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On the stabilization of bubble solitons
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We analyze the instability of bubble soliton solutions for the cubic quintic nonlineab8ityer equation. This equation, for instance, can be
obtained studying the nonlinear excitations of the DNA model. We have found that under specific restrictions concerning the main parameter
of the model and soliton velocities, these solutions are stable.
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Se analiza la estabilidad de las soluciones @oidas tipo burbuja para la ecuanino-lineal ébica-quinta de Scbdinger. Esta ecuamn
puede ser obtenida, por ejemplo, estudiando las excitaciones no-lineales del modelo del ADN. Hemos encontrado que esas soluciones sol
estables bajo restricciones esiieas concernientes al ganetro principal del modelo y las velocidades gwlicas.
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1. Introduction In this contribution, we analyze the stabilization of the
bubble (dark) soliton solution that was obtained using the

) ) L Hirota method for the so called cubic-quintic nonlinear
The role of solitons in contemporary physics is generally reC'Schbdinger equation (CQNSE) in paper [6]:
ognized, and the most characteristic property of solitons is '
that they are objects which in many aspects resemble parti- . B ( 2 ) ( 2 ) _
cles. One of the crucial issues of nonlinear waves, and es- et Poa 31l (24+1)) lel Le=0, ()
pecially of what are known as soliton solutions, is the ques-

tion of their stability. Recent experiments on Bose EinsteinWlth A being the parameter of the model. This form can be

condensations have revealed the striking interest of solitoncs)btalned from the standard equation
named dark and kink solitons [1, 2]. It is well know that , _ 2, 4.
the generalized nonlinear Séliinger equation (NLSE) with Wi+ Yue =50 20 [ Y = Y] 9 =0,

g_e”e”?' non_linearity can suppprt multi stable temporal or Spaby making transformations of parameters and scale variables.
tial solitons in several dimensions. These solutions resemblg i i< \vell known. form (1) is convenient for obtaining soli-

the well known kink, dark or drop solitons [3]. IF has also ton solutions [3]. In the following section we will give a
been suggested also by several authors that nonlinear dynarB\r-Ief and comprehensive exposition of how the Boussinesg-

ics has a word to say concerning the energy transport alonlgr(e equation may be derived from Eq. (1). Section 2 is de-

proteins (;]r_ indeed DNA‘ Onbe g{ thﬁ mosft[;wdeg/ kr‘10wn|_the-voted to the construction of the soliton solutions. The results
ories in this context is probably that of Davydov's Soliton yaineq here will play a crucial role in the rest of the pa-

solution of the nonlinear Scbdinger equation [4]. The in- _per. In Sec. 3, we analyze the stabilization of special dark

tgrr_1a| exc't‘?‘t."’” of mqlecules and thew motion aTOU”d €aUlspliton solutions obtained via the Boussinesq equation. The
librium positions are inseparably linked. Localized open-

conclusions appear in the final part of this work.
ing or so named bubbles of double stranded DNA is essen- PP P

tial in a number of cellular processes such as the initiation

of gene transcription and DNA replication. Recent studies?. The Boussinesq equation

of dynamics of these twist induced bubbles (or dark soli-

tons) in a random DNA sequence show that small bubble¥he main idea for finding many soliton solutions exploited
(less than several tens of base pairs) are delocalized along tirethe mentioned paper was to map the Eq. (1) into another
DNA, whereas larger bubbles become localized in various reeompletely integrable nonlinear equation, by choosing cer-
gions [5]. Thus, the study of the stability of these structurestain parameter values and a suitable vacuum, which for this
i.e. bubbles or dark solitons, is an important task for researchcase is:

In recent years, many authors have studied structural stability

in the framework of various evolution equations for different _ J2A+1 Ja
: po =/ = Va.
types of perturbations. 3




ON THE STABILIZATION OF BUBBLE SOLITONS 581

The linear waves around this vacuum have the Bogoliubowurther, the preceding equation could be rewritten in a con-
dispersion relation densed form as

(DeD- +DE) f-f=0 ©)

where the Hirota operatoi3;" obey this non-standard oper-
which will be useful in further calculations. Next, analyzing ation
the nonlinear oscillations in the neighborhood of the stable

w? = k? (k2 + %(A —1)(24 + 1)) 2

vacuumg, the perturbed solution is considered in Eq. (1) D¢'D7a-b
m n ;o
=0 = (1), @ = (%-00) (9-0¢) al&n)b(E T)loer=s
with ¢ (z,t) being the new unknown function to be solved. Clearly the bilinear form of the Bg-equation belongs to the
Then we introduce two new functions: class

. Q(Dz, Dy,...)f.f =0, Q(0)=0
P (x,t) = t t
(@,8) = ¢ @0+ ¢ (1) For this class of equations, in contrast to U, soliton solutions
O (x,t) =1 (¢ (z,t) — ¢ (x, t)*) , (4) areindeed simple in terms ¢fin contrast td/. This method

