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There is an increasing interest in the question of why typical quantum mechanical properties, such as those connected with the superposition
of states or diffraction patterns for material systems, are not observed on the classical macroscopic level. By discussing two simple model
problems connected via the free-particle propagator, we show under what circumstances typical quantum effects that show up in these systems
can attain significant magnitudes so as to have a chance to be observable. The influence of the interaction with a dissipative environment will
also be considered, and the time scale where the effects reach their maximum and how they decay afterwards will be discussed. Furthermore
a comparison with recent scattering experiments will be given.

Keywords: Transition from quantum to classical behavior.

Hay actualmente intés en el problema de por que propiedadigisas de megnica cé@ntica, tales como las conectadas con la supergosici
de estados o esquemas de difrangbara sistemas de materiales, no se observan en el nivel mgmouschsico. Discutiendo dos modelos
simples de problemas conectados por el propagador deydaribre, mostramos bajo gwircunstancias efectosamticos tpicos que surgen
en esos sistemas pueden alcanzar magnitudes significativas que dan la posbilidad de ser observables. La influencia denaartenacci
entorno disipativo s@rtambén considerada y la escala de tiempo donde los efectos toman su @xionary como decaen posteriormente
tambin sea discutida. Aderas la comparabn con experimentos recientes de disgersiea analizada.

Descriptores: Transicbn del comportamiento &sico al cantico.

PACS: 03.65.Bz

1. Introduction recent spectacular results of Dreismagiral. [7—10] which
show that quantum entanglement for example, is experimen-
tally accessible in condensed matter at ambient conditions

Recently, increasing interest has been shown in the transb-y means of scattering techniques. However, the effects ob-

tion from the quantum mechanical to the classical world, NOLarved are on a very short time-scale of about a hundred at-
least of all because the region on the borderline of these WQ seconds

domains is not only of interest to the developing field of nan- In this paper. we consider simple examples with analvt-
otechnology, but also in the process of becoming more and > Paper, np P N analy

: ; . . ical solutions - namely, free motion and, with modified ini-
more experimentally accessible. New fields of physics ancgiC

. . . al conditions, the problem of diffraction-in-time [11] - to
engineering - such as quantum computation, quantum cryp-

tography and teleportation - gain experimental, as well as thesihOW under what circumstances and on which time-scale typ-

. . X ical quantum mechanical properties of these systems occur or
oretical, interest. In particular, one wants to understand wh d prop Y

typical quantum mechanical properties, like coherent Super_isappear, respectively, and what the interrelations between
positions of states, quantum entanglement or diffraction patt—hese_ effects gre. , ) . .
terns of material systems, do not show up at the classical First; the isolated systems will be investigated and, in a
level. Most experiments investigating these problems ususecond step, t_he interaction with the environment WI||.be in-
ally consider that quantum systems, which are carefully iso€/uded. The time-scales when the effects reach their max-
lated from their environmene.g, ultracold ions caught in imum will be determined and compared with the above-
magneto-optical traps, keep the quantum properties intact fgnentioned experiments by Dreismann et al; the decay of the
a long enough time to allow for measurements to be takereffects will also be discussed for the isolated and interacting
This is necessary because of the so-called decoherence (s&8¥¢St€mMs.

e.g, [1,2]), a process that is assumed to destroy the quantum In Sec. 2, the wave packet (WP) solution of the time-
effects due to disturbances of the quantum states by interaglependent Scbdinger equation (SE) and its Green’s func-
tion with an environment which can simply be representedion will be given in a form that applies not only for free
by the measuring apparatus [3—6]. Therefore, it is widelymotion, but also allows for comparison with other problems,
believed that some quantum effects like coherent superposg-g diffraction in time. The occurrence of a term in the cor-
tions or entanglement are unimportant and/or not accessibkgsponding density equation that does not occur in the equa-
to experiment at ambient conditions in condensed systemiéon of motion for the classical density of this system will
because of their extremely fast decoherence, caused by ele discussed as an example of a typical quantum mechanical
vironmental disturbance [7]. Despite considerable effort, droperty.

