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In this work we present a new method for such a non-trivial problem as the synthesis of optical filters based on non-uniform Long-Period
Fiber Gratings (LPGs). The method is based on a real-coded genetic algorithm (GA) with a new quasi-analytical procedure for solving the
Zakharov-Shabat Inverse Problem. The method possesses an improved computational stability compared to classic numerical algorithms.
The main peculiarity of the non-uniform LPG transmission gratings, compared to the Bragg gratings, is that their optical fields oscillate
rapidly. However, the quasi-analytical approach proposed allows one to reduce to a minimum the number of sampling points, without, at
the same time, losing accuracy in the solution,i.e. the method possesses an improved efficiency. The algorithm convergence was also
improved by using the relations of the law of conservation of energy between the interacting waves. It has been shown that the algorithm
works adequately even for the case of strongly over-coupled co-propagating lightwave modes, as we demonstrate in several examples of the
synthesis of ultra-wide pass-band optical filters (FWHM of 100-200 nm).

Keywords:Long-period fiber gratings; synthesis; optical filters; genetic algorithm.

En este trabajo presentamos un nuevo método para un problema no-trivial como la sı́ntesis de filtrośopticos basados en rejillas de periodo
largo (Long-Period Fiber Gratings o LPGs) no uniforme. El método esta basado en un código de algoritmo geńetico real (GA) con un
nuevo procedimiento cuasi-analitico para la solución del problema inverso de Zakharov-Shabat. El método posee un estabilidad de computo
mejorada compara con los algoritmos numéricos cĺasicos. La principal peculiaridad de la no uniformidad de las rejillas de transmisión LPG,
comparado con las rejillas de Bragg, es que sus camposópticos oscilan ŕapidamente. Sin embargo, la aproximación cuasi-analı́tica propuesta
permite reducir al ḿınimo el ńumero de puntos muestreados, pero, al mismo tiempo, no pierde la precisión en la solucíon, es decir, el ḿetodo
posee una eficiencia mejorada. La convergencia del algoritmo también fue mejorada usando las relaciones de la ley de conservación de la
enerǵıa entre las ondas que interactúan. Esto ha mostrado que el algoritmo trabaja adecuadamente aun para los casos de modos de ondas
luminosas de ḿas fuerte co-propagación sobre acoplada, como se demuestra en varios ejemplos en la sı́ntesis de filtros de banda de paso
óptica ultra-ancha (FWHM de 100-200nm).

Descriptores:Rejillas en fibras de periodo largo; sı́ntesis; filtrosópticos; algoritmo geńetico.

PACS: 42.81.Qb

1. Introduction

The problem of optical waveguide grating synthesis initially
concentrated on the well-known optical Bragg Grating Re-
flectors (BGR) based on short-period perturbations of the re-
fractive index in optical waveguides. Their main applications
are the narrow GHz-bandwidth optical filters with a desired
spectral response for high density WDM fiber optic com-
munications, as well as distributed optical fiber sensors of
strain, temperature, etc. [1,2]. In the latter case, the aim
of the synthesis problem is to reconstruct the spatially dis-
tributed physical forces from an experimental grating spec-
trum. At the same time, recent studies have shown that so-
called Long Period Gratings (LPGs) in some cases possess
certain advantages over BGR [3-8]. First of all, they do
not require high resolution writing technologies because of
their long period (Λ) that lies between 200 – 800µm. LPGs
are also attractive because of their extended functionality.
They are based on the grating induced coupling between co-
propagating optical waves; hence, they act as a transmission
device. In single mode optical fibers, for example, the grat-
ing written in the core by deep UV causes an energy exchange
between a fundamental core mode and cladding modes [3]. It

is obvious that the cladding mode fields are very sensitive to
changes in the refractive index of the external medium sur-
rounding the fiber. This property, hence, can be used for the
distributed sensing of some liquids, as well as gases, using
chemically active cover layers in the latter case. The sensi-
tivity of any LPG sensor can be very high because of the long
interaction length, 0.1–2 m, and differential response of the
interacting modes to the external perturbations. The recipro-
cal character of the coupled co-propagating lightwave pair al-
lows one, for example, to achieve a simple Mach-Zehnder in-
terferometric sensor structure, in just a single optical fiber [6].
Also, LPGs play a very important role in the photonic tech-
nologies operating as a gain equalizing filter in erbium-doped
fiber amplifiers (EDFA) [7,8].

