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It is well-known that the flow of gas, liquid, and their mixtures through restrictors installed in pipeline systems is of great practical importance
in many industrial processes. In spite of its significance, numerical hydrodynamics simulations of such flows are almost non-existent in the
literature. Here we present exploratory two-dimensional calculations of the flow of a viscous, single-phase fluid through a wellhead choke
of real dimensions, using the method of Smoothed Particle Hydrodynamics (SPH) coupled with a simple isothermal equation of state for
description of the flow. The results indicate that an approximately stationary mean flow pattern is rapidly established across the entire tube,
with the density and pressure dropping and the flow velocity rising within the choke throat. If the downstream flow is inhibited at the outlet
end of the tube, a pressure drop of about 12% occurs across the choke when the mean flow reaches an approximate steady state. If, on the
other hand, the flow is not inhibited downstream, the pressure drop is reduced to about 8% or less. The flow across the choke throat remains
subsonic with typical velocities of∼ 0.1c, wherec denotes the sound speed. In contrast, the flow velocities in the upstream and downstream
sections of the pipe are on the average factors of∼ 6 and∼ 3.5 times lower, respectively. Correlation studies based on experimental data
indicate that the pressure drop is only 3% or even less for gas flow through wellhead chokes at a speed of0.1c. This discrepancy reflects the
inadequacy of the isothermal equation of state to describe realistic gas flows.

Keywords: SPH; numerical particle metnods; choked flow; compressible flow.

Es bien conocido que el flujo de gas, lı́quido y sus mezclas a través de restrictores instalados en sistemas de tuberı́as es de gran importancia
práctica en muchos procesos industriales. A pesar de su importancia, simulaciones hidrodinámicas nuḿericas de este tipo de flujos son casi
inexistentes en la literatura. Aquı́ presentamos cálculos exploratorios bidimensionales de flujo viscoso de una sola fase a través de un estran-
gulador de dimensiones reales, utilizando el Método de Hidrodińamica de Partı́culas Suavizadas (SPH) acoplado con una ecuación sencilla
isot́ermica de estado para la descripción del flujo. Los resultados indican que un patrón de flujo medio aproximadamente estacionario se es-
tablece ŕapidamente a través de todo el tubo, con la densidad y presión cayendo y el flujo de velocidad aumentando dentro del estrangulador.
Si el flujo aguas abajo es inhibido a la salida del tubo, una caı́da de presíon de alrededor de 12% ocurre a través del estrangulador cuando
el flujo medio alcanza un estado aproximadamente estacionario. Si, por otro lado, el flujo no es inhibido aguas abajo, la caı́da de presíon
se reduce a 8% o menos. El flujo a través del estrangulador se mantiene subsónico con velocidades tı́picas de∼ 0.1c, dondec denota la
velocidad del sonido. En contraste, la velocidad del flujo en las secciones aguas arriba y abajo del tubo son en promedio factores de∼ 6 y
∼ 3.5 veces menores, respectivamente. Estudios de correlación basados en datos experimentales indican que la caı́da de presíon es de solo
3% o inclusive menos para flujo de gas a través del estrangulador de la cabeza de un pozo a una velocidad de0.1c. Esta discrepancia refleja
que la ecuación isot́ermica de estado no es adecuada para describir flujos realistas de gas.

Descriptores: SPH; ḿetodos nuḿericos de partı́culas; flujo estrangulado; flujo compresible.

PACS: 47.11.+j; 47.27.-i; 47.85.Dh

1. Introduction

The flow of gas-liquid mixtures through restrictors, such as
flow control valves and chokes, in pipeline systems is of great
practical interest in many applied branches of engineering. In
the oil industry, wellhead chokes are installed to control flow
rates and protect the surface equipment from unusual pres-
sure fluctuations. Due to its practical significance, single-
phase and two-phase flows through chokes have been the sub-
ject of numerous investigations in the past 40 years. How-
ever, the complexity of the problem has limited the investi-
gation mostly to the development of empirical correlations
based on experimental measurements and theoretical stud-
ies based on simplified treatments [1–6]. In general, when
a flowing mixture crosses a choke, its velocity increases and

its pressure drops. The empirical correlations aimed at pre-
dicting the dependence of the pressure drop on the velocity
through the choke are usually valid over the range where
experimental data are available, but may fail when extrap-
olated to new conditions. Also, existing correlations of oil,
gas, and water show little success in describing the conditions
that determine the boundary between critical and subcritical
flow of multiphase mixtures through chokes. Therefore nu-
merical hydrodynamics simulations aimed at predicting the
flow properties through wellhead chokes for real conditions
are highly desirable. With the exception of a very few in-
stances [7], such simulations are practically non-existent in
the literature, even for the case of single phase flows.

