiment at ambient conditions in condensed systems
because of their extremely fast decoherence, caused by en-
vironmental disturbance [7]. Despite considerable effort, a
well-established theory of decoherence in condensed matter
does not yet exist either [7,8]. Hence, more surprising are the

recent spectacular results of Dreismannet al. [7–10] which
show that quantum entanglement for example, is experimen-
tally accessible in condensed matter at ambient conditions
by means of scattering techniques. However, the effects ob-
served are on a very short time-scale of about a hundred at-
toseconds.

In this paper, we consider simple examples with analyt-
ical solutions - namely, free motion and, with modified ini-
tial conditions, the problem of diffraction-in-time [11] - to
show under what circumstances and on which time-scale typ-
ical quantum mechanical properties of these systems occur or
disappear, respectively, and what the interrelations between
these effects are.

First, the isolated systems will be investigated and, in a
second step, the interaction with the environment will be in-
cluded. The time-scales when the effects reach their max-
imum will be determined and compared with the above-
mentioned experiments by Dreismann et al; the decay of the
effects will also be discussed for the isolated and interacting
systems.

In Sec. 2, the wave packet (WP) solution of the time-
dependent Schrödinger equation (SE) and its Green’s func-
tion will be given in a form that applies not only for free
motion, but also allows for comparison with other problems,
e.g, diffraction in time. The occurrence of a term in the cor-
responding density equation that does not occur in the equa-
tion of motion for the classical density of this system will
be discussed as an example of a typical quantum mechanical
property.

In Sec. 3, the diffraction-in-time problem will be refor-
mulated using Green’s function as defined in Section 2. For
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comparison with the classical situation, the solution will then
be given in the form of the corresponding Wigner function.

In Sec. 4, the interaction of the quantum system with a
dissipative environment will be included in an effective way
that was introduced in earlier works. The resulting modifica-
tions of the effects described in the preceeding two sections
will be shown. A similarity with the quantum Zeno effect
will be mentioned.

Finally, in Sec. 5, the conditions for the maximum effect
and the disappearance of the quantum mechanical properties
will be discussed, both without and with environmental influ-
ence, and the time-scales will be compared with the experi-
mental work of Dreismann et al.

2. Green’s function and wave packet proper-
ties for free motion

For given initial conditionsΨ(x′, 0) (in one dimension, as
will be used thoughout this paper), the solutions of the time-
dependent SE can be obtained from

Ψ(x, t) =

+∞∫

−∞
dx′ G(x, x′, t, t′ = 0) Ψ(x′, 0) (1)

where the Green’s function or time-propagator is given
by [12,13]

G(x, x′, t, 0) =
(

m

2πi~α0ẑ

) 1
2

exp
{

im

2~

[ ˙̂z
ẑ
x2 − 2

x

ẑ

(
x′

α0

)

+
û

ẑ

(
x′

α0

)2]}
. (2)

This form might look more cumbersome than the one
usually used for free motion, but it has the advantage that
it also applies to other problems. Time-dependence enters
via the time-dependent quantitiesẑ(t) and û(t) that have to
fulfil the classical equations of motion of the corresponding
system; so, for free motion,

¨̂z(t) = 0 and ¨̂u(t) = 0, (3)

and are interrelated via the conservation law

˙̂zû− ˙̂uẑ = 1. (4)

The constant quantityα0 is connected with the initial po-
sition uncertainty〈x̃2〉0 = 〈x2〉(t = 0) − 〈x〉2(t = 0) via
α2

0 = (2m/~)〈x̃2〉0, where〈. . . 〉 =
∫

Ψ∗ . . . Ψdx denote
mean values.

It should be mentioned that form (2) of our propagator
is similar to the one used by Husimi [14]. There, however,
the propagator is applied to describe the time-evolution of
a Gaussian with a purely imaginary exponent, whereas the
Gaussian WPs discussed in [12, 13] and in this paper have a
complex exponent. In particular, the real part of this expo-
nent is connected with the position uncertainty whose pos-
sible time-dependence is the origin of the typical quantum

mechanical effect discussed later in this section, which repre-
sents the characteristic difference with respect to the classical
situation.