The history of the synthesis of guided wave optical filters
is associated with the well-known Digital Filters Concepts,
which involve the Z-Transforms for the design of Moving
Average (MA), Autoregressive (AR), and mixed ARMA fil-
ters. Such devices present optical lattice circuits consisting of
waveguide elements such as classic Mach-Zehnder interfer-
ometers and ring resonators [9]. Later, it was shown that non-
uniform Bragg gratings are capable of providing any com-
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plex spectral response, and great attention has been paid to
the development of new synthesis concepts for them. A va-
riety of inverse scattering (IS) methods have been developed
to find a topology of non-uniform BGR that can satisfy a cer-
tain desired spectral response. A complex longitudinal pro-
file of weak gratings with the reflection coefficientr(δ) < 1,
whereδ is the wavenumber mismatch parameter, can suc-
cessfully be obtained within the Born (first-order) approach
by means of the corresponding inverse Fourier transform of
r(δ) [10]. The second group of methods is based on the
famous Gelfand-Levitan-Marchenco (GLM) integral equa-
tions, which provide exact solutions to the Zakharov-Shabat
(Z-S) IS problem, expressed through the coupled mode equa-
tions and their derivatives [11,12]. Basically, the algorithms
developed for GLM use the relation between the coupling
function (Q), that reflects longitudinal variation of the grat-
ing parameters to be found, and the grating impulse response.
The main inconvenience of these methods is their low com-
putational efficiency caused by the complexity of the inte-
gral equation system. In the general case, it is solved nu-
merically [13,14]. First Kay [15], and then Frangos and Jag-
gard [16] showed an original way to transform the coupled
GLM system to ordinary linear differential equations, leading
to an exact analytical solution forQ. Unfortunately, those al-
gorithms require the target spectral response to be expressed
through rational functions, which is far from most practical
situations. Also, since GLM is an exact method, it will gen-
erate a grating with infinite length. These difficulties have
been overcome by E. Perel [17], who developed an iterative
algorithm for GLM equations (IA) that, in principle, has no
limitations in producing any spectral response. The method is
built on a series of multiple integrals, which describe multiple
reflections inside the grating. It should be noted that the inte-
gral order and, hence, the algorithm complexity grow as the
reflectivity BGR approaches unity. Recently, the differential
IS algorithms known as discrete layer-peeling (DLP) [18,19]
and a continuous layer-peeling (CLP) [20,21] were proposed.
These methods have been shown to be very powerful and
fast synthesis tools for BGR. The third, most practical group
of direct methods involves evolutionary algorithms such as
a genetic algorithm (GA) [2,22,23]. GA-based techniques
are physically and mathematically transparent, since they use
standard direct integration of wave equations. Their main
advantage is a result of the possibility of giving a desired
weight to most important parts or parameters of the spectral
response, in each specific practical case. The drawback of
GA is its slow convergence, compared to the layer-peeling
algorithms, whenever one needs to obtain a solution close to
an ideal one. However, its main strength is a complete free-
dom in the choice of mathematical methods to optimize the
integration algorithms, and the possibility of obtaining the
optimal solution within the given technological limitations
for the structure, for example, if the filter length should be
truncated.

In this work we present a new version of GA optimized
for the synthesis of optical band-pass filters based on non-

uniform LPG with a continuous variation in the refractive
index profile. In contrast to the case of BGR, the synthe-
sis of Long Period Gratings is respectively a new problem.
Although, in principle, all the methods mentioned above are
applicable to the synthesis of LPG, this has only been done
by DLP on the basis of a segmented LPG in [19], and for
a binary-chirped grating in the framework of GLM concept,
involving a GA optimization [6]. However, LPGs with a con-
tinuously non-uniform refractive index profile that can pro-
vide ultra-wide filter frequency response have not been con-
sidered. Here, we describe a very simple and efficient algo-
rithm for this case.

