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We extend some results on population dynamics in a structured habitat, obtained in a classic paper by J.G. Skellam [1], regarding competition
between two species differing in fitness, in a habitat with two unequal sectors. Using the discrete spatial and temporal method introduced
by him, we generalize his results to an arbitrary number of species ranked according to fitness, competing in a habitat with any number of
sectors. We show particular instances of complete species segregation, and of segregation in some sectors, and coexistence in others. We
also consider the case of two species, when fitness superiority is not absolute in the sense originally defined by Skellam. Then we briefly
ponder the relevance of his discrete method to subsequent research, based on a survey of the fundamental literature on this subject.
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Generalizamos algunos resultados sobre dinámica de poblaciones en un hábitat estructurado, obtenidos en un trabajo clásico de J.G. Skel-
lam [1], sobre competencia entre dos especies que difieren en su grado de adaptación a un h́abitat compuesto de dos sectores distintos.
Usando el ḿetodo espacial y temporalmente discreto introducido por Skellam, extendemos sus resultados al caso de un número arbitrario de
especies con distintos grados de adaptación, en un h́abitat compuesto de ḿultiples sectores. Ilustramos por medio de ejemplos particulares
las alternativas de segregación total de las especies, y de segregación en algunos sectores y coexistencia en otros. Analizamos además el
caso de dos especies, cuando la superioridad de la mejor adaptada entre ellas no es absoluta en el sentido originalmente definido por Skel-
lam. Ponderamos brevemente a continuación la relevancia de su ḿetodo discreto en investigaciones posteriores, basados en un análisis de la
literatura fundamental sobre este tema.

Descriptores: Ecosistemas; propagación de especies; hábitat estructurado; metapoblación; nicho.

PACS: 87.23.-n

1. Introduction

In a remarkable paper on animal and plant propagation in
ecosystems, J.G. Skellam [1] introduced half a century ago
concepts and methods close to those employed in modern
theories on the same subject. His main contribution to this
problem, namely a continuum (diffusion) scheme supple-
mented with source terms and a sink supplied by hostile sur-
roundings, has become a classic in this field, making him the
“father of ecological diffusion” [2,3].

Less well known is his discrete approach (both in space
and time) to the question of species competition in structured
habitats, near the end of the same paper. In it, he first calcu-
lated the stationary population of a single plant species in a
homogeneous habitat, whose individual members show finite
mortality. He then analyzed the case of two closely related
species, a strong and a weak one, competing in a single, ho-
mogeneous habitat. He concluded that, if they are able to
persist alone, they also coexist under certain conditions, as
members of the weaker species survive occupying sites left
over by those from the stronger one, due to mortality. Fi-
nally, he considered the case of two species, a strong and a
weak one, competing in a habitat comprising two different
sectors, a rich and a poor one. He identified in this case a
tradeoff between fitness and the number of offspring (or seeds
produced), allowing the weaker, more prolific individuals, to
persist in the poorer sector.

In this paper, we provide an extension of Skellam’s re-
sults on species competition, and deal with an arbitrary num-
ber of species competing in a habitat composed of various
patches spanning a range of suitability. We also consider the
case of non-absolute superiority when two species differing
in fitness compete. Then we briefly consider the connection
of Skellam’s concepts and methods with current research on
population ecology, including metapopulation models [4,5],
and interspecific interactions [6,7].

In Sec. 1 we outline the main results in Skellam’s paper
regarding his discrete method, and provide in Sec. 2 the ex-
tension mentioned above. Section 3 briefly ponders the con-
ceptual and methodological impact of Skellam’s discrete ap-
proach on later work, through a survey of the fundamental
literature on the subject.