well-established theory of decoherence in condensed matter In Sec. 3, the diffraction-in-time problem will be refor-
does not yet exist either [7,8]. Hence, more surprising are thenulated using Green'’s function as defined in Section 2. For
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comparison with the classical situation, the solution will thenmechanical effect discussed later in this section, which repre-

be given in the form of the corresponding Wigner function. sents the characteristic difference with respect to the classical
In Sec. 4, the interaction of the quantum system with asituation.

dissipative environment will be included in an effective way  The occurrence ofy, which is proportional to the ini-

that was introduced in earlier works. The resulting modifica-tial position uncertainty, should not lead erroneously to the

tions of the effects described in the preceeding two sectiongonclusion that our propagator depends on a property of the

will be shown. A similarity with the quantum Zeno effect initial wave function. This form is only used to show more

will be mentioned. closely the relation to the uncertainties and a non-vanishing
Finally, in Sec. 5, the conditions for the maximum effect term in the quantum mechanical continuity equation. Con-

and the disappearance of the quantum mechanical propertigiieration of the definitions af andz as given belowd.g.in

will be discussed, both without and with environmental influ- Eq. (11)] shows that our Green'’s function (2) does not depend

ence, and the time-scales will be compared with the experion the initial width of the WP.

mental work of Dreismann et al. For an initial Gaussian WP

2. Green’s function and wave packet proper- Wwp(z,’o)c@%)l/;p{ {zﬁ x/2+2po ,H 5)
ties for free motion mh

For given initial conditions¥(z’, 0) (in one dimension, as With massm, initial momentuny, andg, = 1/a§,. the time-
will be used thoughout this paper), the solutions of the time-dependent WRUy, p(x, t), obtained by integrating product

dependent SE can be obtained from of Uy p(a’,0) with the Green'’s function (2) can be written
oo as
U(z,t) = / dr' G(z, 2’ t,t' =0) ¥(z',0) (1) o (m 1/4 1o\ 2
oo wr(@,t) = (m) <u+zz)
where the Green’s function or time-propagator is given im [3 - (1 — Po%0 22
by [12,13] X exp{ o [ z(urzz)}} (6)

m H im [z z (7
G(z,2',t,0) = (”> exp {% [AmQ —-25 () which can be simplified, usingaopo/m = ()(t), to yield
mhaoz ~ Z\@o the more familiar form of a Gaussian WP,
~ 2
_,_“(SU/) }} 2 1/4 1/2
2\ g @ Uywp(x,t) = (m) <A ! ‘A)
This form might look more cumbersome than the one mh Utz
usually used for free motion, but it has the advantage that { { m ( 1 i di( + 22)>] 5
X exp (z — (z))

it also applies to other problems. Time-dependence enters o\ a2+ 22 5 a2 + 32
via the time-dependent quantitié&) andu(t) that have to

fulfil the classical equations of motion of the corresponding + i<p>(x — (z)) + i (p)(@) } @)
system; so, for free motion, I h 2
Zt)=0 and  a(t) =0, (3)  with a maximum at the classical positi¢m)(t), width con-

. . . nected with the position uncertainty
and are interrelated via the conservation law

-4z =1. (4) (F)(t) = — (0% + 22),

The constant quantitzyo is connected with the initial po- ) )
sition uncertainty<” Yo = (z )(t = 0) — (z)2(t = 0) via and aphase depending on the classical momertymim-
— (2m/h)(#%)o, where(...) = [W¥* .. Wdx denote Portantfor the following is that the phase can also be depen-

mean values. dent on a term proportional to the relative change in time of
It should be mentioned that form (2) of our propagatorthe WP width:
is similar to the one used by Husimi [14]. There, however,

a4 d (52
the propagator is applied to describe the time-evolution of th = ) = dt§2 >_ (8)
a Gaussian with a purely imaginary exponent, whereas the (a2 + 22) (72)

Gaussian WPs discussed in [12, 13] and in this paper have a
complex exponent. In particular, the real part of this expo-

nent is connected with the position uncertainty whose pos-
sible time-dependence is the origin of the typical quantum o(z,t) = Wiy p(z, ) Uwp(z,t)