The occurrence ofα0, which is proportional to the ini-
tial position uncertainty, should not lead erroneously to the
conclusion that our propagator depends on a property of the
initial wave function. This form is only used to show more
closely the relation to the uncertainties and a non-vanishing
term in the quantum mechanical continuity equation. Con-
sideration of the definitions of̂u andẑ as given below [e.g. in
Eq. (11)] shows that our Green’s function (2) does not depend
on the initial width of the WP.

For an initial Gaussian WP

ΨWP (x′, 0)=
(

mβ0

π~

)1/4

exp
{

im

2~

[
iβ0x

′2+2
p0

m
x′

]}
(5)

with massm, initial momentump0 andβ0 = 1/α2
0, the time-

dependent WPΨWP (x, t), obtained by integrating product
of ΨWP (x′, 0) with the Green’s function (2) can be written
as

ΨWP (x, t) =
(

m

π~

)1/4( 1
û + iẑ

)1/2

× exp
{

im

2~

[ ˙̂z
ẑ
x2 − (x− p0α0

m ẑ)2

ẑ(û + iẑ)

]}
(6)

which can be simplified, usinĝzα0p0/m = 〈x〉(t), to yield
the more familiar form of a Gaussian WP,

ΨWP (x, t) =
(

m

π~

)1/4( 1
û + iẑ

)1/2

× exp
{[

− m
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(
1

û2 + ẑ2
− i

2

d
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2 + ẑ2)
û2 + ẑ2
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(x− 〈x〉)2

+
i

~
〈p〉(x− 〈x〉) +

i

~
〈p〉〈x〉

2

}
(7)

with a maximum at the classical position〈x〉(t), width con-
nected with the position uncertainty

〈x̃2〉(t) =
~

2m
(û2 + ẑ2),

and a phase depending on the classical momentum〈p〉. Im-
portant for the following is that the phase can also be depen-
dent on a term proportional to the relative change in time of
the WP width:

d
dt (û

2 + ẑ2)
(û2 + ẑ2)

=
d
dt 〈x̃2〉
〈x̃2〉 . (8)

The corresponding density function

%(x, t) = Ψ∗WP (x, t)ΨWP (x, t)
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fulfills the continuity equation

∂

∂t
% +∇x(%v) =

∂

∂t
% + v∇x% + %∇xv = 0, (9)

where the velocity fieldv in the probability currentj = %v is
defined as

v =
~

2mi

(∇xΨ
Ψ

− ∇xΨ∗

Ψ∗

)
=

~
2mi

∇x ln
Ψ
Ψ∗

,

i.e. it depends on the phase ofΨ.
In the case of our WP solutions, we obtain for the quan-

tum system

∇xv =
1
2

d
dt (û

2 + ẑ2)
û2 + ẑ2

=
1
2

d
dt 〈x̃2〉
〈x̃2〉 . (10)

This quantity only vanishes for WPs with constant width
but, in particular for the free motion, the WP is spreading in
time, i.e. ∇xv 6= 0. This is a typical quantum mechanical
property of the system that should disappear when we make
the transition to the classical world. In particular for the free
motion WP, we can give the explicit analytical form of the
time-dependence of∇xv, using the fact that in this case

û = α0 = const, ẑ =
1
α0

· t (11)

is valid to obtain

∇xv = β0
(β0t)

1 + (β0t)2
. (12)

For the classical situation, a continuity equation formally
equivalent to (9) exists but, in this case, it is for the distri-
bution of a virtual ensemble over the phase space described
by a density function%cl of the generalized coordinates and
momenta and of time, known as phase density.

The fundamental theorem of Liouville selects from the
transformations of phase space those which represent possi-
ble motions of the phase density and can be given in several
equivalent formulations [15]. From Hamilton’s equations of
motion, it follows that

∇v = 0, (13)

(but now in phase space with∇ representing derivatives with
respect to position and momentum coordinates),i.e. the “liq-
uid” formed from the phase points is incompressible. This
becomes more obvious if we rearrange Eq. (9) according to

∂

∂t
% + v∇% = −%∇v = 0, (14)

to yield the so-called Liouville equation.
Introducing the hydrodynamical or substantial derivative

D/Dt = ∂/∂t + v∇ (representing the change of a quantity
in the immediate neighbourhood of a point moving with the
“liquid”) and defining a “Volume”V as the inverse of the
phase density%cl, V = 1/%cl, Eq.(14) can be rewritten as

D
DtV

V
= ∇v = 0 . (15)

From (14) and (15) follows the principle of conservation of
density in phase space and the principle that a phase exten-
sion always retains its volume during motion. Making use
of the concepts of measure theory, these statements can be
made even more precise [15], stating that the measure of a
measurable point-set is an invariant of the time-evolution of
the virtual ensemble.