In this paper, we search for a way of solving the Navier-
Stokes equations in order to simulate the flow of a single-
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phase, viscous fluid through a wellhead choke using a modi-
fied version of the TREESPH method, originally introduced
by Hernquist & Katz [8]. In particular, a Smoothed Par-
ticle Hydrodynamics (SPH) formulation is used which has
been shown to produce accurate results for both compressible
flows at high and moderate Reynolds numbers, and incom-
pressible flows at low Reynolds numbers, without the need of
special modifications [9]. Unlike other SPH-based schemes
for treating viscous flows [10–13], the present method strictly
relies on symmetrized SPH representations for the equations
of motion and energy coupled with the usual kernel smooth-
ing for the density. This results in a variationally consistent
SPH scheme in which momentum preservation can be ad-
dressed properly [14]. The treatment of viscosity, thermal
conduction, kernel interpolation, and boundary conditions
are described in Refs. 9, 7 and 15 for a variety of different test
cases including Poiseuille flow through parallel plates and
Hagen-Poiseuille flow through a circular pipe, single phase
flow through wellhead chokes, and formation of a stable liq-
uid drop for a van der Waals fluid.

In this paper, with the aim of quantifying the pressure
drop experienced by the flow across the choke throat, ex-
ploratory two-dimensional simulations of flow through a
wellhead choke device of dimensions similar to those oper-
ating in real production tubing are presented. As a first ap-
proach, we neglect heat exchange between different parts of
the fluid and assume an isothermal equation of state. Under
this assumption, the flow is completely described by solv-
ing the continuity and momentum equations. Further work in
this line will extend the present calculations to consider the
flow of gas-liquid mixtures with more realistic equations of
state. In particular, predictions of the pressure drop for two-
phase flows through chokes are of fundamental importance
because they will allow direct comparison with available cor-
relation analyses of existing experimental data sets for both
critical and subcritical flows of air/water, air/kerosene, nat-
ural gas, natural gas/oil, natural gas/water, and water flows
(see Ref. 6), which predict on average a discharge coefficient
of order unity when all data are considered simultaneously.

For the time-dependent plane Poiseuille test case de-
scribed in Sec. 2.3 we have used a very low Reynolds number
of Re = 0.0125, and for the choke modelsRe ∼ 106. This
high value forRe is due to the particular adopted isothermal
equation of state. The choke dimensions used for the calcu-
lations are in accordance with typical real dimensions in oil
pipeline systems. For more realistic equations of state for
oil/gas mixtures,Re will be much lower. The SPH code used
for obtaining the present results is based on an astrophysical
code which has been tested for large Reynolds numbers for
standard test cases and various astrophysical applications (see
Sigalotti & Klapp [16] and cited references). Numerical SPH
calculations of plane Poiseuille and Hagen-Poiseuille Flows
for higher Reynolds numbers than ours have been performed
by Takedaet al. [17], Morris et al. [13], Watkinset al. [12]
and Sigalottiet al. [9].

2. Computational method

SPH is a fully Lagrangian technique for solving the partial
differential equations of fluid mechanics in which the fluid
elements are sampled and represented by particles. In its
original form [18, 19], the method was developed for ap-
plications to astrophysical problems involving compressible
flows [20–24]. Because of its wide range of applicability,
SPH has also been employed to model industrial and natu-
ral processes, many of which often involve incompressible
flows and their interaction with free and solid boundary sur-
faces [7,9,10,15,17,25–27].

2.1. SPH equations and methodology

In SPH, the physical properties of a particle are deter-
mined from those of a finite number of neighboring parti-
cles through kernel interpolation. In this way, the value of
any field quantity is represented by a weighted sum over the
contributions of all neighboring particles. For instance, the
continuous density field at the location of particle “a” is esti-
mated according to

ρa =
N∑

b=1

mbWab, (1)

wheremb is the mass of particleb and the summation is
taken overN neighboring particles, including particlea. The
smoothing kernel or weight functionWab = W (|ra − rb|, h)
depends on the distance between the particles and the
smoothing lengthh specifying the extent of the averaging
volume. The particles move with the local fluid velocity and,
in addition to their mass, they carry other fluid properties spe-
cific to a given problem. With the smoothed representation of
the fluid variables and their spatial derivatives, the continuum
partial differential equations are converted into a set of ordi-
nary differential equations for each particle.

In SPH formulations where Eq. (1) is used to replace the
equation of continuity, variational consistency requires writ-
ing the SPH representations of the equations of motion and
energy in symmetrized form [9, 14]. In particular, the sym-
metrized form used for the conservation of momentum is

dva

dt
=

N∑

b=1

mb

(
Sij

a

ρ2
a

+
Sij

b

ρ2
b

)
· ∇aWab, (2)

whereva = v(ra) is the velocity of particlea,∇a is the gra-
dient operator with respect to the positionra of that particle,
andSij are the components of the stress tensor given by

Sij = −pδij + σij , (3)

wherep is the internal pressure,δij is the unit tensor, andσij

are the components of the viscous stress tensor defined as

σij = η

(
∂vi

∂xj
+

∂vj

∂xi

)
+

(
ζ − 2

d
η

)
(∇ · v) δij . (4)
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Herexi denotes theith Cartesian component of the position
vectorr, vi is the ith component of the fluid velocity, and
η andζ are the coefficients of shear and bulk viscosity, re-
spectively. In Eq. (4), the parameterd specifies the number
of spatial dimensions, that is,d = 2 or 3 for two- or three-
space dimensions, respectively. For details on the derivation
of Eq. (2) and the corresponding symmetrized SPH represen-
tation for the time rate of change of the specific internal en-
ergy, including the effects of heat conduction, we refer to [9].
In practice, it is a simple matter to calculate the viscous forces
on the right-hand side of Eq. (2) since they only require di-
rect evaluation of the viscous stress tensor (4), which in turn
can be expanded in complete SPH form using the standard
expressions