2. Problem definition

Some comments should be made, first, to describe the al-
gorithm to be considered here. Although the equations for
counter-propagated (BGR) and co-propagated (LPG) waves
are similar, there is a significant difference in their integra-
tion algorithm. First, for the characterization of the reflection
gratings, it is sufficient to operate with the reflection coef-
ficient (r) given by a relation between the incident and re-
flected wave amplitudes,i.e. the solution does not require a
separate description of these waves. Second, even close to the
Bragg resonance condition, local spectra ofr are smooth sat-
urating functions (|r| < 1) of the propagation coordinate (z)
and the mismatchδ. In contrast, when the waves in LPG are
almost phase-matched, the local scattering coefficientρ(δ,z),
determined as the relation of co-propagating waves, oscillates
along z, and can possesses peaked-like discontinuities, for
loss-less grating with strong wave coupling. In turn, this can
lead to computational errors when using IA, DLP, CLP, since
their algorithms extensively use the inverse Fourier transform
of r(z, δ), or ρ(δ,z). It should also be noted that DLP can-
not, in principle, be applied to the synthesis of the wide-band
filters, with FWHM of 10-100 nm, since its physical model
requires the presentation of the structure as a chain of uni-
form elementary gratings. The problem is that, for the wide-
band filter, each element (or segment) should contain only a
few grating periods, and, therefore, the conventional analyt-
ical description of the single segment response, used in the
transfer matrix technique applied in DLP, is no longer valid
here.

A GA presented here allows us to overcome this prob-
lem. It is optimized to be very stable even for short-length
LPG with 100%-transmittivity that requires high and rapidly
varying values of the scattering coefficient with respect to the
grating period. Here we consider LPG written in the fiber
core as a quasi-sinusoidal perturbation of the refractive index
with the amplitude∆n(z) that is varied along the propagation
coordinate z:

n(z) = nb + ∆n(z) cos (2πz/Λ + θ(z)) . (1)

Here,Λ denotes the grating fundamental period that can be
locally shifted in the space by the functionθ (local chirping
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parameter), andnb is the background refraction index change
that can be induced in the core. Here, however,θ andnb are
considered to be zero. The substitution of Eq.(1) into the
Maxwell equations under the slowly varying amplitude ap-
proach gives the following Z-S system:

∂ũ(z, δ)
∂z

= j
δ

2
ũ(z, δ) + jQ(z)ṽ(z, δ)

∂ṽ(z, δ)
∂z

= −j
δ

2
ṽ(z, δ) + jQ∗(z) ũ(z, δ), (2)

describing the coupling between the complex amplitudes of
the coreu=ũ exp(−jδz/2) and claddingv=ṽ exp(jδz/2)
modes, co-propagating in thez direction with the propa-
gation constantsβu, and βv correspondingly. In Eq. (2)
δ denotes the wavenumber miss-matchδ = ∆β − 2π/Λ,
∆β = βu − βv = 2π(ncore(λ)−nclad(λ))/λ ≈ 2π∆ncc/λ,
where the typical effective refractive–index difference be-
tween theu andv modes∆ncc = 0.002,λ is the optical wave-
length;Q(z) is the envelope of the local coupling coefficient
q(z) = Q(z) cos (2πz/Λ + θ(z)). For single mode optical
fibers the coupling functionQ(z) = Q∗(z) = (π/λ)I∆n(z),
whereI is the mode overlap integral, andI∆n is the induced
effective index perturbation that can reach3.0 × 10−3 [3].
It is assumed that the incident lightwave can excite in
LPG the fundamental core mode with spectral characteris-
tic u(0, δ)=u0, and the desired output spectral response for
the cladding mode is given byv(L, δ) = s(δ), whereL is
the grating length. It is convenient to reformulate Eq.(2) to
the Riccati equation by introducing the local scattering coef-
ficientρ(z, δ) = ṽ(z, δ)/ũ(z, δ):

∂

∂z
ρ(z, δ) = −jδρ(z, δ)− jQ(z)ρ2(z, δ) + jQ(z). (3)

Equations (2) and (3) are further used here to find the
apodization functionQ(z) that satisfiess(δ), according to the
general concept of evolutionary algorithms. The basic prin-
ciple to do this is the following:

1) we need to generate random numbers to formQ(z),

2) to calculatẽs(δ) by integration of Eq. (3), and

3) to minimize the difference between the calculated (s̃)
and desired (s) spectra.