Comparison of (15) with Eq. (10) shows that, in the quan-
tum mechanical case, the WP-width (or the square root of
〈x̃2〉) plays a role comparable to the volume in phase space
in the classical case. The major differences, comparing both
situations, are that, apparently, the condition∇v = 0 already
does not apply for free motion in the quantum mechanical
case and that, in the classical case also the momentum vari-
able contributes to the volume element. (In the case of quan-
tum mechanical free motion, the momentum uncertainty〈p̃2〉
is constant, so that its product with〈x̃2〉(t) still would not be
constant, but growing in time.)

In order to include the momentum-aspect also in our
quantum mechanical considerations, it should be mentioned
that the time-dependence of the WP-width is also related to
another quantum mechanical property, namely the correlation
of position and momentum uncertainties via

〈[x̃, p̃]+〉 = 〈[(x− 〈x〉), (p− 〈p〉)]+〉

= ~( ˙̂uû + ˙̂zẑ) = m
d

dt
〈x̃2〉. (16)

Using, again, (11) for the free motion, the correlation is
given explicitly as

〈[x̃, p̃]+〉 = 〈x̃p̃ + p̃x̃〉 =
1
α2

0

t = β0t. (17)

Since the uncertainty product of position and momentum,
U = 〈x̃2〉〈p̃2〉, can be expressed with〈[x̃, p̃]+〉 as

U =
~2

4
+

1
4
〈[x̃, p̃]+〉2 , (18)

these correlations are responsible for the increasing uncer-
tainty as time progresses. Thus, a system that is initially pre-
pared in a state of minimum uncertainty,i.e. U = ~2/4,
which comes closest to a point in phase space, will not keep
this minimal extension in position and momentum uncertain-
ties if the correlations do not vanish,i.e. if ∇xv 6= 0. In
the case of the free motion of an isolated system,U grows
according to (18) and (17) with

U =
~2

4

[
1 + (β0t)2

]
(19)

quadratically in time to diverge fort →∞.
It should be mentioned that some authors [16] assume

that the role of the phase space volume in quantum mechan-
ics is played by the square root of the so-called “invariant
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uncertainty product”〈x̃2〉〈p̃2〉 − 1
4 〈[x̃, p̃]+〉2 = ~2/4, which

is definitely a constant of motion; but this only corresponds
to the phase space volume at theinitial time t0 = 0, not
for timest〉t0. This conserved quantity is more related with
a kind of conservation of angular momentum (see, for exam-
ple [13]) than to conservation of phase space volume. Again,
it is just the fact that

∇xv =
1
2

d
dt 〈x̃2〉
〈x̃2〉 =

1
2m

〈[x̃, p̃]+〉
〈x̃2〉 6= 0,

i.e., the WP width not being constant, that causes the intro-
duction of a second term, proportional to〈[x̃, p̃]+〉, into the
expression for momentum uncertainty,

〈p̃2〉 = 〈p2〉 − 〈p〉2 =
~2

4〈x̃2〉 +
1
4 〈[x̃, p̃]+〉2
〈x̃2〉 , (20)

which is responsible for the change-in-time of the ini-
tial phase space volume. Therefore, the subtraction of
(1/4)〈[x̃, p̃]+〉2 from the uncertainty productU = 〈x̃2〉〈p̃2〉
obviously removes the time-dependence and leaves only the
initial uncertainty productU0 = 〈x̃2〉0〈p̃2〉0 = ~2/4. For
t〉t0, the uncertainty product will grow in time if, as in our
case,〈x̃2〉(t) is spreading and〈p̃2〉 is constant (in our case,
the two time-dependent terms on the lhs of Eq. (20) add up
to a constant). This is precisely the difference between the
classical situation and the quantum mechanical case - which
is what we wish to point out in this paper.