(∇v)a =
1
ρa

N∑

b=1

mb (vb − va)∇aWab, (5)

and

(∇ · v)a =
1
ρa

N∑

b=1

mb (vb − va) · ∇aWab, (6)

for the velocity gradients and divergence, respectively. Note
that Eq. (2) can be used regardless of whether the shear and
bulk viscosity coefficients are constant, as in the Navier-
Stokes equations, or arbitrary varying functions of the co-
ordinates. Since direct evaluation of second-order derivatives
of the kernel is not required, the method permits the use of
low-order interpolating kernels of compact support, such as
the spherically symmetric cubic spline kernel proposed by
Monaghan & Lattanzio [28], without compromising the sta-
bility and accuracy of the calculation, even in the case of very
small Reynolds numbers [9].

Since SPH can be computationally more expensive than
other alternative techniques for a given application, espe-
cially when a large number of particles is involved, a ba-
sic requirement here is that the search for nearest neighbors
must be performed efficiently in order to reduce the com-
putational cost. For applications with a constant smoothing
lengthh, an increase in efficiency is achieved through the use
of grids and linked lists [29, 30]. However, these methods
are not generalizable to the case of spatially varying smooth-
ing lengths. In particular, a variableh is desirable in appli-
cations where regions of relatively low and high density of
particles coexist in the flow domain. In this case, full ad-
vantage of the particle distribution to resolve local structures
can be taken by treating both types of regions with compa-
rable accuracy. This task can be performed efficiently using
the TREESPH method of Hernquist & Katz [8], which com-
bines SPH with the hierarchical tree algorithm of Barnes &
Hut [31]. Originally invented for astrophysical applications
to self-gravitating systems, TREESPH solves the Poisson
equation efficiently and adaptively without appealing to grid-
based methods and, compared to other SPH-based schemes,
optimizes the search for nearest neighbors even in applica-

tions where calculation of the gravitational forces is not re-
quired. This is possible because the Barnes-Hut tree method
relies on a hierarchical subdivision of space into cubic cells,
allowing for range searching and recording only the appro-
priate neighbors to each particle. As a result, TREESPH is
able to handle individual particle smoothing lengths and in-
dividual particle timesteps, making the scheme fully adap-
tive in space and time. Although the method was devised
for astrophysical applications, it is also applicable to a much
broader class of problems involving both long- and short-
range forces. Even in the case of incompressible flows, where
h need not vary in space and time, TREESPH can work more
efficiently than other SPH-based codes, simply because the
tree method reduces to a pure nearest searching algorithm.

2.2. Treatment of solid boundaries

In problems involving flow through pipes and chokes where
solid walls are present, the accuracy of the calculations is
sensitive to the treatment of the interaction between the fluid
and the solid surface. For simulations of a viscous fluid flow
in presence of solid walls, it is necessary to impose no-slip
boundary conditions to mimic the sticking of the fluid to the
wall. It is common practice in SPH to model such bound-
ary conditions using image particle methods, which in turn
are useful in removing the severe crippling density deficiency
that arises when Eq. (1) is applied to particles near a bound-
ary.

In particular, we adopt here the method employed by
Takedaet al. [17], in which image particles are created by
reflecting fluid particles across the boundary. This operation
results in a collection of imaginary particles which are ex-
ternal to the fluid domain. Such particles are treated as ac-
tual SPH particles, and so they contribute to the density and
pressure gradients. In practice, accurate results for the kernel
smoothing of the density are obtained by reflecting no more
than four fluid particles aligned in the direction normal to the
surface. Unlike actual fluid particles, imaginary particles are
not allowed to move relative to the solid surface. Although
a velocity is necessarily assigned to each of them, they are
always constrained to remain anchored to the solid wall in
the course of the calculation. In that way, each imaginary
particle is given a density equal to the value of its closest
image within the fluid domain. For instance, if we denote
by di the normal distance of the imaginary particlei to the
solid boundary surface, its closest image is chosen such that
|da− di| is a minimum, where the minimum is taken over all
normal distancesda of fluid particlesa to the boundary sur-
face. Moreover, the velocityvi of the imaginary particlei is
calculated from the value of its closest image, sayva, using
the interpolation formula

vi = −va
di

da
. (7)

In this way, a linear variation in the direction normal to the
boundary surface is allowed to the velocity of each imaginary
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particle such that it exactly vanishes of the surface. An exten-
sion of this method to curved surfaces is described in Ref. 13.
Although this procedure has been found to work particularly
well for plane walls and curved surfaces with a simple ge-
ometry, it is computationally expensive and fails for irregu-
lar solid boundaries. An alternative method which is able to
handle solid surfaces of any shape as well as other types of
boundaries, including free and deformable surfaces, in a uni-
fied manner is currently being undertaken. This new scheme
is based on a modified expression for the kernel smoothing
of the density and specialized SPH representations of the hy-
drodynamic equations for particles near a boundary, and so it
may treat several types of boundaries in essentially the same
manner without the need for processing imaginary particles
outside the computational volume. Details of this method
along with applications to a variety of different test cases,
will be presented in a forthcoming paper.

