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On the stabilization of bubble solitons

E. Villagrana, J. Bernalb, and M. Agueroa
aUniversidad Aut́onoma del Estado de Mexico, Facultad de Ciencias,

Instituto Literario 100, Toluca 50000 Edo de Mex., Mexico
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We analyze the instability of bubble soliton solutions for the cubic quintic nonlinear Schrödinger equation. This equation, for instance, can be
obtained studying the nonlinear excitations of the DNA model. We have found that under specific restrictions concerning the main parameter
of the model and soliton velocities, these solutions are stable.
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Se analiza la estabilidad de las soluciones solitónicas tipo burbuja para la ecuación no-lineal ćubica-quinta de Schrödinger. Esta ecuación
puede ser obtenida, por ejemplo, estudiando las excitaciones no-lineales del modelo del ADN. Hemos encontrado que esas soluciones son
estables bajo restricciones especı́ficas concernientes al parámetro principal del modelo y las velocidades solitónicas.
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1. Introduction

The role of solitons in contemporary physics is generally rec-
ognized, and the most characteristic property of solitons is
that they are objects which in many aspects resemble parti-
cles. One of the crucial issues of nonlinear waves, and es-
pecially of what are known as soliton solutions, is the ques-
tion of their stability. Recent experiments on Bose Einstein
condensations have revealed the striking interest of solitons
named dark and kink solitons [1, 2]. It is well know that
the generalized nonlinear Schrödinger equation (NLSE) with
general nonlinearity can support multi stable temporal or spa-
tial solitons in several dimensions. These solutions resemble
the well known kink, dark or drop solitons [3]. It has also
been suggested also by several authors that nonlinear dynam-
ics has a word to say concerning the energy transport along
proteins or indeed DNA. One of the most widely known the-
ories in this context is probably that of Davydov‘s soliton
solution of the nonlinear Schrödinger equation [4]. The in-
ternal excitation of molecules and their motion around equi-
librium positions are inseparably linked. Localized open-
ing or so named bubbles of double stranded DNA is essen-
tial in a number of cellular processes such as the initiation
of gene transcription and DNA replication. Recent studies
of dynamics of these twist induced bubbles (or dark soli-
tons) in a random DNA sequence show that small bubbles
(less than several tens of base pairs) are delocalized along the
DNA, whereas larger bubbles become localized in various re-
gions [5]. Thus, the study of the stability of these structures,
i.e. bubbles or dark solitons, is an important task for research.
In recent years, many authors have studied structural stability
in the framework of various evolution equations for different
types of perturbations.

In this contribution, we analyze the stabilization of the
bubble (dark) soliton solution that was obtained using the
Hirota method for the so called cubic-quintic nonlinear
Schr̈odinger equation (CQNSE) in paper [6]:

iϕt + ϕxx −
(
3 |ϕ|2 − (2A + 1)

)(
|ϕ|2 − 1

)
ϕ = 0, (1)

with A being the parameter of the model. This form can be
obtained from the standard equation

iψt + ψxx − κ1ψ + κ2 |ψ|2 ψ − κ3 |ψ|4 ψ = 0,

by making transformations of parameters and scale variables.
As it is well known, form (1) is convenient for obtaining soli-
ton solutions [3]. In the following section we will give a
brief and comprehensive exposition of how the Boussinesq-
like equation may be derived from Eq. (1). Section 2 is de-
voted to the construction of the soliton solutions. The results
obtained here will play a crucial role in the rest of the pa-
per. In Sec. 3, we analyze the stabilization of special dark
soliton solutions obtained via the Boussinesq equation. The
conclusions appear in the final part of this work.