The situation where the system interacts with an environ-
ment will be discussed in Sec. 4.

3. Green’s function applied to the diffraction-
in-time problem

The Green’s function discussed in Section 2 can also be ap-
plied if the initial conditions are modified. One encounters
such a situation when considering the problem of opening a
completely absorbing shutter on which a stream of particles
of definite velocity is impinged, which was solved long ago
by one of the authors [11]. The solution was obtained in a
form entirely analogous to the optical one of diffraction by a
straight edge, and can be given as

M(x, k, t) = exp
[
i(kx− 1

2
k2t)

]

× 1√
2

{[
1
2
− C(w)

]
+ i

[
1
2
− S(w)

]}
. (21)

Since the argument

w =
√

m

2~t

(
x− ~

m
kt

)
(22)

of the occurring Fresnel integrals

C(w) =

√
2
π

w∫

0

cos y2dy,

S(w) =

√
2
π

w∫

0

sin y2dy (23)

is time-dependent, the problem was described as diffraction-
in-time.

This problem, however, corresponds to the situation of a
free particle propagation with the initial condition

ψ(x, 0) = exp(ikx)Θ(−x), (24)

whereΘ(x) is the step function given by

Θ(x) =
{

1 if x > 0
0 if x < 0 (25)

andk in the plane wave is connected with the momentum via
p = ~k.

The time-dependent solution can now be obtained by sim-
ply applying our Green’s function of Eq. (2) to this initial
condition,i.e.

M(x, k, t) =

0∫

−∞
dx′ G(x, x′, t, 0) exp(ikx′). (26)

It is a straightforward matter to show thatM(x, k, t) can
be written as

M(x, k, t) =
1
2π

(
m

i~α0ẑ

)1/2

× exp
{

i

[
( ˙̂zα0k)x− ~

2m
( ˙̂zα0k)2

ẑ
˙̂z

]}
· IM , (27)

where the integralIM ,

IM =

0∫

−∞
dx̄ exp

{
− m

i2~
û

ẑ

x̄2

α0

}
, (28)

depends on the shifted variable

x̄ = x′ −
(

α0

û
x− ~

m

ẑ

û
α2

0k

)
, (29)

with dx̄ = dx′.
Comparison with the Fresnel integrals in (21) shows

that the argumentw can now be expressed, using the time-
dependent parameters of the Green’s function, as

w =
√

m

2~ûẑ

(
x− ~

m
α0ẑk

)
. (30)

Again, as already mentioned in Section 2, the occurrence
of the “initial width” α0 is only purely formal to show the
similarities of the different quantum mechanical problems
disscussed in Secs. 2 and 3. With the definition ofû and
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ẑ as given in Eq.(11),α0 does not have any explicit influence
on the quantities given in Eqs. (27)-(30).

So the solution (27) simplifies to

M(x, k, t) =
1
2π

(
m

i~t

)1/2

exp
{

i

[
kx− ~

2m
k2t

]}
· IM , (31)

as expected, andw turns into the form of (22). However,
comparison of (22) and (30) allows us now to express the
time-dependence ofw in terms of the quantities ofG that
also occur in the problem of the WP discussed before, in par-
ticular in ∇xv and in 〈[x̃, p̃]+〉. Again using (11), we find
(1/~)〈[x̃, p̃]+〉 = ˙̂zẑ = 1

α0
ẑ = β0t and thus we can identify

t =
1
~β0

〈[x̃, p̃]+〉. (32)

For an easier determination of the classical limit, the solu-
tions of the diffraction-in-time problem will be given in terms
of Wigner distribution functions. As shown in [17], this give
us

W (x, p; k, t) =
sin[g(~k − p)]

π(~k − p)
Θ

(
pt

m
− x

)
(33)

where

g ≡ 2
~

(
pt

m
− x

)
. (34)

The time-dependence inW (x, p; k, t) results from the
time-dependence inM(x, k, t) or w(t), so thatt occurring
in (34) can be expressed by (32), and we obtain

g =
2
~

(
p

~mβ0
〈[x̃, p̃]+〉 − x

)
. (35)

From this expression, the time necessary for the non-
classical oscillatory pattern to vanish can be estimated, as will
be shown in Sec. 5.