2.3. Time-dependent plane Poiseuille flow

As a simple test case, we consider the unsteady incompress-
ible flow between two infinite, parallel plates at rest. As in
Ref. 9, we choose the (x,y)-plane to represent the fluid and
the positivex-axis as the flow direction. The center of the
channel is made to coincide withy = 0, so that the plates
are located aty = ±d and separated by a distance2d. For
this simple case, an analytical solution to the Navier-Stokes
equations can be found for thex-velocity as a function of the
y-coordinate and timet, namely

vx(y, t) =
F

2ν

(
y2 − d2

)

+
∞∑

n=0

16(−1)nd2F

νπ3(2n + 1)3
cos

[
(2n + 1)πy

2d

]

× exp
[
− (2n + 1)2π2νt

4d2

]
, (8)

where ν is the coefficient of kinematic viscosity and
F = ∆p/(ρL) is a force per unit mass proportional to the hy-
drostatic pressure gradient∆p/L = −2νρv0/d2 measured
between two points separated by a lengthL along thex-
direction. Herev0 is a constant asymptotic velocity given
by

v0 = − F

2νd2
. (9)

As t → ∞, the series solution on the right-hand side of
Eq. (8) vanishes and so the velocity approaches the steady-
state solution given by the first term, which describes a
parabolic profile with the vertex of the parabola (aty = 0)
moving in the direction of the flow with the asymptotic ve-
locity v0. Thus, if at the entrance of the channel the flow is
uniform, it will then evolve into a sequence of parabolic pro-
files until a stationary solution of the form given by the first
term on the right-hand side of Eq. (8) is achieved.

The transient behavior is calculated with the TREESPH
code for the case of a very low Reynolds number
(Re = 0.0125) and taking2d = 0.1 cm, ρ = 1.0 g cm−3,
andv0 = 1.25 × 10−3 cm s−1. With this choice, the co-
efficient of kinematic viscosity isν = 0.01 cm2 s−1. The
calculation was made using 1891 fluid particles spanning the
channel fromx = 0 to x = L, with L = 0.05 cm. The parti-
cles are initially at rest and distributed on a regular Cartesian
mesh, with 31 particles along the lengthL and 61 covering
the separation distance between the plates, yielding an inter-
particle distance of≈ 1.67×10−3 cm in both directions. The
number of neighbors within the area enclosed by a circle of
radius2h is chosen to be 12, so thath ≈ 1.86 × 10−3 cm.
The presence of the bounding solid walls is handled as out-
lined above, by placing four consecutive rows of 31 imagi-
nary particles each along the lengthL just outside the plates.
Periodic boundary conditions are applied at the inlet and out-
let sides of the channel by first adding four extra particles
to the left (x < 0) and to the right (x > L) extremes of
each row of exterior imaginary particles, thus yielding a to-
tal number of 39 imaginary particles per row, and then filling
the space just ahead (x < 0) and behind (x > L) the channel
with four columns of 61 imaginary particles each, covering
the full separation distance between the plates along they-
direction. After each timestep, the information carried by the
four columns of fluid particles next to the exit of the channel
is copied into the four columns of imaginary particles next
to the entrance. In this way, for each particle leaving the
channel there is another one entering on the inlet side which
carries its information. For convenience in handling the tree
construction in the TREESPH code, the total number of par-
ticles must be conserved during the whole calculation. This
is easily done by noting that, for each fluid particle leaving
the channel and entering in the outlet set of imaginary parti-
cles, there will be one particle belonging to this set which is
removed and placed into the inlet set to compensate for the
one that enters the channel.

FIGURE 1. Numerically obtained velocity profiles (filled dots)
compared to the analytical solution (solid curves) for unsteady
Poiseuille flow between two infinite plates withRe = 0.0125. A
sequence of times in seconds is shown for the transient evolution
until 1.0 s when the steady-state solution is achieved.

Rev. Mex. F́ıs. 51 (6) (2005) 563–573



TWO-DIMENSIONAL TREESPH SIMULATIONS OF CHOKED FLOW SYSTEMS 567

The results for the transient behavior are displayed in
Fig. 1, where the velocity profiles are shown for a sequence of
times up to 1.0 s, when the steady-state solution has already
been reached. We find that the numerical solution (filled dots)
reproduces the analytical one (solid curves) given by Eq. (8)
with a maximum relative error of 0.28% during the transient,
while at 1.0 s it improves to 0.16%. In addition, the asymp-
totic valuev0 (at 1.0 s) is obtained with a relative error of
∼ 0.08%. The incompressibility of the fluid is also very
well reproduced by the calculation, with the maximum and
minimum ratios of the numerical to the analytical density be-
ing 1.0002 and 0.9999, respectively. We further note that the
points of contact of the fluid with the solid walls remain fixed
in space and time, a feature of the solution which is also ac-
curately reproduced by the calculation.