The corresponding density function
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fulfills the continuity equation From (14) and (15) follows the principle of conservation of
density in phase space and the principle that a phase exten-
0 0 ) e . . ;
ag + V. (ov) = ag +vVgo+4 0oVev =0, (9) sion always retains its volume during motion. Making use
o - . . of the concepts of measure theory, these statements can be
where the velocity field in the probability currenf = ovis  made even more precise [15], stating that the measure of a

defined as measurable point-set is an invariant of the time-evolution of
_h (VY VU A v 1 R the virtual ensemble.
T o\ U wr )T omi e Comparison of (15) with Eq. (10) shows that, in the quan-

tum mechanical case, the WP-width (or the square root of

i.e. it depends on the phase ¥t iy .
In the case of our WP solutions, we obtain for the quan-<x )) plays a role comparable to the volume in phase space
' in the classical case. The major differences, comparing both

tum system situations, are that, apparently, the conditidn = 0 already
14(a2 4 22) 1 4(3?) does not apply for free motion in the quantum mechanical
Vav = 2 @2tz 2 (z2) (10)  case and that, in the classical case also the momentum vari-

able contributes to the volume element. (In the case of quan-

This quantity only vanishes for WPs with constant width y,,; mechanical free motion, the momentum uncertaipty
but, in particular for the free motion, the WP is spreading injq constant, so that its product with?) (¢) still would not be
time, i.e. V,v # 0. This is a typical quantum mechanical .qnstant but growing in time.)

phroperty .O.f the s;r/]sterln th_at Thou:g dllsappgarlwhfen v;]/e ][nake In order to include the momentum-aspect also in our
the transition to the classical world. In particular for the reequantum mechanical considerations, it should be mentioned

r_notloc? WP,dwe cagfglve the e)ripl'fC't aﬁalytlcart]l_ form of the that the time-dependence of the WP-width is also related to
time-dependence of v, using the fact that in this case another quantum mechanical property, namely the correlation

i = ap = const 2 — ai -t (11) of position and momentum uncertainties via
0
is valid to obtain ([Z,Pl4+) = ([(z — (2)), (p — (P))]+)
Bot I O S i -2
Vv = 501+((Oﬂo)t)2' (12) h(id + 22) = m— (T%). (16)

For the classical situation, a continuity equation formally ~ Using, again, (11) for the free motion, the correlation is
equivalent to (9) exists but, in this case, it is for the distri-given explicitly as
bution of a virtual ensemble over the phase space described

by a density functiorp.; of the generalized coordinates and ([Z,P]+) = (Zp + pT) = %t = Bot. (17)
momenta and of time, known as phase density. @g

The fundamental theorem of Liouville selects from the
transformations of phase space those which represent pos;{i-
ble motions of the phase density and can be given in sever
equivalent formulations [15]. From Hamilton’s equations of

motion, it follows that 21 )
U=—+ ([&p+)", (18)
Vo =0, (13) 44

(but now in phase space wiffi representing derivatives with t€se correlations are responsible for the increasing uncer-
respect to position and momentum coordinates)the “lig- tainty as time progresses. Thus, a sys_tem that is |n|t2|ally pre-
uid” formed from the phase points is incompressible. ThisP@réd in a state of minimum uncertainyg. U = h*/4,

becomes more obvious if we rearrange Eq. (9) according toWhich comes closest to a point in phase space, will not keep
this minimal extension in position and momentum uncertain-

Since the uncertainty product of position and momentum,
= (7%)(p?), can be expressed witht, p], ) as

QQ + vV = —oVv =0, (14) fies if the correlations dq not vani_she. if Vou # 0. In
ot the case of the free motion of an isolated systéhgrows
to yield the so-called Liouville equation. according to (18) and (17) with
Introducing the hydrodynamical or substantial derivative
D/Dt = §/0t + vV (representing the change of a quantity U= hj {1 4 (ﬂot)Q] (19)
in the immediate neighbourhood of a point moving with the 4