2. The Boussinesq equation

The main idea for finding many soliton solutions exploited
in the mentioned paper was to map the Eq. (1) into another
completely integrable nonlinear equation, by choosing cer-
tain parameter values and a suitable vacuum, which for this
case is:

ϕ0 =

√
2A + 1

3
=
√

a.
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The linear waves around this vacuum have the Bogoliubov
dispersion relation

ω2 = k2

(
k2 +

4
3
(A− 1)(2A + 1)

)
(2)

which will be useful in further calculations. Next, analyzing
the nonlinear oscillations in the neighborhood of the stable
vacuumϕ0, the perturbed solution is considered in Eq. (1)

ϕ = ϕo − φ (x, t) , (3)

with φ (x, t) being the new unknown function to be solved.
Then we introduce two new functions:

Φ(x, t) = φ (x, t) + φ (x, t)∗

Θ (x, t) = i
(
φ (x, t)− φ (x, t)∗

)
, (4)

where the asterisk above the unknown function indicates its
complex conjugate. Equation (1) can be transformed by us-
ing the Eqs. (3) and (4) to the next system

Θτ = Φ
ξξ
− 6ab2Φ + 6a

3
2 Φ2

Φτ = −Θ
ξξ

,

which that finally can be transformed to the Boussinesq-like
equation (Bq)

Uττ − Uξξ + 6(U2)ξξ + Uξξξξ = 0 (5)

with

τ = 6ab t, ξ =
√

6ab x,

Φ =
6√
a

U, b = a− 1 =
2
3

(A− 1) . (6)

3. Soliton solutions

The cubic quintic nonlinear Schr¨odinger equation can sup-
port bubble or dark soliton which present interesting be-
haviours for the case in which the system is emerging from
a state of three degenerated vacua [6]. It is important to no-
tice that when the vacuum degeneracy is slightly destroyed by
making A = 1 + 3=2ε; bubbles or grey solitons can profusely
appear around the quasi-stable vacuumϕo. Analyzing the be-
havior of grey solitons, one finds that they are able to interact
elastically without loss of energy, besides, they condensate
forming slowtravelling bubbles The general method for find-
ing soliton solutions used here is the direct Hirota method [7].
The general soliton solutions of Eq. (5) can be represented as

U =
∂2

∂ξ2
ln f(ξ, τ), (7)

and then it is possible to write Eq. (7) in the following bilin-
ear form:

− (fτ )2 + ffττ + (fξ)
2 − ffξξ + 3 (fξξ)

2

−4fξfξξξ + ffξξξξ = 0 (8)

Further, the preceding equation could be rewritten in a con-
densed form as

(
DξDτ + D4

ξ

)
f · f = 0 (9)

where the Hirota operatorsDm
ξ obey this non-standard oper-

ation

Dm
ξ Dn

τ a · b

=
(
∂ξ − ∂ξ′

)m (
∂ξ − ∂ξ′

)n

a (ξ, τ) b(ξ
′
, τ

′
)|ξ′=ξ,τ ′=τ

Clearly the bilinear form of the Bq-equation belongs to the
class

Q(Dx, Dy, . . .)f.f = 0, Q(0) = 0

For this class of equations, in contrast to U, soliton solutions
are indeed simple in terms off in contrast toU. This method
has turned out to be quite efficient. After some calculations,
the multi-soliton solutions can be presented as

f(ξ, τ) =
∑

µ=0.1

exp/




N∑

i=1

µiηi +
N∑

1≤i<j

µiµjAij


 (10)

ηi = piξ − εiΩiτ − η0
i , εi = +1, εi = −1 (11)

Ωi = pi (1− pi)
1/2

, (12)

with exp
′

meaningexp
′
[.] = ε · exp [.], and, parameterε by

definition can take the two arbitrary values,±1. This means
that, for constructing the specific solution, one could take
only one of the available values of the parameterε. The veloc-
ity of each soliton, antisoliton is denoted byvi = Ωi/pi. Here
thepi andηi are two real constants relating to the amplitude
and phase, respectively, of theith soliton, and the coefficients
Aij fulfil

exp [Aij ] =

∣∣∣∣∣
(εivi − εjvj)

2 − 3 (pi − pj)
2

(εivi − εjvj)
2 − 3 (pi + pj)

2

∣∣∣∣∣ = |aij | (13)

It is easy to check also that the velocity of theith soliton
determines the manner in which it can travel along the uni-
dimensional medium. While the usual soliton solution of the
normal Boussinesq (Bq.) equation travels faster because its
amplitude is greater than the other, our soliton will behave in
a opposite way. In other words, the small soliton should travel
faster than the tall one. This occurs because the velocity of
each soliton takes the formvi =