3. Wellhead choke models

The aim of this paper is to present exploratory two-
dimensional simulations of single-phase flow through well-
head chokes of dimensions similar to those employed in real
production piping. The geometry of the wellhead choke de-
vice model is shown in Fig. 2. The system is composed of a
horizontal pipe of half-lengthL/2 ≈ 59.27 cm with a con-
striction, or choke throat, in the middle. The pipe has a radius
of D1/2 ≈ 4.45 cm just before the choke (upstream part)
and ofD2/2 ≈ 2.67 cm after it (downstream part). A choke
throat of half-lengthλ/2 ≈ 6.82 cm and radiusδ/2 ≈ 0.593
cm is designed in correspondence with typical real systems.
Mean quantities before and after the choke throat are eval-
uated at the position of the dots in Fig. 2 denoted “1” and
“2”, respectively. As for the previous plane Poiseuille test,
we choose the (x,y)-plane to represent the flow and the posi-
tive x-axis as the direction of the main flow. The pipe region
is filled with a total number of 8785 fluid particles initially at
rest and arranged in a uniformly spaced Cartesian mesh.

FIGURE 2. Geometry of the wellhead choke model used in the cal-
culations. The flow within the choke system is along thex-axis in
the direction of increasingx.

With this choice, the interparticle distance is about 0.296 cm
along thex- and y-axes. Each fluid particle spans a cir-
cle of influence of radius2h around it, giving an initial
h ≈ 0.317 cm. We assume that there is no significant heat ex-
change between different parts of the fluid, and that the pres-
sure is related to the density through the isothermal equation
of state

p = c2ρ, (10)

wherec is the speed of sound. For present calculations we
takec = 2.0× 104 cm s−1.

Inlet boundary conditions are designed by injecting par-
ticles at the entrance of the pipe with a Poiseuille velocity
profile given by

vx = vinlet(t)
(

1− y2

R2

)
, vy = 0, (11)

where t is time, R denotes the radius of the pipe, and
vinlet(t) = v0(t/τ) for t ≤ τ andvinlet(t) = v0 for t > τ ,
with τ = 0.1 s andv0 = 500 cm s−1. Thus, att = 0, all
particles are at rest while during the first 0.1 s, the velocity
of the inlet particles is allowed to increase linearly with time
until a stationary Poiseuille flow is achieved fort ≥ τ . In ad-
dition, the injection of particles is made at the pipe entrance
such that the input density is always 1.0 g cm−3.

Treatment of the solid boundaries is achieved by covering
the surface of the wellhead choke device with four consecu-
tive rows of 401 linearly arranged imaginary particles each
and using the same method outlined in Sec. 2.2. With this
choice, the crippling deficiency implied by the use of Eq. (1)
near a solid surface is completely removed. Inlet and outlet
boundary conditions are designed by first adding to each row
of exterior imaginary particles 6 more particles on each side,
yielding a total number of 413 particles per row, and then fill-
ing the space on the inlet side with 6 columns of 31 imaginary
particles each, covering the full upstream pipe diameter, and
that on the outlet side with 6 more columns of 19 imaginary
particles each, covering the full downstream pipe diameter.
Two distinct wellhead choke models are considered which
differ only in the form of the outlet flow boundary condition.
In one model, a lid with a small orifice of radius 0.44 cm and
centered aty = 0 is placed at the outlet end (x = L/2) of the
pipe, as shown in Fig. 2. In this way, as the flow pushes the
particles downstream, some of them may eventually leave the
system through the orifice. A reason for placing this further
restriction is to simulate the resistance that the fluid finds af-
ter having passed through the choke throat. In practice, the
lid is modeled as a solid wall and the orifice by removing
three particles per column aroundy = 0 from the outlet set
of imaginary particles. When a particle of the inlet set is
injected at the pipe entrance, the rightmost particle that has
already left the system through the orifice is removed and
placed into the inlet set of imaginary particles to compen-
sate for the one that that which entered. In this way, the to-
tal number of particles is conserved during the calculation.
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In contrast, the second model mimics an infinitely long pipe
downstream. In this case, the streamwise gradient for each
variable is prescribed to be equal to zero at the outlet. Within
the SPH framework, such boundary condition is easily im-
plemented by using the outlet set of imaginary particles as
the images of those fluid particles that are closest to the pipe
exit. Therefore, each imaginary particle belonging to the out-
let set is given the density and velocity of its closest image
such that the streamwise density and velocity gradients van-
ish atx = L/2. When a fluid particle leaves the pipe, it is
removed and stored in a reservoir of particles where it will
be assigned a zero velocity. With this provision, the outflow-
ing particles are not allowed to enter the region occupied by
the outlet set of imaginary particles, and thex-coordinate of
the right extreme of the computational tube is kept fixed in
time atx = L/2. Moreover, when an inlet imaginary parti-
cle is injected into the left extreme of the tube to become a
fluid particle, another one is automatically removed from the
reservoir and inserted into the inlet set of imaginary particles

with a prescribed input density of 1.0 g cm−3 and a velocity
as given by Eq. (11). This guarantees that the total number
of particles is strictly conserved during the calculation.