“liquid”) and defining a “Volume”V as the inverse of the

phase density.;, V = 1/04, Eq.(14) can be rewritten as ~ guadratically in time to diverge far— oc.
It should be mentioned that some authors [16] assume

D%V _ (15) that the role of the phase space volume in quantum mechan-
' ics is played by the square root of the so-called “invariant
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uncertainty product{z?) (5*) — ([#,p];+)? = h?/4, which  of the occurring Fresnel integrals
is definitely a constant of motion; but this only corresponds w
to the phase space volume at thétial time ¢ty = 0, not _ /2 2
. . L . C(w) = /= [ cosy~dy,
for timest)¢y. This conserved quantity is more related with 7r
a kind of conservation of angular momentum (see, for exam- 0

ple [13]) than to conservation of phase space volume. Again, D) ]
e e . 2
it is just the fact that S(w) =4/ —~ / sin y“dy (23)
d 2 0
Vv = 1 Eﬁ ) _ ! <[x’~p]+> #0, is time-dependent, the problem was described as diffraction-
2 (&%) 2m (2% in-time.

_ ) ] ) This problem, however, corresponds to the situation of a
i.e., the WP width not being constant, that causes the introfree particle propagation with the initial condition

duction of a second term, proportional ¢&, 5], ), into the

expression for momentum uncertainty, Y(,0) = exp(ikz)O(—z), (24)
1/~ =1 12 where©(z) is the step function given by
) = ) - 0 = o + DI g | o0
B 42 72 ’ _ if x>
o o G)(”’)_{o it 2 <0 (25)

which is responsible for the change-in-time of the ini- 3nqy in the plane wave is connected with the momentum via
tial phase space volume. Therefore, the subtraction 052 Bk

(1/4){[Z,p]+)* from the uncertainty produdt = (z2)(5*) The time-dependent solution can now be obtained by sim-
obviously removes the time-dependence and leaves only thrﬂy applying our Green’s function of Eq. (2) to this initial
initial uncertainty producl/y = (z*)o(p*)o = h*/4. For  condition.i.e.
t)tg, the uncertainty product will grow in time if, as in our

case,(z?)(t) is spreading andp?) is constant (in our case,

the two time-dependent terms on the Ihs of Eq. (20) add up M (@, k,t) = / dz' G(x,2',t,0) exp(ikz’).  (26)
to a constant). This is precisely the difference between the —o0

classical situation and the quantum mechanical case - which Itis a straightforward matter to show th&f(z, k, ¢) can
is what we wish to point out in this paper. be written as o

The situation where the system interacts with an environ-

0

1/2
ment will be discussed in Sec. 4. Mz, k,t) = 1(i_m
B 21 \ihag?
i (Zaok h*k221(27)
3. Green’s function applied to the diffraction- xexp | i (Faok)r = 50 (2aok) < | ¢ - ar,
in-time problem where the integraly,,
The Green’s function discussed in Section 2 can also be ap- v m i 32
plied if the initial conditions are modified. One encounters In = / dz eXp{ - i2héao}’ (28)
such a situation when considering the problem of opening a “o0
completely absorbing shutter on which a stream of partideﬁepends on the shifted variable
of definite velocity is impinged, which was solved long ago .
by one of the authors [11]. The solution was obtained in a F—a — (aox _ hzoﬁk) (29)
form entirely analogous to the optical one of diffraction by a i ma )
straight edge, and can be given as with dz — da’.
Comparison with the Fresnel integrals in (21) shows
M(z,k,t) = exp [i(kx _ 1k:2t)} that the argumenty can now be expressed, using the time-
2 dependent parameters of the Green'’s function, as
1 { {1 1
X—=1 |= — C’(w)} —I—z{ - S(w)} } (21)
vall2 2 we | (e Pagar). (30)
2haz m

Since the argument Again, as already mentioned in Section 2, the occurrence

of the “initial width” « is only purely formal to show the
w = (m — kzt) (22)  similarities of the different quantum mechanical problems
disscussed in Secs. 2 and 3. With the definition:caind
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Z as given in Eq.(11)y, does not have any explicit influence use either non-unitary transformations [18, 19] or nonlinear

on the quantities given in Egs. (27)-(30). modifications of the SE [20—22] and is physically equivalent
So the solution (27) simplifies to to the system-plus-reservoir approach (for details see, for ex-
12 ample [23,24]). We shall show the influence f the dissipative
M(z, k,t) = 1 <m> enrionment on the occurrence, magnitude and time-scale of
T 2 \ iht the quantum effects discussed in the previous sections.