3. Direct problem

It is possible to show that numerical integration of Eq. (2)
or (3) by conventional methods, for example, like a fourth-
order Runge-Kutta technique proposed for CLP [20,21], does
not guarantee the stability of the procedure at a reasonable
discretization step∆z. This is true for two reasons. First,
when solving the equations numerically, the instability in any
numerical algorithm exhibits an amplification effect foru and
v that takes place when∆z is not sufficiently small com-
pared to the local period of a quasi-periodic energy exchange
between the modes, given by` ≈ πL−1/

√
0.25δ2 + Q2.

For example, if the total grating lengthL = 10 cm, and
Q = δ = 10 cm−1, the number of the discretization points in
the grating should beN > 10000 to provide∆z ¿ ` nec-
essary for good convergence of a numerical method. How-
ever, this makes the algorithm too slow to be used in the
evolutionary methods (note,L, Q andδ can be larger). Sec-
ond, at the conditionQδ À 1, the local reflection coefficient
ρ(z, δ) has sharp discontinuities (in the case of uniform grat-
ing ρ(z, 0) ∝ tan(zQconst), which give rise to serious com-
putational errors.

To provide a high stability and efficient integration of
Eq. (3) we propose to divide the local scattering effect by
two steps. Let us suppose that only the pure scattering takes
place within a small space interval{zi, zi+1 = zi +∆z}, and
that the phase delay effect acts only within the next interval
{zi+1, zi+2}. Therefore, the analytical presentation of this
two-step mathematical model looks as follows:





∂

∂z
ρ(z, δ) = jQ(z)− jQ(z)ρ2(z, δ), (n− 1)∆z < z < n∆z,

∂

∂z
ρ(z, δ) = −jδ ρ(z, δ), n∆z < z < (n + 1)∆z, n = 1 . . . N.

(4)

In this case we can operate with the analytical solutions to (4) within the corresponding intervalszi:
{

ρ(z, δ) = j tan
(
2

∫
Q(z) dz + C1

)
, (n− 1)∆z < z < n∆z,

ρ(z, δ) = C2 exp (−jδ z) , n∆z < z < (n + 1)∆z, n = 1 . . . N.
(5)

The step-like-variable integration constants C1 andC2 in the system (5) have to be redefined at each coordinatezn from
local initial conditions as:

C2(n∆z, δ) = ρ((n− 1)∆z, δ),

and

C1(zn)=−2j

∫
Q(zn−1)dz + ln

(
1 + ρ(zn−1, δ)
1− ρ(zn−1, δ)

)
. (6)
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Therefore, at each pointzn = 2n∆z, the solution to
Eq. (3) can finally be expressed by:

ρn(δ) = ρn−1(δ) ∗ P (δ) = S(Qn, ρn−1(δ)) ∗ P (δ), (7)

where the subscript signifies the current coordinatezn;

S(Qn, ρn−1(δ)) =
exp (γ(δ))− 1
exp (γ(δ)) + 1

with

γ(δ) ≡ 2jQn∆z + ln
(

1 + ρn−1(δ)
1− ρn−1(δ)

)
,

andP (δ) ≡ exp(−jδ∆z). Note,
∫

Qndz −
∫

Qn−1dz ≈ Qn∆z,

and, also, Eq. (6) are presented in the form suitable for C++
programming.