4. Effect of a dissipative environment on the
characteristic quantum phenomena

In recent papers, several authors [1–5] have claimed that in-
teraction with an environment is the actual key for the dis-
appearance of typical quantum mechanical properties such
as coherence, entanglement, etc. Any kind of interaction
with an external world - even a measurement whose result
is not recorded [4] - is supposed to have the same effect on
the quantum system, so the details of the environment, and
of the interaction with it, should not matter. Therefore, in
the following, we will treat the environment globally,i.e., re-
garding only its effect on the quantum system under inves-
tigation, without specifying its details or the details of the
interaction. For this purpose, we apply a method used ear-
lier by us to describe dissipative systems. This approach can

use either non-unitary transformations [18, 19] or nonlinear
modifications of the SE [20–22] and is physically equivalent
to the system-plus-reservoir approach (for details see, for ex-
ample [23,24]). We shall show the influence f the dissipative
enrionment on the occurrence, magnitude and time-scale of
the quantum effects discussed in the previous sections.

The treatment of dissipative systems within the Hamil-
tonian formalism was previously about sixty years ago by
Caldirola [25] and Kanai [26], but an apparent violation of
the uncertainty principle after canonical quantization made
it questionable and the target for criticisms for a long
time [27–29]. The situation became even more paradoxical
after Sun and Yu [23, 24] showed that the Hamiltonian oper-
ator corresponding to Kanai and Caldirola’s explicitly time-
dependent Hamiltonian function could be derived from the
conventional system-plus-reservoir approach. The paradox
was resolved by one of the authors [18] showing that the
transformation of the operators must be accompanied by a
non-unitary transformation of the wave functions. In particu-
lar, for a solutionΨ̄ of the formal Caldirola-Kanai equation,
the corresponding solutionΨdis for the physical dissipative
system is given bylnΨdis = e−γt ln Ψ̄. For t he free motion
WP, this transformation has already been applied in an earlier
work [30] leading to the same WP that is also the solution of
a nonlinear SE with logarithmic nonlinearity [22] describing
the same situation of the usual physical, instead of a formal
canonical, level. For our purpose, it is sufficient to state that,
in this case, the continuity equation (9) is replaced by an ir-
reversible Fokker-Planck-type equation of the form

∂

∂t
% +∇x(%v)−D∆x% = 0, (36)

whereD = (γ/2)〈x̃2〉 andγ is the friction coefficient. (The
diffusion coefficientD on the quantum mechanical coordi-
nate variance in exactly the same way as it does depend on the
classical coordinate variance in the Langevin/Fokker-Planck
theory (see, for example [31]), and can, in particular in non-
equilibrium situations, also be time-dependent.)

Now then, the total velocity field contains, in addition
to the convective velocity fieldv, the diffusive velocity field
vD = −D(∇%/%) with −D∆x% = ∇xvD. For the total ve-
locity field vtot = v + vD, again

∇xvtot = ∇x(v + vD) =
1
2

d
dt 〈x̃2〉dis

〈x̃2〉dis
(37)

applies, whereas, for the convective velocity alone,

∇xv =
1
2

d
dt 〈x̃2〉dis

〈x̃2〉dis
− γ

2
(38)

holds. Since both expressions differ only by a constant, they
both attain their maximum value for the same timetmax.

It should be mentioned that, in the dissipative case,
two WP solutions exist for the damped free motion (see,
e.g., [32]), but, for purposes of comparison with the results
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of the isolated system, we only discuss the solution that cor-
responds to a minimum-uncertainty WP fort=0, i.e. with
U(t=0)=~2/4.