5 The treatment of dissipative systems within the Hamil-
exp {Z {kx - kaQt} } -Inr, (31)  tonian formalism was previously about sixty years ago by
Caldirola [25] and Kanai [26], but an apparent violation of

as expected, and turns into the form of (22). However, the uncertainty principle after canonical quantization made
comparison of (22) and (30) allows us now to express thét questionable and the target for criticisms for a long
time-dependence ab in terms of the quantities off that  time [27-29]. The situation became even more paradoxical
also occur in the problem of the WP discussed before, in pamafter Sun and Yu [23, 24] showed that the Hamiltonian oper-
ticular in V,v and in([Z,p]+). Again using (11), we find ator corresponding to Kanai and Caldirola’s explicitly time-
(1/h){([Z,p]4) = 25 = aioz = ot and thus we can identify  dependent Hamiltonian function could be derived from the

conventional system-plus-reservoir approach. The paradox

t= i([i,ﬁh). (32) Wwas resolved by one of the authors [18] showing that the

hiBo transformation of the operators must be accompanied by a

For an easier determination of the classical limit, the solu/10n-unitary transformation of the wave functions. In particu-
tions of the diffraction-in-time problem will be given in terms a1, for a solution? of the formal Caldirola-Kanai equation,

of Wigner distribution functions. As shown in [17], this give the corresponding solutiot;; for the physical dissipative
us system is given byn ¥4, = e~ 7" In . For t he free motion

] WP, this transformation has already been applied in an earlier
W (. pi s t) = sinlg(ik — p)] o (pt _ x) (33)  Work [30] leading to the same WP that is also the solution of
m(hk — p) m a nonlinear SE with logarithmic nonlinearity [22] describing
the same situation of the usual physical, instead of a formal
canonical, level. For our purpose, it is sufficient to state that,
2 (Pt x) (34 in this case, the continuity equation (9) is replaced by an ir-
' reversible Fokker-Planck-type equation of the form

where

The time-dependence W (z,p; k,t) results from the 9
time-dependence i/ (x, k,t) or w(t), so thatt occurring Erias Vz(ov) — DAzo =0, (36)
in (34) can be expressed by (32), and we obtain
whereD = (v/2)(x?) and~ is the friction coefficient. (The
g= 2( p ([#,p)+) — x) (35)  diffusion coefficientD on the quantum mechanical coordi-
h \ i3 nate variance in exactly the same way as it does depend on the
From this expression, the time necessary for the non¢lassical coordinate variance in the Langevin/Fokker-Planck
classical oscillatory pattern to vanish can be estimated, as wil€0ry (see, for example [31]), and can, in particular in non-
be shown in Sec. 5. equilibrium situations, also be time-dependent.)
Now then, the total velocity field contains, in addition

f f a dissipati . h to the convective velocity field, the diffusive velocity field
4. Effect of a dissipative environment on the | ~_ —D(Vo/0) with —DA,0 = V,up. For the total ve-

CharaCteI’IStIC quantum phenomena |ocity field Vit = U + VP, again
In recent papers, several authors [1-5] have claimed that in- 14 (32 gis
teraction with an environment is the actual key for the dis- Vavior = Va(v +vp) = 5 dz~2> (37)
appearance of typical quantum mechanical properties such T dis
as coherence, entanglement, etc. Any kind of interactiogpplies, whereas, for the convective velocity alone,
with an external world - even a measurement whose result
is not recorded [4] - is supposed to have the same effect on 1 %(iz)dis ol
the quantum system, so the details of the environment, and Vav = 2 (B)as 2 (38)