4. Calculation of spectra

The calculation of the spectrum of the cladding mode
v(L, δ) = s(δ) is the important feature in the problem con-
sidered. Formally, it can be expressed through the local scat-
tering coefficientρ and, also, by involving Eq. (2):

v(z, δ) = ρ(z, δ)u(z, δ); (8)

where

u(z, δ) = exp


j

z∫

0

Qρ(z̃, δ) dz̃


 , (9)

However, the numerical realization of Eq. (8) is accom-
panied by significant calculation difficulties associated with
the discontinuities inρ(z, δ) discussed above. The problem
can be overcame by involving the energy conservation law
|u(δ)|2 + |v(δ)|2 = Const= |u0|2 that reduces the problem
to the equations

|vn(δ)|2 =
|ρn(δ)|2

|u0|2 + |ρn(δ)|2 ,

and

|u(z, δ)|2 = |u0|2 − |v(z, δ)|2 , (10)

which have a very smooth function on their right-hand side,
and allow us to simulate strongly-overcoupled gratings. In
turn, the argument of the waves can be calculated without
any problem by Eq. (8). Thus, the complex wave amplitudes
can be expressed as follows:

v(z, δ) = |v(z, δ)| exp (j arg(ρ(z, δ)u(z, δ)) , (11)

u(z, δ) = |u(z, δ)| exp (j arg(u(z, δ))) , (12)

where the amplitude modulus and arguments are given by
Eq. (10) and Eq. (8), respectively. Finally, Eq.(12) can be
presented in a discrete form by the above step-like expres-
sion for ρ(z, δ) and any conventional integration algorithm
for Eq. (9).

Figures 1 to 4 show the calibration curves obtained for
the uniform grating from Eq. (7-10). As seen from the fig-
ures, they are in very good agreement with the data obtained

FIGURE 1. The periodical energy exchange between the core
1) and the cladding 2) optic modes in uniform LPG atδ=1.0 cm−1,
andQ = 0.5 cm−1, obtained by our algorithm (continuous curves)
and by the exact solution (circles) from Eq. (13). The results
present the following relations: 1)|u|2 / |u0|2, and 2)|v|2 / |u0|2.

FIGURE 2. The phase evolution of the core 1) and the cladding 2)
optic modes in uniform LPG atδ=1.0 cm−1, andQ = 0.5 cm−1,
obtained by our algorithm (continuous curves) and by the exact so-
lution (circles).
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FIGURE 3. The curve shows the normalized intensity of the
cladding mode|v|2 / |u0|2 calculated by the algorithm at the
distance of L = 20 cm in overcoupled uniform LPG with
Q = 0.5 cm−1.

FIGURE 4. The phase response of the cladding mode at the same
conditions as in Fig. 3.

by the well-known exact solution for the simple uniform
case [26,27]:

u/u0 = [cos sz − j(δ/2s) sin sz] exp(j0.5δ z)

v/u0 = −j(Q/s) sin sz exp(−j0.5δz),

s =
√

δ2/4 + Q2. (13)

5. Solution of the inverse problem by a genetic
algorithm

In the framework of a GA, the synthesis problem can be
formulated as finding an optimalQ(z) that would minimize
what is known as the objective functionΦ within the interval
δmax − δmin:

Φ =

δ max∫

δ min

(|s(δ)| − |v(L, δ)|)2dδ

+µ

δ max∫

δ min

(arg(s(δ))− arg(v(L, δ)))2 dδ→min≡f, (14)

where the first integral gives the solution for the amplitude
spectral response, andµ is the weighted coefficient for the

second term that allows one to obtain a desired phase re-
sponse programmed byarg(s(δ)) (in this work µ = 0). In
principle,Q(z) can be modeled by a wide class of functions.
We suppose, however, that a more natural way for the case
of the band-pass filter is to expressQ(z) with the help of the
following series:

Q(z) =
M(2,3..m)∑

`=1

α`
sin(η`z + ψ`)
(η`z + ψ`)

, (15)

since thesinc-like solution is valid for the weak gratings,
when

∫
Q(z)dz < π/2.

Therefore, the problem is to find the vectors~α = α0 . . . αT
M ,

~η = η0 . . .MT , ~ψ = ψ0 . . . ψT
M , which will satisfyΦ → f .