√
1− p2

i .
Indeed, let us take, for purposes of studying the sta-

bilization, the one soliton solution of this conglomer-
ate (10). By taking into consideration only the real part,
Re ϕ (x, t) = Γ (x, t) of the complex solutionϕ(x, t) in (3),
the end of calculations one obtains

Γ(x, t) =
√

a− Φ, with

Φ =
3b

4
√

a
p2

×
(

sech
[p

2

√
6ab

(
x±
√

6abV t
)

+Lnα
])2

, (14)
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FIGURE 1. Bubble-or gray-like soliton that is obtained from the
cubic quintic Schrodinger equation with the aid of the Boussinesq
Eq. (5).

whereα is the coefficient of the exponent function in the next
expression

f (ξ, τ) = 1 + α ep(ξ+V τ)

and determines the solutions of the Eq. (5).
Next, for solution (14) we analyze the conditions under

which this soliton is or is not stable depending on its velocity.
The Bq equation was obtained considering the strict restric-
tion when the value of the main parameter isA = 1+(3/2)ε,
with ε ¿ 1. This parameter value destroys the vacuum de-
generation (whenA = 1, the potential energy has three de-
generated vacua), enabling us to have two degenerated lo-
cal minima with a global one between them at the center
of the potential. This value of the parameterA meets the
condition of small amplitude values for the nonlinear oscilla-
tions |φ (x, t)| ¿ 1 around the stable vacuum fieldϕ0. The
one grey soliton solution for a selected parameter valueA is
shown in Fig. 1.

4. Stabilization

It is known that the stability criterion for dark solitons should
be defined through the renormalized momentum. We shall
use the renormalized momentum introduced by Jones and
Roberts [8]. Let us recall briefly the main points in the deriva-
tion of the equations for determining the criteria of instability
of dark solitons; here we follow the general method devel-
oped by Pelinovskyet al. in Ref. 9. Since the integral of mo-
tion for the case of nonzero boundary conditions is divergent,
it is then necessary to introduce the renormalized invariants.

Let us overview some results of the work [9] which will
be useful in this study. The general idea in this approach is
shortly outlined here. The analysis of the stability of dark
soliton solutions can be carried out in the framework of the
perturbation theory if the soliton parameters vary slow with
time. The analysis was done in the framework of the pertur-
bation theory of solitons. It is supposed that the amplitude of

instability-induced perturbations remains small for long time
interval, and the parameters of the dark soliton vary slowly
in such a manner that it is possible then to introduce a small
parameterε that will characterize small perturbations of an
unstable dark soliton. Then it is convenient to look for the
solutions of Eq. (1) as the asymptotic expansion

ϕ = [ϕs(z; v, q) + εψ1(z; v, ϕ0, X, T )

+ε2ψ2(z; v, ϕ0, X, T ) + O(ε2)]eiS(X,T ) (15)

with

z = x− 1
ε
Xs(T ), Xs(T ) =

T∫

0

v(T́ )dT,X = εx, T = εt.

Wherev(T ) is the slow varying soliton velocity,S(X,T )
is the local phase of the background wave near the soliton,X
andT are the common slow space and time variables, while
Xs is the coordinate of the soliton “center”. After analysing
Eq. (1) and taking into consideration Eq. (15), the “asymp-
totic differential” equation for the soliton velocity is obtained.
Further analysis of the linear approximation leads us to ob-
tain an eigenvalue of the asymptotic equation, which gives a
general criterium that the dark soliton instability occurs pro-
vided that

∂Mr

∂v
|v=v0 < 0,

whereMr stands for the renormalized momentum andv0 is
the unperturbed soliton velocity. Soliton instability is weak
near the instability threshold when the velocityv of the un-
stable dark soliton is close to a critical valuevc defined by
the instability threshold equation

∂Mr

∂v
|v=vcr = 0.