of the interaction with it, should not matter. Therefore, in

the following, we will treat the environment globaliye., re-  holds. Since both expressions differ only by a constant, they
garding only its effect on the quantum system under invesboth attain their maximum value for the same titpg,,..
tigation, without specifying its details or the details of the It should be mentioned that, in the dissipative case,
interaction. For this purpose, we apply a method used eatwo WP solutions exist for the damped free motion (see,
lier by us to describe dissipative systems. This approach cae.g, [32]), but, for purposes of comparison with the results
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of the isolated system, we only discuss the solution that corb.  Discussion of the maximum and disappear-

responds to a minimum-uncertainty WP fg0, i.e. with ance of the quantum mechanical effects
U(t=0)=h?/4.
The WP width, or position uncertainty, has been givenConsidering first, thev

in [30] or [22], respectively, and has the form
2 . . . - - . - .
5 . . Bo 27 classical limit,i.e,, for 2 — 0, this quantity vanishes to yield
(T%)dis = (Z%)0 [67 + (7/2) sinh Qt:| (39 the proper classical result - sing is proportional to,

— ~2
Thus,V v, corresponding to (12), and taking (38) into con- Bo = h/2miz")o.

LV)-term in the continuity equation
of the WP, it is obvious from Eq. (12) that in the so-called

sideration, is given by However, in naturel, is not zero, but has a definite con-
stant value § = 1.043 - 10727 g cns™!). Therefore, the
o (%) (1-e™) questions arise: under what circumstances - in particular, on
(Vav)ais = Boe 50 \2 5 (40)  what time-scale - doesv,v) attain its maximum value and,
1+ (7”) (I—e) therefore, has the best chance of being observed? And how

does the effect decrease to such small values that it does not

In this case too, the time-dependence(#t) 4, is con- i . .
: . L show up on a macroscopic scale? For this purpose, itis neces-
nected with the correlation of position and momentum uncer: . . T :
o : : ary to determine the time whéW ,v) attains its maximum
tainties but now, as can be proven using the WP solution ©and calculate, or at least estimate, the corresponding value of
the dissipative case, via ' ' P 9

(Vo).
([Z, D] )ais = m(d@?)dis — 7@2)[”5) (41) For theisolated system, its follows from Eq. (12) that the
dt maximum is reached for
and the uncertainty product, expressed with the help of
([Z,P)+)ais, is again given by _ 1 (45)
o1, Bo
Ugis = T Z<[xap]+>dis . (42)
For the case considerdds., the damped free motion with with the maximum value of
minimum initial WP,Uy;s can be written explicitly as 1
vzv)(tmax) = 7ﬁ0 . (46)
K2 Bo 2 K2 ( 9
o= —1<1 =) (1=t > — 4
O (I | S
with Uy (t = 0) = h2 /4. For microscopic systems witin =~ 1072 g and

As mentioned at the end of Section 2, for the isolated sys{Z*)o ~ 107'% cn?, this leads to3, ~ (1/2)10'° s~ and
tem, U is diverging fort — oo. However, in the case of the thUStmax ~ 2 % 1071¢ s, so theV,v-term reaches a large
interacting system, it follows from (43) that for— oo, Uy, ~ Maximum value of V,v) ~ (1/4)10'% s'. Note thattmax

approaches a finite maximum value given by is exactly in the time-range of several hundred attoseconds
) 9 where the effects investigated by Dreismann et al [7, 8, 10]
Udis oo = % [1 + (50) } = finite. (44)  also become experimentally observable.
’ v

For macroscopic systems with~1 g and(7?)y~1 cn?,
From this expression, it follows that the maximum valueit follows thatt,,., ~ 2 - 1027s, i.e. about102° years and

of uncertainty decreases with increasingA large value of  (v7_4) ~ (1/4)10727 s~!. So, even for a comparably small

Y, hOWeVer, COl‘I’eSpondS toa frequent interaction with the ensystem ona macroscopic Sca|e, the maximum “Compressib”_

vironment - where this interaction can also be interpreted agy” of the density becomes negligibly small and reaches its

an observation or a measurement. In the limit/of: co,i.e.  maximum only after a time much longer than the age of the
continual measurement, the maximum valué/gf; is iden-  niverse.