2. Skellam’s results on animal and plant prop-
agation

Skellam’s article [1] contains both a continuum and a discrete
approach to the problem of species persistence and propa-
gation. His continuum scheme is based on population gain
through births, and loss through diffusion beyond habitat bor-
ders into a hostile environment. His mathematical description
is based on a diffusion equation with a source term. His main
result in this context was that a minimum habitat size is re-
quired for long therm persistence of a given species.
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FIGURE 1. Skellam’s ecological cells. Each square represents an
area able to support one individual from seedling stage to matu-
rity; shaded squares are full, and white ones (surrounded by shaded
ones) are empty due to mortality; hence the habitat suitability fac-
tor sequals 5/6 in this case. The number of cells,W = 24, and
the maximum number of adult plants that the habitat can carry,
Ws = 20; Φ is an area large enough to contain all cells and receive
no seeds from external sources;p is the fraction of seeds from inner
cells that fall withinΦ.

His discrete method deals with the problem of long-term
plant persistence in a given habitat, considering the latter a
collection of cells, each one able to support an individual
from seedling stage to maturity (Fig. 1). He defines a long
list of variables:

H , a compendium of factors that determine overall habi-
tat suitability. In his approximation,H = Wsp/Φ, whereW
is the number of cells,Φ an area that contains all the cells,
and large enough so it receives no external seeds;p is the
fraction of seeds that fall within the areaΦ, ands the prob-
abilitiy that a seeded cell rears a seedling to maturity;s < 1
thus implies mortality.

Γ denotes reproductive capacity, or the average number
of seeds produced per plant.

χ indicates relative density, given byχ = N/Ws, where
N is the number of plants that reach maturity in each gener-
ation, andWsrepresents the maximum number of them that
the habitat does support.

He assumes that all cells are equally reachable by seeds,
and considers synchronous generations,i.e., all plants in a
generation are born at the outset, and the surviving ones shed
their seeds and then die out simultaneously. Under these ap-
proximations, he is led to a recursion relation for plant den-
sity in consecutive generations,

χn+1 = 1− exp(−ΓHχn) (1)

The stationary state condition,χn+1 = χn, is attained in
the limit n →∞; callingχ = χ∞, one thus has,

χ = 1− exp(−ΓHχ) (2)

This equation impliesΓH > 1 as a requirement for long-
term persistence (i.e., χ > 0).

Species competition.Skellam considers two closely re-
lated plant species (so the same individual cells are suitable

for both of them), competing for occupation of a given habi-
tat, with one of them showing definite superiority in fitness
relative to the other. This means that whenever a seed from
the stronger species (S) coincides in a cell with seeds from
the weaker one (S′), the former always wins.

Under these conditions, the stronger species’ fractional
abundance (χ) is not affected by the presence of the weaker
one. It thus satisfies Eqs. (1) and (2). The fraction of cells left
over by members ofS equals(1− χ), and this is the portion
available to members ofS′. Definingχ′ = N ′/Ws, one thus
has, instead of Eq. (2),

χ′ = (1− χ) [1− exp(−Γ′Hχ′)] . (3)

From Eqs. (2) and (3), one gets the inequality,

Γ′/Γ > −χ/(1− χ) ln(1− χ), (4)

as a requirement for the persistence ofS′, i.e., for χ′ > 0.
Hence there will be species coexistence (i.e., bothχ andχ′

greater than zero), if condition (4) andΓH > 1 are simulta-
neoulsy satisfied.

Based on these results, Skellam gives numerous exam-
ples of situations where species coexistence in a single habi-
tat is possible. He then considers a composite habitat, with
a rich sector and a poor one, and two species, a strong and
a weak one. As the fractional population size depends only
on the productΓH, one can combine a high fertility value
(largeΓ), with a poor sector (smallH), with the same ef-
fect on the corresponding fractional population as low fertil-
ity (small Γ), combined with a rich habitat (largeH). Us-
ing this as a guide, Skellam provides particular examples of
a weak, prolific species, being able to survive in the poorer
sector of its habitat, when competing with a stronger, less
prolific one, the latter persisting mostly in the richer sector.