We use the renormalized momentum

Mr =
i

2

∞∫

−∞

[(
ϕ−√a

) ∂ϕ∗

∂z
− (

ϕ∗ −√a
) ∂ϕ

∂z

]
dz. (16)

For a travelling wave, we use the standard definition of wave
function ϕ(ξ, τ) = ϕ(ξ − V τ) = ϕ(η), with V = vo be-
ing the unperturbed soliton velocity.The equations which are
needed to calculate the slope of the renormalized momen-
tum (16) are

Mr = −
√

6ab

2

∞∫

−∞

(
Φ

dΘ
dη

−Θ
dΦ
dη

)
dη

Θ = − 1
V

d

dη
Φ +

6ab

V

∫
Φdη − 6a

3
2

V

∫
Φ2dη

where the functionΦ is taken from Eq. (14). FunctionsΦ
andΣ vanish whenη → ±∞ and the parameterp is related
to the velocity as follows:

V 2 = 6ab− 4p2
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FIGURE 2. The segment AB of the curve for the renormalized mo-
mentum is the region where the bubbles are stable. Outside of this
region, the soliton-like solution could destroy forming radiation for
example.

Analyzing the results, we obtain the functional depen-
dence ofMr on the speedV of dark soliton

Mr(V ) =
1
8

√
6bV a4

(
6ab− V 2

) 3
2 .

From what is above, it is not hard to check that gray or dark
solitons are stable in the region for the speed values AB of
the curve presented in Fig. 2. To the lef and to the right of
these points, gray solitons decompose into other structures.
Indeed, according to the analysis of paper [9], the soliton, af-
ter reaching the critical velocity, destroys itself by emitting
radiation and finally decaying.

The velocity that corresponds to the critical points of
maxima and minima is determined by the equation

∂Mr

∂v
|v=vcr = 0, (17)

which gives the following results for the maximum and min-
imum of the curve AB:

V 2
cr =

2A + 1
3

(A− 1) .

This critical velocity is half the velocity of sound:

vcr =
1
2
vs (18)

which is obtained from the dispersion relation (2) by using

v2
s = lim

k→0

ω2

k2
=

4
3

(A− 1) (2A + 1).

As it well established, the soliton amplitudeλ(A) is given by

λ(A) =
√

3
2

√
A− 1
1 + 2A

(
vs

2 − V 2
)
. (19)

From equation (19), we can infer that when the soliton´s
velocity is near the velocity of sound, its amplitude dissa-
pears and the soliton ceases to exist. The existence of gray
solitons then is closely related to the value of the main pa-
rameter A> 1.

On the other hand, the width of solitons travelling with
speeds close to that of sound, are wider than those travelling
with small velocities. In fact the width is given by

∆ =
7.05√

v2
s − V 2

. (20)

5. Conclusions

The analysis of stability implies that small amplitude bub-
bles or gray solitons in this particular case, in order to be true
solitons, have to travel with smaller velocity than the criti-
cal one, which is one half of the velocity of sound according
to expression (18). So, there is a critical velocityvcr; such
that the gray solitons are stable atv ≤ vcr and unstable at
v > vcr: While the velocity is approaching the critical value,
the width (20) is growing while the amplitude is decreasing.
In contrast, when the depth approaches the vacuum state, its
width narrows. We observe that only the gray solitons that are
slow in comparison to sound, can be considered stable soli-
tons. Obviously, solitons whose velocities surpass the critical
value of one half of the velocity of sound, are all unstable ac-
cording to the Eq. (18). Further, in order to analyze the radia-
tion of dark solitons when they are passing the critical barrier
in their velocity we could use the important results obtained
in Ref. 9.

Let us now make some asseverations about the situation
when we have two solitons with two different velocities. The
gray soliton which moves with a greater velocity is shallower
than the slower one.

According to the general formula for their analytical ex-
pressions, in order to have two stable bubble solitons, the ve-
locity of these structures should satisfy the following relation:

v2
i + v2

j −
1
2
δiδjvivj − 3

2
> 0 or (21)

v2
i + v2

j −
1
2
δiδjvivj − 3

2
< 0

The signs ofδ1δ2 determine how the interacting solitons
move.
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