et o 23 g v ot _FOr (mes mueh smaler than. (7.1) rous po-
whe}e continual measurement, described by a single para ortional to pot; for imes much Ia_rger thamm@, €.
’ o - P (Bt) > 1, (V,v) vanishes in proportion taé/¢, which can

eter, causes a system to remain arbitrarily close to its |n|t|aalso be expressed as

state [33, 34]. But note that, even in the limit of “permanent

interaction” or “continual measurement’e. for vy — oo, it 1

is not possible to come below the lower boundiof= /2 /4. (Vav)y = = = 7—=—. 47)
The effect of dissipation on the diffraction-in-time prob- t (@04

lem has already been discussed in detail in Ref. 35. There it

wasshown that the dissipation restricts the region into which  Note that this quantiy does not depend on any of the sys-

the non-classical oscillatory pattern can proceed and also réem’s parameters, such as massor initial “dimensions”

duces the amplitude of the oscillations. (72)0, whereast,.x = 1/, does.
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So, for the isolated system, density which corresponds The major difference, in comparing the two cases, is now,
to an initial WP that can be constructed by a coherent supehowever, that, for the isolated system, the maximum value
position of infinitely many plane waves - reaches, for micro-decays only in proportion td/t, whereas, for the interacting
scopic systems, a large maximum of “compressibility” aftersystem, it decays exponentially according:to?, i.e. faster
a very short time of a few hundred attoseconds, after whicland with stronger interaction.
the value of(V,v) decreases in good approximation propor-  Consideration of the case> [, requires, for the micro-
tional to1/t; so, after one second for example, it has alreadyscopic situation, a large value ®fi.e., v > 10'¢ s71. In this
dropped to the comparably small value Gf,v = 1 s case, the square root in (48) can be approximateddunythat
For macroscopic systemg, is so small that even the max- the maximum effect is reached for
imum effect is negligible and would not be reached within

any observable time-scale. For the systereracting with tmaz = 1 In2~ l (52)
its environment, the maximum of(V,v)4s, as given in v v
Eq. (40), and the corresponding timg,, must be deter- Due to the large value of, .. is also, at most, in the
mined. In this case, the maximum effect is reached at range of a few hundred attoseconds or even smaller. With the
exact value of,,, ., it follows thate™7tmax = (1/2) and the
foe=—In |1+ 72 (48) expression (40) fofV,v) reduces to

2+ 5 B 1 18
0 0
Here,tmax does not only depend on the parameigthat (Vav)(tmaa) = 4 §ﬁ0 <,y> ’ (53)
characterizes the system, but also on the parametelnar- o
acterizing the interaction with the environment. i.e. the value of the case < [y multiplied by a factor
As we have seen in the isolated cagg, ~ 10'6 s-1  Smaller thanl. . .
holds, for microscopic systems; for macroscopic systems, FOrt > tmax, (V.v) decays exponentially according to
however, 3, ~ 10-27 s-1. If we assume that the friction (Va?) ~ (83/7)e™™. _
coefficienty corresponds to a collision frequency with sur-  TUrning to macroscopic systems witly ~ 10727 s,
rounding molecules, in the gas phasex 101° s1, and in f[he casey > ﬁo is egsny _fulﬂ!led. The time \(vherj the max-
condensed matter or liquids,~ 10' s~! should be valid. imum effect is obtained is given by (SZ?e., it is indepen- .
The situatiomy < 3, seems, therefore, realistic for mi- dent of the system parameter, depending only on the envi-
croscopic collision processes. In this case, the square root fienmental interaction. For instance, for—= 10 s, tmax
Eq. (48) can be well approximated by3,. The logarithm  Would be reached already aftgf.. = 0.7x10" s, i.e,
in (48) is then of the forntn (1 + X ) with X = ~/8, andcan  bY @ factor10%° faster than in the isolated situation with

be expanded according to [36] tmax A 10*"'s. However, for this value of;, the maxi-
mum value of(V,v) for the macroscopic system would be
(14 X) = X — 1o n Lys only (V4v)(tmax) & 1077 57, i.e, totally negligible. On
2 3 the other hand, if one wants to obtain a relevant value for
0 o X (V20)max, 7 Must be smaller than0—>* s~1, which ex-
= Z(—l) i T (49)  cludes any realistic interaction with the environment.