3. Extension of Skellam’s results

The above result by Skellam, regarding two species compet-
ing in a habitat with two sectors, can be extended to the case
of n closely related species (so their individual members can
survive alone in the same cells) competing in a habitat withm
sectors, with arbitraryn andm. We assume that species can
be ranked based on competitive strength, or fitness, obtaining
a set{Sj} with seeds or individuals from speciesSi being
unable to survive in the same cell with seeds or individuals
from speciesSi−1. Conversely, we rank habitat sectors in
increasing order of richness, obtaining a set of values{Hk},
with Hl > Hl−1. The persistence condition for speciesi in
habitat sectork, ΓiHk > 1, shows that weaker species will
survive only if they are in addition prolific enough.

Following a trial and error strategy similar to that em-
ployed by Skellam in simpler cases, we were able to obtain
various arrangements of species among available habitat sec-
tors. We started in each case with the persistence condition,
ΓiHk > 1, to find out which species were able to survive
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TABLE I. Fractional population size of five species in a habitat
comprising five different sectors.Γj indicates seed production by
individuals from speciesj, in arbitrary units;Hi denotes the suit-
ability, or richness, of habitati, also in arbitrary units. Species are
ranked according to dominance, the fittest species being also the
least prolific one regarding seed production, and so forth. There is
complete species segregation.

H H1 H2 H3 H4 H5

Γ 0.01 0.0024 0.00083 0.00049 0.00035

Γx 0.9801 0 0 0 0

400

Γy 0 0.9316 0 0 0

1200

Γz 0 0 0.6725 0 0

2000

Γ4 0 0 0 0.4881 0

2800

Γ5 0 0 0 0 0.3821

3600

TABLE II. Three species coexisting in a homogeneous habitat, with
the indicated fractional population sizes.Γj andH denote seed
production and habitat suitability, respectively; fitness decreases as
one goes down the first column.

H H

Γ 0.01

Γx 0.511

140

Γy 0.3825

400

Γz 0.0351

1140

TABLE III. Two species competing in a habitat with three different
sectors; the dominant species is again the least prolific one. They
can only coexist in the intermediate sector regarding suitability; the
fittest species takes over the richest sector, and the weaker, most
prolific one persists alone in the poorest sector.

H H1 H2 H3

Γ 0.01 0.0032 0.001

Γx 0.9802 0.3873 0

400

Γy 0 0.5988 0.7968

2000

alone in each habitat sector. Then we applied the species
competition relationship,Γi+1/Γi > −χi/(1−χi) ln(1−χi),
in descending order of fitness, to eliminate the weaker species
that cannot survive in the face of competition. This led to

some interesting special cases, from a biological point of
view:

(i) Complete species segregation. Consider five species
able to share five habitat sectors, and rank species
according to dominance, with S1 the fittest one .
Choosing the corresponding seed production parame-
ters{Γi} and habitat richness factors{Hk} as shown in
Table I, we get a configuration where only one species
remains in each sector, with the weaker, more prolific
ones occupying the poorer patches.

(ii) Coexistence of several species in a given habitat. Con-
sider three species, each able to occupy a given habitat
if left alone. Choosing theΓ andH values in Table II,
they all coexist in this habitat with the indicated densi-
ties.

(iii) Segregation in some habitat sectors and coexistence in
others. Table III gives an example of this situation.

By tinkering with the values ofΓi andHk, the above ex-
amples can be generalized to any number of species in any
number of habitat sectors.

Our trial and error approach to specific examples of
species distribution in habitat sectors is fairly efficient in
practice (after becoming familiar with it through examples
involving just a few species and sectors), when dealing with
up to about 10 species and a comparable number of sectors si-
multaneously. For arbitrarily large sets of species and sectors,
choosing the appropriate combination of habitat suitability
{Hk} and species fertility{Γi} to obtain a preordained dis-
tribution of species among sectors involves lengthy tuning of
parameters. For the special case of total species segregation,
however, the amount of guesswork is greatly diminished fol-
lowing the procedure described in the appendix.