The WP width, or position uncertainty, has been given
in [30] or [22], respectively, and has the form

〈x̃2〉dis = 〈x̃2〉0
[
eγt +

(
β0

γ/2

)2

sinh2 γ

2
t

]
. (39)

Thus,∇xv, corresponding to (12), and taking (38) into con-
sideration, is given by

(∇xv)dis = β0e
−γt

(
β0
γ

)
(1− e−γt)

1 +
(

β0
γ

)2

(1− e−γt)2
. (40)

In this case too, the time-dependence of〈x̃2〉dis is con-
nected with the correlation of position and momentum uncer-
tainties but now, as can be proven using the WP solution of
the dissipative case, via

〈[x̃, p̃]+〉dis = m

(
d

dt
〈x̃2〉dis − γ〈x̃2〉dis

)
(41)

and the uncertainty product, expressed with the help of
〈[x̃, p̃]+〉dis, is again given by

Udis =
~2

4
+

1
4
〈[x̃, p̃]+〉2dis . (42)

For the case considered,i.e., the damped free motion with
minimum initial WP,Udis can be written explicitly as

Udis =
~2

4

{
1 +

[(
β0

γ

) (
1− e−γt

) ]2}
≥ ~2

4
, (43)

with Udis(t = 0) = ~2/4.
As mentioned at the end of Section 2, for the isolated sys-

tem,U is diverging fort → ∞. However, in the case of the
interacting system, it follows from (43) that fort →∞, Udis

approaches a finite maximum value given by

Udis,∞ =
~2

4

[
1 +

(
β0

γ

)2]
= finite. (44)

From this expression, it follows that the maximum value
of uncertainty decreases with increasingγ. A large value of
γ, however, corresponds to a frequent interaction with the en-
vironment - where this interaction can also be interpreted as
an observation or a measurement. In the limit ofγ →∞, i.e.
continual measurement, the maximum value ofUdis is iden-
tical to its initial valueUdis(t = 0) = ~2/4. This is, how-
ever, very similar to what is known as quantum Zeno effect -
where continual measurement, described by a single param-
eter, causes a system to remain arbitrarily close to its initial
state [33, 34]. But note that, even in the limit of “permanent
interaction” or “continual measurement”,i.e. for γ → ∞, it
is not possible to come below the lower bound ofU = ~2/4.

The effect of dissipation on the diffraction-in-time prob-
lem has already been discussed in detail in Ref. 35. There it
wasshown that the dissipation restricts the region into which
the non-classical oscillatory pattern can proceed and also re-
duces the amplitude of the oscillations.

5. Discussion of the maximum and disappear-
ance of the quantum mechanical effects

Considering, first, the(∇xv)-term in the continuity equation
of the WP, it is obvious from Eq. (12) that in the so-called
classical limit,i.e., for ~→ 0, this quantity vanishes to yield
the proper classical result - sinceβ0 is proportional to~,
β0 = ~/2m〈x̃2〉0.

However, in nature,~ is not zero, but has a definite con-
stant value (~ = 1.043 · 10−27 g cm2s−1). Therefore, the
questions arise: under what circumstances - in particular, on
what time-scale - does(∇xv) attain its maximum value and,
therefore, has the best chance of being observed? And how
does the effect decrease to such small values that it does not
show up on a macroscopic scale? For this purpose, it is neces-
sary to determine the time when(∇xv) attains its maximum
and calculate, or at least estimate, the corresponding value of
(∇xv).

For theisolated system, its follows from Eq. (12) that the
maximum is reached for

tmax =
1
β0

(45)

with the maximum value of

(∇xv)(tmax) =
1
2
β0 . (46)

For microscopic systems withm ≈ 10−27 g and
〈x̃2〉0 ≈ 10−16 cm2, this leads toβ0 ≈ (1/2)1016 s−1 and
thustmax ≈ 2 × 10−16 s, so the∇xv-term reaches a large
maximum value of(∇xv) ≈ (1/4)1016 s−1. Note thattmax

is exactly in the time-range of several hundred attoseconds
where the effects investigated by Dreismann et al [7, 8, 10]
also become experimentally observable.

For macroscopic systems withm≈1 g and〈x̃2〉0≈1 cm2,
it follows that tmax ≈ 2 · 1027s, i.e. about1020 years and
(∇xv) ≈ (1/4)10−27 s−1. So, even for a comparably small
system on a macroscopic scale, the maximum “compressibil-
ity” of the density becomes negligibly small and reaches its
maximum only after a time much longer than the age of the
universe.