. L _has turned out to be quite efficient. After some calculations,
where the asterisk above the unknown function indicates itg, o 1, iti-soliton solutions can be presented as

complex conjugate. Equation (1) can be transformed by us-
ing the Egs. (3) and (4) to the next system N N
f& )= Z exp/ Zumi + Z pipjAij | (10)

0,=>0, — 6ab>® + 6a? 2 1=0.1 i=1 1<i<j
¢, = _9557 n; = pi& — ;T — T]?, g =-+1, ¢,=-1 (11)
which that finally can be transformed to the Boussinesq-like Q= p; (1—p)'/?, (12)
equation (Bq) , /
) with exp meaningexp [.] = ¢ - exp [.], and, parameter by
Urr = Uge +6(U")ge + Uggee =0 (5)  definition can take the two arbitrary values]. This means
with that, for constructing the specific solution, one could take
only one of the available values of the parametéihe veloc-
T = 6ab t, & =+V6ab z, ity of each soliton, antisoliton is denoted by= Q;/p;. Here
6 9 thep; andn; are two real constants relating to the amplitude
®=—1U, b=a—-1=-(A-1). (6) and phase, respectively, of titl soliton, and the coefficients
Va 3 A, fulfi
3. Soliton solutions evi —£v;)” = 3 (pi — p))°
exp [Ay;] = ( ity) = 8 J)g = las;| (13)

2
. - . - . Ui —€505)" — 3(pi + Dy
The cubic quintic nonlinear Schr odinger equation can sup- (5ivi = &505) (pi + ;)

port bubble or dark soliton which present interesting be- Itis easy to check also that the velocity of ik soliton
haviours for the case in which the system is emerging frontletermines the manner in which it can travel along the uni-
a state of three degenerated vacua [6]. It is important to nodimensional medium. While the usual soliton solution of the
tice that when the vacuum degeneracy is slightly destroyed bgormal Boussinesq (Bg.) equation travels faster because its
making A = 1 + 3=2; bubbles or grey solitons can profusely amplitude is greater than the other, our soliton will behave in
appear around the quasi-stable vacumymAnalyzing the be-  aopposite way. In other words, the small soliton should travel
havior of grey solitons, one finds that they are able to interactaster than the tall one. This occurs because the velocity of
elastically without loss of energy, besides, they condensateach soliton takes the form = /1 — p?.
forming slowtravelling bubbles The general method for find-  Indeed, let us take, for purposes of studying the sta-
ing soliton solutions used here is the direct Hirota method [7]bilization, the one soliton solution of this conglomer-
The general soliton solutions of Eq. (5) can be represented @fe (10). By taking into consideration only the real part,
52 Re ¢ (z,t) =T (=, .t) of the complex solutiorp(z, t) in (3),
U=_-=Infr), (7)  the end of calculations one obtains

23
['(z,t) = va— ®, with

and then it is possible to write Eq. (7) in the following bilin-
ear form: 3 2
4./a
= () [+ (f)® = L e + 3 (fee) ve ,
p
—Afefece + [feeee =0 (8) X (sechbv 6ab (:U:I:\/ 6ath) +Lna}) , (14)
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instability-induced perturbations remains small for long time
interval, and the parameters of the dark soliton vary slowly
in such a manner that it is possible then to introduce a small

F 1:3;%%?% parametee that will characterize small perturbations of an
I’%g%%f%g;ifgji;}* unstable dark soliton. Then it is convenient to look for the
1.02 w‘w solutions of Eg. (1) as the asymptotic expansion
1.01 e
107 = o ¢ = [ps(23v,q) + e1(25 0,00, X, T)
1.003 +e2ha (230,00, X, T) + O(e2))e X1 (15)

t with
1 T
= SX(T), X(T) = /v(T)dT,X e
0

FIGURE 1. Bubble-or gray-like soliton that is obtained from the Wherev(T') is the slow varying soliton velocity§ (X, T')

cubic quintic Schrodinger equation with the aid of the Boussinesqis the local phase of the background wave near the solion,
andT are the common slow space and time variables, while

Eq. (5).
X is the coordinate of the soliton “center”. After analysing
wherea is the coefficient of the exponent function in the next Eq. (1) and taking into consideration Eq. (15), the “asymp-
totic differential” equation for the soliton velocity is obtained.
fE1) =14+« eP(E+VT) Further analysis of the linear approximation leads us to ob-
and determines the solutions of the Eq. (5). tain an elgenyalue of the asympto.tlc e.quatlo.n', which gives a
. . general criterium that the dark soliton instability occurs pro-
Next, for solution (14) we analyze the conditions undervioled that
which this soliton is or is not stable depending on its velocity. oM, | <0
Ty e =

The Bg equation was obtained considering the strict restric-
tion when the value of the main parametedis= 1+(3/2)e,  where M, stands for the renormalized momentum agds

with e < 1. This parameter value destroys the vacuum dethe unperturbed soliton velocity. Soliton instability is weak
generation (whem = 1, the potential energy has three de- near the instability threshold when the velocityf the un-
generated vacua), enabling us to have two degenerated Igtable dark soliton is close to a critical valug defined by
cal minima with a global one between them at the centethe instability threshold equation

of the potential. This value of the parametérmeets the

condition of small amplitude values for the nonlinear oscilla- oM, [
tions|¢ (z,¢)| < 1 around the stable vacuum fiejgy. The A

one grey soliton solution for a selected parameter valig

shown in Fig. 1. o o 5
=g [ o=y % - e - v 57| e o)

expression

=0.