Here we consider three separate model calculations all
starting with the same parameters as specified above. In all
cases, the particles filling the computational domain are given
an initial density equal to the input value of 1.0 g cm−3. The
coefficient of kinematic viscosity is assumed to be constant
and equal toν = 5.0 × 10−4 cm2 s−1 for two model cal-
culations, which differ only in the form of the outlet bound-
ary condition,i.e., for one model (case A) the downstream
flow is inhibited by the presence of a lid with a small ori-
fice at the outlet end of the pipe (see Fig. 2), while for the
second model (case B), an infinitely long pipe of constant
cross-sectional area is allowed downstream. The third model
calculation (case C) is identical to case B except that a higher
coefficient of kinematic viscosity (ν = 0.01 cm2 s−1) is used.
For all three cases, the coefficient of bulk viscosity is set to
zero.

FIGURE 3. Mean pressure (left panel) and velocity (right panel) profiles across the full length of the pipe for model A. The velocity is given
in units of the sound velocityc and the pressure in units of the input pressurep0 = c2ρ0, where the input densityρ0 = 1.0 g cm−3. An
approximate mean flow steady-state solution is achieved by the timet = 0.052s.
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4. Results

We first describe the results for model A, which differs from
the other two cases in that the downstream flow after the
choke throat is inhibited by a solid lid with a small orifice
placed at the outlet endx = L/2 of the pipe. The details of
the evolution for this case are shown in Fig. 3, which depicts
the mean pressure (left panel) and velocity (right panel) pro-
files across the full length of the tube for a sequence of times
from t = 0.002 s to t = 0.27 s. The pressure is given in
units of the input pressurep0 = c2ρ0, where the input den-
sity ρ0 = 1.0 g cm−3.

The filled dots represent average values of the pressure
and velocity. In particular, each dot on the curves is a
mean value obtained by averaging over the contribution of
all particles within a pipe section of area2R∆x, where
∆x ≈ 3.39 cm andR may be either the radius of the choke
throat or that of the pipe before or after the choke. For each of
the curves in Fig. 3 we present details in Table I of the mean
pressure and velocity just before and after the choke and the
maximum mean velocity within the choke. At the very be-
ginning of the calculation, a flow sets in rapidly across the
pipe as shown by the curve fort = 0.002 s, which pushes the
particles downstream, making some of them leave the system
through the orifice. As a result, a jet of particles is formed in
the regionx > L/2. This is shown by the mean flow velocity
rising monotonically downstream and reaching a maximum
value at the outlet end of the pipe. Conversely, the mean flow
pressure decreases toward the outlet end. From Eq. (11) it
follows that by0.002 s the inlet velocity is only 2% of the
value for true steady-state Poiseuille inflow. As the inlet ve-
locity increases, the extension of the outer jet shrinks and
eventually disappears. This occurs at about0.052 s, when
the inlet velocity is 14% of the steady-state Poiseuille value.
When this happens, both the mean pressure and velocity pro-
files within the tube no longer change qualitatively, implying
that an approximate mean flow stationary pattern is achieved.
Common to all these profiles is a well-marked mean pressure
drop within the choke region. In the right panel we also see
that the mean flow velocity increases steeply at the entrance
of the choke throat. This is one effect of the much smaller
cross-sectional area available for the flow across the choke.
When the flow exits the choke, its mean velocity decreases
discontinuously to a value which is slightly higher than that
just ahead the choke. In particular, by0.052 s, the ratio of
the mean pressure behind to that ahead of the choke throat is
p2/p1 ≈ 0.87, implying an approximate 13% decrease in the
mean pressure in the downstream direction, while the maxi-
mum mean velocity within the choke is about0.093c, which
is a factor of∼ 8 times higher than the value just ahead of the
choke. As the evolution proceeds, the pressure ratiop2/p1

oscillates between≈ 0.86 and≈ 0.95, while the maximum
mean velocity does so in the range≈ 0.097 − 0.113c. By
0.27 s, when the calculation is terminated,p2/p1 ≈ 0.88

and the maximum mean velocity is≈ 0.1c. The discontin-
uous behavior of the mean pressure and velocity across the
choke induces fluctuations in the flow which propagate down-
stream. while part of these waves are transmitted through the
orifice, leaving the system, most of them are reflected back.
The reflected waves then interact with the ones propagating
downstream, causing a gradual decrease in their amplitude,
as may be seen by comparing the sequence of mean pres-
sure and velocity profiles for the downstream flow. As the
reflected waves propagate back across the choke, they also
affect the upstream mean flow, as evidenced by the relatively
higher amplitude ripples present in the mean pressure and
velocity profiles before the choke. The continual interaction
between the incoming and reflected waves will then cause the
amplitude of the fluctuations to gradually decrease with time.