The above optimization problem was solved by real-
coded GA with the standard cyclic computational operations:
initialization, mutation, fitness evaluation, and selection of
the best individuals (see review [24], or our work [25]). Here,
we describe some key operations applied in our version of the
GA. Its first step consists in the initialization of normally dis-
tributed random numbers forming the first parent generation
of the populations~ασ, ~ησ, ~ψσ, whereσ = 1, . . . σt and the
total number of populationsσt = 500. The evolutionary cy-
cle (P ) looks as follows. A certain part of the parents (σ̃) is
selected under the criterion that they provide the smallest val-
ues of the objective functionΦ, to generate what are known
as child populations, whose total number (τ ) is also equal to
σt. It is realized by:

1) the individual mutation operation

~̃ατ ≡ ~ασ̃ ±
∑

k

∂~αk,

~̃ητ ≡ ~ησ̃ ±
∑

k

∂~ηk,

~̃ψτ ≡ ~ψσ̃ ±
∑

k

∂ ~ψk,

where ∂αi, ∂ηi, ∂ψi ¿ αi, ηi, ψi are normally dis-
tributed random numbers;τ = 1, . . . σt,σ̃ = 1..σt/k
(σt/k is a natural number),k = 5 is the number of new
individuals obtained by the mutation of each parent;
and

2) the recombination operation established as

~̃αi(new) = 0.75 ~̃αi + 0.25 ~̃αj ,

~̃αj(new) = 0.75 ~̃αj + 0.25 ~̃αi

(for ~ησ, ~ψσ it was done in a similar manner), with
the probability decreasing from 0.1 to 0.01 depend-
ing on the quality of the individuals participating in

Rev. Mex. F́ıs. 51 (6) (2005) 610–619
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the crossover operation. The next operation is again

the selection of the best̃~ατ , ~̃ητ , ~̃ψτ by means of the
evaluation of the objective functionΦ. The data ob-
tained in a cycleP are considered, then, as the par-
ent data in the next cycleP+1. Note that the mutation
step must be decreased each time when the smallest
Φ(P ) > Φ(P + 1). This loop of the algorithm con-
tinues until a smallestΦ ≤ f or the computing time
is exhausted. An a acceptable solution can usually be
obtained forP =30-50, which takes 12-15 min with a
PIV- class PC.

6. Results and discussions

Let us consider the principle steps in the synthesis of LPG
band-pass filter with square amplitude spectral response:
v(L, δ)=s(δ)=1 within δ1<δ<δ2 (or: λmin<λ<λmax) and
s(δ) = 0 elsewhere, at the input conditionu(0, δ) = 1. It
is very important, first, to define proper ranges for randomly
generated numbers~ασ, ~ησ, ~ψσ. This determines how fast the
Φ will converge to the global minimum. Here, we are inter-
ested in finding the solution for the central filter wavelength
λc = 1.5µm. Hence∆β = 2π∆ncc/λc = 85 cm−1, and
the conditionδ = ∆β + 2π/Λ = 0 gives us the fundamen-
tal Λ = 750µm. It is easy to see that the spatial frequency
η in (15) determines the deviation in the fundamental period
η ≈ (2π/Λ̃ − 2π/Λ) ≈ d(2π/Λ). Taking into account the
fact that we want to obtain the flat-top transmittance curve of
the filter within the given range (in general, it is sufficient to
consider any transmittance function), it is reasonable to as-
sume that the grating should simultaneously phase-match the
waves withinδ1 < δ < δ2, or, at least, atδ = δ1,2. This is
equivalent to the condition

dδ/dλ = 0 ⇒ −2π∆ncc/λ2 − d(2π/Λ)/dλ = 0,

⇒ η ≈ 2π∆ncc(λmax − λmin)/λ2
c .

For example, if∆λ = λmax − λmin = 200 nm (ultra-wide
band-pass filter)η ≈ 27.8∆λ = 5.56 cm−1. Also, it is
clear that the grating lengthL must be related to the period
2π/η. In particular, the amplitude response with sharp edges
requiresL ≈ 2πp/η, wherep > 10.