Non-absolute superiority. Skellam’s definition of species
superiority in absolute fashion is not realistic; for example,
a seed from the superior species may arrive in a given cell
when one from the weaker species has already germinated
there, and so forth. Given the complexity of ecological inter-
actions, it seems more natural to assume instead that, when
seeds or plantules from a given species compete with their
counterparts from another one, the former will survive with
probabilityp less than unity, while the latter will do so with
probabilityq = 1− p.

Let us consider the case of two species in a homoge-
neous habitat, using primed variables for the weaker one.
Whenq = 0, the habitat occupation fractionχ for members
of the strong species satisfies Eq. (2) above, withΓH > 1
for long-term persistence. When the second species is
also present, one has in addition the coexistence condition,
Γ′/Γ > −χ/(1− χ) ln(1− χ).

Whenq > 0, there is no obvious way to extend Skellam’s
results to arbitrary values ofq. For smallq, however, there
is a straightforward procedure to generalize Eqs. (2) and (4),
to first order inq. When members of both species coincide
in a given cell, the survival of either one occurs at the cost
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of the other’s death. The probability of such coincidences
isχ(q)χ′(q), whereχ(q) andχ′(q)denote the occupancy frac-
tions of the stronger and weaker species, respectively, when
q > 0. Whenever one such coincidence event occurs, there is
a probabilityq that the weaker species will win; hence to first
order in q, the occupation fraction for the stronger species
becomes

χ(q) = χ− qχχ′, (5)

whereχ andχ′ are occupation fractions forq = 0. Similarly,
the occupation fraction of the weaker species takes the form

χ′(q) = χ′ + qχχ′ (6)

The persistence condition for the weaker species,

Γ′/Γ > −χ(q)/(1− χ(q)) ln(1− χ(q)),

becomes, to first order in q,

Γ′/Γ > − χ

(1− χ) ln(1− χ)
+

qχχ′(χ + ln(1− χ))
[(1− χ) ln(1− χ)]2

. (7)

It is straightforward to show that the second term in this
inequality,

qχχ′(χ + ln(1− χ))
[(1− χ) ln(1− χ)]2

,

is negative in the interval0 < χ < 1; hence, as expected, the
fertility advantage of the weaker species does not need to be
as large whenq > 0 as it is whenq = 0, in order to coexist
with the stronger one.

As an example of the use of the above formulas, we
consider a situation whereq = 0.1, with parameter values
Γ1 = 400 (stronger species),Γ2 = 2000 (weaker species),
andH = 0.0032 (all quantities in arbitrary units). In the limit
q = 0, the two species coexist, with population fractions,
χ = 0.3873, andχ′ = 0.5988, respectively. To first order in
q = 0.1, one shows that condition (7) holds, so both species
are able to coexist, with population fractionsχ(q) = 0.3615,
andχ′(q) = 0.6245.

4. Discussion

We consider here the connection between Skellam’s results
supplemented with our extensions above, and current re-
search on ecological niches, population dynamics and species
competition.

Niches. The case of total species segregation is especially
relevant from a biological point of view, through its relation-
ship with the concept of ecological niche. In its original ver-
sion (by Grinnell [8] in 1917), a niche referred to the actual
physical space occupied by a given species. This notion was
further elaborated by Elton [9], who located a species niche
within its foodweb. In 1957 Hutchinson [10] gave the con-
cept its most abstract definition, associating with each species
a region in a multidimensional space whose axes are quanti-
fied biotic and physical attributes relevant to its survival. In

this version, a niche is an attribute of the species, instead of
its habitat, as in the case of Grinnell [8], and Elton [9]. Later
work [11] has developed mostly along the lines of Hutchin-
son’s approach.

In Skellam’s work, cells are physical entities, in the sense
of Grinnell [8], but their suitability is quantified closer to
Hutchinson’s definition [10] through the fertility factor, and
the probability that a seed survives to maturity in a given cell,
as this probability depends at least partially on features like
germination speed and nutrient storage that are intrinsic to
the seed. A possible way to quantify the relationship of Skel-
lam’s cells with Grinnell’s niches would be making an indi-
vidual cell’s size equal to the ecosystem’s area divided by the
population size of the species considered, under conditions
of maximum productivity (i.e. when the ecosystem functions
at its carrying capacity limit).