k=1 Considering now our second example, the diffraction in
time, we can, again, look first at what we obtain in the clas-
sical limit. As can be seen from Egs. (34) or (35) and (32),
if we takeh — 0, theng — 400, as the step function takes
Ly —1 (50) on the value 1 only if(pt/m) — = > 0. Using one of the

SinceX is of the order ofi0~3 or smaller,X? and higher
powers ofX can be neglected and we obtain

bmax & 250 =P definitions of thes— function [37],
ezactly as in the isolated case. Therefore, also including 5 . sin[g(hk — p)]
the environment, the maximum effect is reached in just the (hk = p) = ghlilo nlhk —p] (54)

same attosecond region. Using the same argument as in the o ) R )
truncation of the expansion (4Q); Vtmax = ¢—(7/5) can be  the classical limit of the Wigner distribution function (33) can

replaced byl — (v/), s0 that(V,v) 4. of Eq. (40) reduces be written as

for ¢t = thax tO hk
(Vi0)ais(tmax) = 500e7mee = 2o 70 . (51)
where we used the presenceddfik — p) in Eq. (55) to re-
For /By ~1073, e (/%) can be very well- placep by hk in the step function. We find that the classical
approximated byl, from whence it follows that also the limityields what we expect, since the only value possible for
mazimum value of (V,v)ais(tmax) = (1/2)5p is practi-  the momentum of the particle js = hk, and this value is
cally thesame as in the isolated case. only assumed when < (hkt/m); as forz > (hkt/m),
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the particle would not yet have arrived at point Further-  in our first example) but the extension in space (and, also
more, the typical wave aspect expressed by the oscillatindiffrent from our first example) does not leave the magnitude
sine-functionin (33), corresponding to the diffraction pattern,of the effect untouched but reduces the amplitude of the os-
is totally eliminated. Thus, the classical limit of the Wigner cillating diffraction pattern, as discussed in [35].
distribution function for the diffraction-in-time problem con- In conclusion, we can state that only for microscopic sys-
firms our intuition. tems does the non-vanishig,v-term show a significant ef-
Taking into account again that in natuie# 0, the same fect that attains its maximum on the time-scale of about a
limit ¢ — oo can also be reached, fapt/him — oo, i.e. hundred attoseconds - which is the same time-scale where,
t — oo. To estimate the time that is needed for the oscilla-also, the diffraction-of-time phenomenon still shows its typ-

tory pattern to vanish, we neeg > 1, i.e. ical quantum mechanical pattern. This is exactly the same
) time-scale where recent scattering experiments observed typ-

gp = 2rt _ éE > 1 (56) ical quantum mechanical properties for relatively massive ob-

hom h jects like protons or neutrons, even in ambient conditions.

or Inclusion of the interaction with a dissipative environment
L does not change the time or the magnitude of the maximum

t= M > i7 (57) of the V v-effect, only its temporal decay behaviour. For

hio AE the diffraction-in-time problem, however, the environment
whereE is the energy of the system. restricts the spacial extension as well as the magnitude of the

If we assume that the energy of our WP hitting the shuttefuantum effect.
before it opens is comparable with the energies transferred in Experiments attempting to observe and measure the ef-
the scattering experiments by Dreismann [10], which are irfects discussed should have the greatest chance of success i
the rangel ~ 2 — 30 eV, or by Ikedaet al. [38-40], which  they focus on microscopic systems in the attosecond time-
are around).5 eV, we obtain fort in (57) values between egime since, particularly for non-isolated systems, the ef-
5 — 300 attoseconds which, again, are in the time-domainf€Cts might decreqse rapidly fpr longer times and are negligi-
where, in the above-mentioned experiments, typical quanturfile for macroscopic systems in general.
entanglement effects were observed. Also recent results by
Karlssonet al. [41-43] report characteristic quantum effects Acknowledgement
in scattering experiments for times smaller t15&0 attosec-
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