For times much smaller thantmax, (∇xv) grows pro-
portional to β2

0t; for times much larger thantmax, i.e.
(β0t) À 1, (∇xv) vanishes in proportion to1/t, which can
also be expressed as

(∇xv)〉 =
1
t

=
~β0

〈[x̃, p̃]+〉 . (47)

Note that this quantiy does not depend on any of the sys-
tem’s parameters, such as massm or initial “dimensions”
〈x̃2〉0, whereas,tmax = 1/β0 does.
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So, for the isolated system, density% - which corresponds
to an initial WP that can be constructed by a coherent super-
position of infinitely many plane waves - reaches, for micro-
scopic systems, a large maximum of “compressibility” after
a very short time of a few hundred attoseconds, after which
the value of(∇xv) decreases in good approximation propor-
tional to1/t; so, after one second for example, it has already
dropped to the comparably small value of∇xv = 1 s−1.
For macroscopic systems,β0 is so small that even the max-
imum effect is negligible and would not be reached within
any observable time-scale. For the systeminteracting with
its environment, the maximum of(∇xv)dis, as given in
Eq. (40), and the corresponding timetmax must be deter-
mined. In this case, the maximum effect is reached at

tmax =
1
γ

ln

[
1 +

√
γ2

γ2 + β2
0

]
. (48)

Here,tmax does not only depend on the parameterβ0 that
characterizes the system, but also on the parameterγ, char-
acterizing the interaction with the environment.

As we have seen in the isolated case,β0 ≈ 1016 s−1

holds, for microscopic systems; for macroscopic systems,
however,β0 ≈ 10−27 s−1. If we assume that the friction
coefficientγ corresponds to a collision frequency with sur-
rounding molecules, in the gas phase,γ ≈ 1010 s−1, and in
condensed matter or liquids,γ ≈ 1013 s−1 should be valid.

The situationγ ¿ β0 seems, therefore, realistic for mi-
croscopic collision processes. In this case, the square root in
Eq. (48) can be well approximated byγ/β0. The logarithm
in (48) is then of the formln(1+X) with X = γ/β0 and can
be expanded according to [36]

ln(1 + X) = X − 1
2
X2 +

1
3
X3 − · · ·

=
∞∑

k=1

(−1)k+1 Xk

k
. (49)

SinceX is of the order of10−3 or smaller,X2 and higher
powers ofX can be neglected and we obtain

tmax ≈ 1
γ

γ

β0
= β−1

0 , (50)

exactly as in the isolated case. Therefore, also including
the environment, the maximum effect is reached in just the
same attosecond region. Using the same argument as in the
truncation of the expansion (49),e−γtmax = e−(γ/β0) can be
replaced by1− (γ/β0), so that(∇xv)dis of Eq. (40) reduces
for t = tmax to

(∇xv)dis(tmax) =
1
2
β0e

−γtmax =
1
2
β0e

− γ
β0 . (51)

For γ/β0 ≈ 10−3, e−(γ/β0) can be very well-
approximated by1, from whence it follows that also the
maximum value of (∇xv)dis(tmax) ≈ (1/2)β0 is practi-
cally thesame as in the isolated case.

The major difference, in comparing the two cases, is now,
however, that, for the isolated system, the maximum value
decays only in proportion to1/t, whereas, for the interacting
system, it decays exponentially according toe−γt, i.e. faster
and with stronger interaction.

Consideration of the caseγ ≥ β0 requires, for the micro-
scopic situation, a large value ofγ, i.e., γ ≥ 1016 s−1. In this
case, the square root in (48) can be approximated by1 so that
the maximum effect is reached for

tmax =
1
γ

ln 2 ≈ 1
γ

. (52)

Due to the large value ofγ, tmax is also, at most, in the
range of a few hundred attoseconds or even smaller. With the
exact value oftmax, it follows thate−γtmax = (1/2) and the
expression (40) for(∇xv) reduces to

(∇xv)(tmax) =
1
4

β2
0

γ
=

1
2
β0

(
1
2

β0

γ

)
, (53)

i.e. the value of the caseγ ¿ β0 multiplied by a factor
smaller than1.