Population dynamics. The significance of Skellam’s
contribution to population dynamics in structured habi-
tats can be judged by comparing his treatment with ma-
jor contemporary lines of research on the subject. Regard-
ing species coexistence and competition, one has models
based on island biogeography [12] and metapopulation the-
ory [4,5], and structured-habitat elaborations of the predator-
prey model [13-15; see also Ref. 5, chapter 7].

Although island biogeography preceded metapopulation
theory, in recent times the latter has gradually become the
theoretical tool of choice in this context. In fact, island bio-
geography can be expressed in terms of metapopulation the-
ory, by considering one special patch, or island (representing
a continent), so much larger than the others that it remains
in a steady state, regardless of the migration or death of its
individuals [16; see also Ref. 5, p. 59]. Hence we deal here
exclusively with metapopulation theory.

In its simplest form, it considers a composite habitat
with patches amenable to occupation by various members
of a given (animal or plant) species. The global popula-
tion (metapopulation), is thus an aggregate of the resulting
sub-populations in such patches. Each sub-population is as-
sumed to vary in size due to migration and mortality. The
first metapopulation model, introduced in 1969 by Levins [4],
deals with the time evolution of the fraction of occupied
patches in a landscape,P (t), dP/dt = cP (1 − P ) − mP ,
wherec andm are coefficients of colonization and extinc-
tion, respectively. The stationary value ofP (t) is given by
Pstat = 1−m/c, and smaller values ofP lead to a negative
time derivative in the dynamical equation, hence to extinc-
tion. Habitat structure thus plays a minor role in the model,
as only patch counting is involved.

Levins’ model has been generalized in many ways, in-
troducing for example individual patch abundances [17],
qualifying migration according to a “rescue effect” [18,19],
making colonization dependent on the distance between the
patches involved [20,21], etc.

Comparison with Skellam’s model of a structured habitat
seems at first glance difficult, as Levins’ model patches relate
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to the species (hence they can be occupied by many individ-
uals), and Skellam’s cells relate to individuals. However, the
mathematical analysis of metapopulations has been extended
to the individual level, with minor changes [6,22].

In consonance with Levins, Skellam deals with patches in
a global fashion; his patches, however, are characterized by
an intrinsic quality factor (H). Levins’ model, by contrast,
emphasizes in and out fluxes through patch borders. In this
sense, Skellam’s and Levins’ approaches are complementary.
There is also a limiting condition for population persistence
in Skellam’s scheme, although it depends not on population
size, but on the product of patch quality and seed production
(ΓH > 1). Due to mortality, there remains in both cases a
fraction of empty patches in the stationary regime.

The original treatment of species competition is the clas-
sic predator-prey model of Lotka and Volterra [23,24], where
spatial structure was completely absent. Some recent mod-
els of this type do include limited space dependence [15; cf.
also Ref. 5, chapter 7]. However, Skellam’s method cannot
be compared with the Lotka-Volterra approach in any direct
way, as the former is based on an evolution condition (the re-
cursion relationχn+1 = 1− exp(−ΓHχn)), which involves
the population fraction of a single species. When seeds or
plantules from competing species coincide in a given cell in
Skellam’s scheme, there is no predator-prey relationship be-
tween them; species superiority is introduced by hand.

Although the matter of stability in Skellam’s recursive
method to study species persistence and competition in vari-
ous habitats is not considered in this paper, we offer the fol-
lowing comments on this important question. The stability of
a given arrangement of species in a uniform habitat can be de-
termined using May’s criterion for ecological stability [25],
involving species richness, their connectivity and the range
of connectivity “strength”.