The results for model B with an infinitely long pipe down-
stream are shown in Fig. 4 and Table II, where the mean
pressure and velocity profiles are displayed for a sequence
of times fromt = 0.0025 s to t = 0.298 s. Compared to
model A, an approximate mean flow stationary solution is
now achieved after a longer time (t = 0.087 s), when the
inlet velocity is 27.5% of the required value for steady-state
Poiseuille flow. After this time, both the mean pressure and
velocity profiles remain qualitatively similar in the course of
the evolution, as shown by the sequence of Fig. 4 curves. The
mean pressure drop across the choke throat corresponds to
a pressure ratiop2/p1 ≈ 0.92, while the maximum velocity
within the choke oscillates between≈ 0.098c and0.113c. By
the timet = 0.298 s, the pressure drop is of about 8% com-
pared to the 12% decrease for model A. Evidently, having a
long pipe downstream with no restrictions reduces the pres-
sure drop. In the downstream part of the pipe (after the choke)
the mean flow velocity is higher by factors of∼ 1.5 compared
to that in the upstream section before the choke. The ripply
behavior of the profiles after the choke indicates the existence
of pressure and velocity fluctuations which propagate down-
stream with the flow. Because of the outflowing boundary
conditions, these fluctuations are never reflected back, thus
explaining why the upstream mean flow profiles look much
smoother compared to model A.

TABLE I. Mean pressure just before the choke (p1) and after the
choke (p2) and mean velocity just before the choke (v1) and after
the choke (v2) for model A for the curves shown in Fig. 3. The
maximum mean velocity within the choke isvmax, p0 denotes the
input density,c the sound speed and the time is given in seconds.

Time p1/p0 p2/p0 p2/p1 v1/c v2/c vmax/c

0.0020 1.0050 0.9681 0.9632 0.0007 0.0057 0.0307

0.0520 0.7909 0.6908 0.8734 0.0785 0.0301 0.0930

0.0760 0.7489 0.6480 0.8652 0.0841 0.0332 0.0965

0.1210 0.6895 0.6014 0.8722 0.0898 0.0237 0.1130

0.1800 0.6124 0.5590 0.9128 0.1021 0.0306 0.1021

0.2700 0.6055 0.5350 0.8835 0.0757 0.0243 0.0972
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FIGURE 4. Mean pressure (left panel) and velocity (right panel) profiles across the full length of the tube for model B. The velocity is given
in units of the sound velocityc and the pressure in units of the input pressurep0 = c2ρ0, where the input densityρ0 = 1.0 g cm−3. An
approximate mean flow steady-state solution is achieved by the timet = 0.087 s.

TABLE II. Mean pressure just before the choke (p1) and after the
choke (p2) and mean velocity just before the choke (v1) and after
the choke (v2) for model B for the curves shown in Fig. 4. The
maximum mean velocity within the choke isvmax, p0 denotes the
input density,c the sound speed and the time is given in seconds.

Time p1/p0 p2/p0 p2/p1 v1/c v2/c vmax/c

0.0025 1.0140 0.9926 0.9788 0.0018 0.0001 0.0104

0.0275 0.9868 0.9065 0.9186 0.0987 0.0291 0.1018

0.0875 0.9869 0.9074 0.9194 0.0990 0.0253 0.0990

0.1925 0.9866 0.9126 0.9249 0.0926 0.0285 0.1051

0.2300 1.0000 0.9042 0.9042 0.0802 0.0309 0.1011

0.2975 0.9816 0.9061 0.9230 0.1055 0.0288 0.1130

Finally, in Fig. 5 and Table III we display the results ob-
tained for model C, which is identical to case B except that
the coefficient of kinematic viscosity is increased by a fac-
tor of 20. In this case, an approximate mean flow stationary
solution is reached byt = 0.085 s, when the inlet veloc-

ity is 32.5% of the steady-state Poiseuille flow value. Also,
the value of the mean flow velocity at the exit of the choke
is a factor of∼ 1.7 higher compared to the corresponding
value at the choke entrance. Except for these quantitative
differences, the mean pressure and velocity profiles are very
similar to those shown in Fig. 4, withp2/p1 ≈ 0.92 and max-
imum mean velocities of about0.1c across the choke. Thus,
enhancing the viscous properties of the fluid has little effects
on the pressure drop and velocities within the choke region.

As an example of the flow structure, we present in Fig. 6
the velocity field of model C att = 0.295 s. The top and
bottom panels give the velocity field for the upstream and
downstream sections of the channel, respectively, while the
middle panel is an enlargement of the flow structure through
the choke throat. In the upstream section, the flow is accel-
erated in front of the choke because of the restricted cross-
sectional area. The flow velocity decays in the proximity of
solid walls where the fluid sticks due to viscous effects. In the
downstream section, a jet forms which then extends along the
full length of the channel, as shown in Fig. 6c.
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FIGURE 5. Mean pressure (left panel) and velocity (right panel) profiles across the full length of the tube for model C. The velocity is given
in units of the sound velocityc and the pressure in units of the input pressurep0 = c2ρ0, where the input densityρ0 = 1.0 g cm−3. An
approximate mean flow steady-state solution is achieved by the timet = 0.085 s.