For t > tmax, (∇xv) decays exponentially according to
(∇xv) ≈ (β2

0/γ)e−γt.
Turning to macroscopic systems withβ0 ≈ 10−27 s−1,

the caseγ > β0 is easily fulfilled. The time when the max-
imum effect is obtained is given by (52),i.e., it is indepen-
dent of the system parameter, depending only on the envi-
ronmental interaction. For instance, forγ = 1013 s−1, tmax

would be reached already aftertmax = 0.7×10−13 s, i.e.,
by a factor1040 faster than in the isolated situation with
tmax ≈ 1027 s. However, for this value ofγ, the maxi-
mum value of(∇xv) for the macroscopic system would be
only (∇xv)(tmax) ≈ 10−67 s−1, i.e., totally negligible. On
the other hand, if one wants to obtain a relevant value for
(∇xv)max, γ must be smaller than10−54 s−1, which ex-
cludes any realistic interaction with the environment.

Considering now our second example, the diffraction in
time, we can, again, look first at what we obtain in the clas-
sical limit. As can be seen from Eqs. (34) or (35) and (32),
if we take~ → 0, theng → +∞, as the step function takes
on the value 1 only if(pt/m) − x > 0. Using one of the
definitions of theδ− function [37],

δ(~k − p) = lim
g→∞

sin[g(~k − p)]
π[~k − p]

, (54)

the classical limit of the Wigner distribution function (33) can
be written as

Wcl(x, p; k, t) = δ(~k − p)Θ
(
~k
m

t− x

)
, (55)

where we used the presence ofδ(~k − p) in Eq. (55) to re-
placep by ~k in the step function. We find that the classical
limit yields what we expect, since the only value possible for
the momentum of the particle isp = ~k, and this value is
only assumed whenx < (~kt/m); as for x > (~kt/m),

Rev. Mex. F́ıs. 51 (5) (2005) 516–524



TRANSITION FROM QUANTUM TO CLASSICAL BEHAVIOR FOR SOME SIMPLE MODEL SYSTEMS 523

the particle would not yet have arrived at pointx. Further-
more, the typical wave aspect expressed by the oscillating
sine-function in (33), corresponding to the diffraction pattern,
is totally eliminated. Thus, the classical limit of the Wigner
distribution function for the diffraction-in-time problem con-
firms our intuition.

Taking into account again that in nature~ 6= 0, the same
limit g → ∞ can also be reached, for2pt/~m → ∞, i.e.
t → ∞. To estimate the time that is needed for the oscilla-
tory pattern to vanish, we needgp À 1, i.e.

gp =
2
~

p2t

m
=

4
~
E · t À 1 (56)

or

t =
< [x̃, p̃]+ >

~β0
À ~

4E
, (57)

whereE is the energy of the system.
If we assume that the energy of our WP hitting the shutter

before it opens is comparable with the energies transferred in
the scattering experiments by Dreismann [10], which are in
the rangeE ≈ 2 − 30 eV, or by Ikedaet al. [38–40], which
are around0.5 eV, we obtain fort in (57) values between
5 − 300 attoseconds which, again, are in the time-domain
where, in the above-mentioned experiments, typical quantum
entanglement effects were observed. Also recent results by
Karlssonet al. [41–43] report characteristic quantum effects
in scattering experiments for times smaller than500 attosec-
onds.

The influence of an interacting environment in this case
does not damp the duration in time of the quantum effect (as

in our first example) but the extension in space (and, also
diffrent from our first example) does not leave the magnitude
of the effect untouched but reduces the amplitude of the os-
cillating diffraction pattern, as discussed in [35].

In conclusion, we can state that only for microscopic sys-
tems does the non-vanishing∇xv-term show a significant ef-
fect that attains its maximum on the time-scale of about a
hundred attoseconds - which is the same time-scale where,
also, the diffraction-of-time phenomenon still shows its typ-
ical quantum mechanical pattern. This is exactly the same
time-scale where recent scattering experiments observed typ-
ical quantum mechanical properties for relatively massive ob-
jects like protons or neutrons, even in ambient conditions.
Inclusion of the interaction with a dissipative environment
does not change the time or the magnitude of the maximum
of the∇xv-effect, only its temporal decay behaviour. For
the diffraction-in-time problem, however, the environment
restricts the spacial extension as well as the magnitude of the
quantum effect.

Experiments attempting to observe and measure the ef-
fects discussed should have the greatest chance of success if
they focus on microscopic systems in the attosecond time-
regime since, particularly for non-isolated systems, the ef-
fects might decrease rapidly for longer times and are negligi-
ble for macroscopic systems in general.
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