We use the renormalized momentum

0z

4. Stabilization —o0
For a travelling wave, we use the standard definition of wave

Elsdkr}pwr;t?hat thehs';ﬁblhty crlterllc_)n f((j)r dark sotlltonsvsvhou:]d function o(6,7) = @(€ — V1) = o(n), with V = v, be-
€ ;ehme rouglj_ de renorn:alzg tm(;)mer(; li)m'\] €s ?}bg the unperturbed soliton velocity. The equations which are

use the renormalized momentum introduced by Jones angyqyaq o calculate the slope of the renormalized momen-

Roberts [8]. Let us recall briefly the main points in the deriva-

. . o o . .. tum (16) are

tion of the equations for determining the criteria of instability
of dark solitons; here we follow the general method devel-
oped by Pelinovsket al. in Ref. 9. Since the integral of mo-
tion for the case of nonzero boundary conditions is divergent,
it is then necessary to introduce the renormalized invariants. s

Let us overview some results of the work [9] which will ,liQ + 6ab Bdn — Baz 2dn
1%

be useful in this study. The general idea in this approach is Vidn 4
shortly outlined here. The analysis of the stability of darkwhere the functionb is taken from Eq. (14). Function®

soliton solutions can be carried out in the framework of theandx: vanish when; — +oo and the parameteris related
perturbation theory if the soliton parameters vary slow withto the velocity as follows:

time. The analysis was done in the framework of the pertur- ) )
bation theory of solitons. It is supposed that the amplitude of V* =6ab—4p

M,

Veab [ /. dO _dd
222 _ %%\ g
2 /( dn @dn) 7
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M From equation (19), we can infer that when the soliton’s
B velocity is near the velocity of sound, its amplitude dissa-
0.006 pears and the soliton ceases to exist. The existence of gray
solitons then is closely related to the value of the main pa-
0.004 rameter A> 1.
On the other hand, the width of solitons travelling with
0.002 speeds close to that of sound, are wider than those travelling
with small velocities. In fact the width is given by
Q.6 -0.4 -0.2 0:2 0.4 0.6 705
-0.g02¢ v Az\/ﬁ. (20)
.004t
5. Conclusions
A -0.006 . S .
The analysis of stability implies that small amplitude bub-

FIGURE 2. The segment AB of the curve for the renormalized mo- bles or gray solitons in this particular case, in order to be true
mentum is the region where the bubbles are stable. Outside of thigomons, have to travel with smaller velocity than the criti-
region, the soliton-like solution could destroy forming radiation for ~5| one. which is one half of the velocity of sound according
example. to expression (18). So, there is a critical veloaity; such
that the gray solitons are stablewat< v.. and unstable at
v > v.. While the velocity is approaching the critical value,
the width (20) is growing while the amplitude is decreasing.

1 — N In contrast, when the depth approaches the vacuum state, its
M, (V) = 8 66Va (6ab -V ) : width narrows. We observe that only the gray solitons that are

From what is above. it is not hard to check that ar rd rslow in comparison to sound, can be considered stable soli-
° atis above, 1L 1S not hard to check that gray or da lions. Obviously, solitons whose velocities surpass the critical
solitons are stable in the region for the speed values AB o

value of one half of the velocity of sound, are all unstable ac-

the curve presented in Fig. 2. To the lef and to the right Ofcording to the Eq. (18). Further, in order to analyze the radia-

these points, gray solitons decpmpose into other str_uctureﬁOn of dark solitons when they are passing the critical barrier
Indeed, according to the analysis of paper [9], the soliton, af-

. . . . -’ “Iin their velocity we could use the important results obtained
ter reaching the critical velocity, destroys itself by emitting

diati d finallv d . in Ref. 9.
radiation and finatly decaying. . . Let us now make some asseverations about the situation
The velocity that corresponds to the critical points of

maxima and minima is determined by the equation when we have t.wo solitons yvith two different yelqcities. The
gray soliton which moves with a greater velocity is shallower
M, than the slower one.
v lv=ve, = 0, (17) According to the general formula for their analytical ex-
pressions, in order to have two stable bubble solitons, the ve-

which gives the following results for the maximum and min- i of these structures should satisfy the following relation:
imum of the curve AB:

Analyzing the results, we obtain the functional depen-
dence ofM,. on the speed’ of dark soliton

1 3
2A+1 24 02— 856 — =
V2 — + (A—1). vy +v; 262§jvlu] 5 > 0 or (21)
. . . . 2 2 1 3
This critical velocity is half the velocity of sound: vy +Uj — 557251'“111’1' D) <0
P lv (18) The signs ofd,0, determine how the interacting solitons
o2 move.
which is obtained from the dispersion relation (2) by using
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As it well established, the soliton amplitud€A) is given by
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