TABLE III. Mean pressure just before the choke (p1) and after the
choke (p2) and mean velocity just before the choke (v1) and after
the choke (v2) for model C for the curves shown in Fig. 5. The
maximum mean velocity within the choke isvmax, p0 denotes the
input density,c the speed of sound and the time is given in seconds.

Time p1/p0 p2/p0 p2/p1 v1/c v2/c vmax/c

0.0025 1.0114 0.9920 0.9807 0.0018 0.0039 0.0225

0.0325 0.9858 0.9122 0.9253 0.1114 0.0361 0.1114

0.0850 1.0021 0.9032 0.9012 0.0894 0.0288 0.1071

0.1750 0.9868 0.9068 0.9189 0.1103 0.0451 0.1103

0.2300 0.9887 0.9092 0.9195 0.1001 0.0321 0.1001

0.2950 0.9971 0.9164 0.9190 0.0994 0.0325 0.0994

Our results may apply to subcritical flow of an isothermal
gas through wellhead chokes; however, a direct comparison
with the experimental curves reported by Fortunati [2], who

derived the dependence of the velocity through the choke on
the pressure ratiop2/p1 for gas-oil mixtures with different
gas concentrations, including pure gas, is not possible be-
cause of the simplified equation of state used in this inves-
tigation. For models B and C, the present calculations pre-
dict on average pressure ratios of≈ 0.92 and velocities in
the range0.098 − 0.113c across the choke. For pure natu-
ral gas with a sound speed of 29300 cm s−1, the above ve-
locities correspond to about (2871 - 3311) cm s−1. For this
range of velocities, the experimental curve derived by For-
tunati [2] (see his Fig. 2, curve 1) yieldsp2/p1 ≈ 0.97 -
0.98, which is higher than the average ratio of≈ 0.92 pre-
dicted by the present models. A better fit with the experimen-
tal results would then require using more realistic equations
of state. Of particular interest is the simulation of gas-oil
mixtures through wellhead chokes. According to the exper-
imental data available [2, 6], for flow velocities of the order
of (2000 - 4000) cm s−1 through wellhead chokes, the pres-
sure drop is seen to significantly increase for gas-oil mixtures
compared to the case of pure gas.
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FIGURE 6. Velocity flow field for model C att = 0.295 s. The
top (a) and bottom (c) panels gives the velocity field for the up-
stream and downstream sections of the channel, respectively, while
the middle panel (b) is an enlargement of the flow structure through
the choke throat. The maximum velocity is≈ 0.1c.

5. Conclusions

We have performed exploratory two-dimensional model cal-
culations of single-phase flow through a wellhead choke of a
dimensions similar to those installed in real production piping
using the Smoothed Particle Hydrodynamics (SPH) method.
As a first approximation, we have assumed that negligible
heat transfer occurs between different parts of the fluid and
so the models were carried out using an isothermal equation
of state. The choice of the geometry and parameters are such
that the models are well suited to describing the flow of gas
through a pipe with a choke throat in the middle.

Three different models were considered which differed
either in the form of the outlet boundary condition or the
value of the constant coefficient of kinematic viscosity. In the
first model, the pipe is designed by placing a lid with a small
orifice at its end in order to inhibit the outlet flow, while the
other two models, differing only in the value of the kinematic
viscosity, allow for an infinitely long pipe downstream. In all
cases, the inlet conditions correspond to Poiseuille flow with
a constant density. The results for these model calculations
indicate that the mean flow achieves an approximate steady
state in a very short timescale. The stationary solution is al-
ways characterized by a well-pronounced drop in the mean
density and pressure through the choke throat. At the en-
trance to the choke, the mean flow velocity increases steeply,
reaching typical values which are on average factors of∼ 5 to
∼ 6 times higher than those for the upstream flow. The mean
flow velocity also decreases steeply at the choke exit, drop-
ping to downstream values that are slightly higher compared
to those for flow in the upstream section of the pipe. The flow
across the choke throat always remains subsonic with typical
velocities of about0.1c. In particular, when the flow is in-
hibited downstream, the mean pressure drop is of about12%
and decreases to∼ 8% or less when the entire outlet cross-
section of the tube is free of any restrictions. Experimental
available measurements and correlations for natural gas flow-
ing across wellhead chokes indicate that for speeds of∼ 0.1c,
the ratio of the pressure before to that after the choke may be
as high as 0.97 - 0.98, implying a lower pressure drop than
predicted by the present calculations. A direct comparison of
the results with the available experimental data will certainly
be possible for more realistic equations of state.

The present two-dimensional calculations represent a step
ahead in consistently simulating choked flow systems. The
development of a three dimensional parallel multiphase SPH
code with sophisticated physics and for irregular geometries
is under way. In the new scheme we replace the use of image
particles by a method that uses a color index for correcting
interpolating errors near boundaries, detecting the presence
of boundaries, obstacles or the interphase between two flu-
ids and for calculating tension forces. Further details will be
given elsewhere.
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