The stability of Skellam’s solution for the stationary
regime in his recursive equation (χ = 1 − exp(−ΓHχ))
can be ascertained as follows. Let us assume that
the habitat richness suffers a small change, fromH to
H ′ = H + δ; the stationary regime will consequently be
shifted by some amount∆, from χ to χ′ = χ + ∆. Writ-
ing χ′ = 1− exp(−ΓHχ′), one obtains to first order in
δ, ∆ = {Γχ(1− χ)/ [(1/χ)(1− χ) ln(1− χ) + 1]} δ. As
the coefficient ofδ in this equation never blows up (it tends
to Γ for χ close to 0, and to 0 forχ close to 1), we conclude
that the stationary regime is stable. A similar result follows,
assuming a small change in seed production, asΓ and H
appear in symmetrical fashion in the stationarity condition
above.

Closer in spirit to Skellam’s approach are models of
species competition within the metapopulation context. Con-
sider for example Tilman’s model [6], wheren species com-
pete, ranked by their competitive ability (just as in our ex-
tension of Skellam’s scheme in Section II), with the first one
being the best competitor, in the sense that its members out-
perform those from all other species, when they coincide in
the same individual site. The model is based on the dynami-

cal equation,

dpi/dt = cipi(1−
∑i

j=1
pj)−mipi −

∑i−1

j=1
cjpipj ,

wherepi is the fraction of individual sites occupied by mem-
bers of speciesi, andci andmi are the colonization and mor-
tality coefficients for individuals from speciesi. This model
is thus conceptually close to Skellam’s proposal, and in fact,
more restricted that the latter, as it involves a homogeneously
rich habitat, while Skellam also deals with habitats with two
sectors (a rich and a poor one), and his argument can be ex-
tended to an arbitrary number of sectors, with various levels
of richness, as we did in Sec. 2. The case of partial species
superiority is not considered in Levins’ model.

The most relevant aspect of Skellam’s work on this prob-
lem is the realization, through a mathematical argument, of
a tradeoff between individual fitness and the number of off-
spring. A similar observation was put forward by Hutchin-
son in the same year as Skellam (1951) in a now classic pa-
per [26], based on an inverse relationship between egg size
and clutch size in copepods. However, the tradeoff qualita-
tively suggested by Hutchinson, between investment in the
fitness of individual offspring, and investment in offspring
number, was mathematically formalized much later [27].

Appendix

We describe here a systematic procedure for choosing sec-
tor richness values{Hk}, and seed production{Γi}, in order
to haven species distributed inn habitat sectors with total
segregation (i.e. a single species to each sector).

Let us rank the species{Sj} according to fitness, so that
an individual fromS1 survives when it confronts one from
S2 in the same individual cell, and so forth. Our problem
consists in choosing values for habitat richness{Hk} , and
for seed production{Γi} (where individuals from speciesSi

produceΓi seeds), that lead to the persistence of only one
species per sector. Let us start by choosing arbitrary values
for {Hk} such thatH1 > H2 > H3 . . .; our problem then
reduces to selecting the appropriate values for{Γi}.

We now associate small values ofΓ with large values of
H, as follows: pickΓ1 so Γ1H1 > 1, andΓ1Hj < 1 for
j ≥ 2. Hence the speciesS1 will survive only in the first
habitat. Choose now for the second speciesΓ2 > Γ1, so
Γ2H2 > 1, andΓ2Hj < 1 for j ≥ 3; the speciesS2 can thus
survive only in the first and second sectors. Now adjustΓ2 so
thatS2 cannot survive in the first sector, so that

Γ2/Γ1 < −χ1/(1− χ1) ln(1− χ1).

This can be done because, although we haveΓ2/Γ1 > 1,
the quantity[−χ1/(1− χ1) ln(1− χ1)] is also greater than
unity (usingχ = 1− exp(−ΓHχ); one first rewrites it as

[exp(Γ1H1χ1)− 1] /Γ1H1χ1,
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and then shows that

f(y) = [exp(Γ1H1y)− 1] /Γ1H1y

is an increasing function ofy in the interval0 < y ≤ 1, with
f(0) = 1). ForΓ3 one now follows a similar procedure, and
so forth.

Although the above algorithm involves “fine-tuning” of
parameters at each step, the amount of guessing is greatly
diminished relative to a random search for parameter values.
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