The numerical error in the method is mainly associated
with the maximal detuningδ used in each specific case con-
sidered. On the one hand, we are interested in increasing the
discretization step∆z to make our GA faster. However, on
the other hand, a maximal value of∆z has to be limited by
minimal phase delayδ∆z for each intervalzi, zi+1 to guar-
antee acceptable accuracy of the algorithm. Since we use the
analytical solution within these intervals, this allows us to in-
crease the critical phase delay value up toδ∆z ≈ π/8, and,
therefore∆zmax ≈ π/(8δ). This estimation shows that we
can operate only withN = L/∆zmax = 500 intervals when
L =10 cm and the calculation window is as wide as 500 nm,
as required for a wide-band filter. The advantage of such a

discritization is that both wide-band (smallL), and narrow-
band gratings, which possess FWHM<10 nm, largeL, but
narrow calculation window of≈ 50 nm, will be synthesized
for equal computing time, and with acceptable accuracy. It
is very important to stress that our quasi-analytical two-step
scheme presented here is 20-50 times faster than the conven-
tional fourth-order Runge-Kutta algorithm.

The results of the synthesis of the structure with square
amplitude spectral responses obtained for∆λ = 200 nm, 100
nm, and 10 nm are presented in Figs. 5 to 17. For all the
cases, we usedN = 600 spatial intervals∆z when solving
the Riccati Eq. (3). As one can see from Figs. 5, 9, and
12, the transmission spectra possess quite sharp transitions
at the edges of the band-pass and close to -45 dB suppres-
sion of the signal lying out of the operation transmission band
(as an example see Fig. 6). Such a solution can be referred
to “ideal”, taking into account that the curves lie very close
to the target square response. The coupling functionsQ(z)
shown in Figs. 7, 10, and 13 providing these as “ideal” results
were synthesized atM = 40, thesinc terms in Eq. (15). Al-
though the results seem to be more than satisfactory from the
mathematical point of view, there is a very important point
to be discussed here. Figures 8 and 11, which present the
spatial evolution of the scattered mode within the the pass-
band in the case of ultra wide-band “ideal” filters, demon-
strate that within initial short part of the grating there is a
100%-energy exchange between the modes and, moreover,
the scattered mode oscillates too quickly. If we estimate the
period of the mode oscillation, we can see that it is compara-
ble with only a few grating periods. Hence, it is obvious, the
physical realization of the corresponding coupling functions
is very problematic, because the existing UV writing tech-
nologies for the optical fiber gratings cannot provide such a
rapid growth in the induced refractive index, within two-three
grating periods, as required for the synthesizedQ(s) describ-
ing the “ideal” ultra-wide band-pass filters. Note that in the
case of the narrow-band filter (∆λ = 10 nm) both the mode
spatial evolution shown in Fig. 14 and the coupling function
in Fig. 13 vary sufficiently slowly and can be realized tech-
nologically.

FIGURE 5. The synthesized spectrum presents the normalized in-
tensity of the cladding mode|v(L, λ)|2 / |u0|2. The LPG length
L = 20 cm.
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FIGURE 6. The logarithmic scale of the spectrum presented in
Fig. 5.

FIGURE 7. The synthesized coupling functionQ(z) providing the
spectrum shown in Figs. 5 and 6.

FIGURE 8. The spatial evolution of the cladding mode in non-
uniform LPG atδ =0.01 cm−1, and the coupling functionQ(z)
shown in Fig. 7. The curve presents|v(z)|2 / |u0|2.

FIGURE 9. The spectra of the cladding mode a) calculated by our
method, and b) calculated by fourth-order Runge-Kutta numerical
method with the coupling function synthesized with the help of
the GA that is shown in Fig.(10, curve (a)). The grating length
L = 20 cm.

FIGURE 10. The synthesized coupling functionQ(z) providing the
spectra shown in Fig. 9.For the comparison the curve b) shows
Q(z) for the “realizable” filter presented in Fig. 15.

FIGURE 11. The spatial evolution of the cladding mode
(|v(z)|2 / |u0|2) in non-uniform LPG atδ =0.01 cm−1, for the cou-
pling functionQ(z) shown in Fig. 10.
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FIGURE 12. The synthesized spectrum of the cladding mode. The
grating lengthL = 200 cm.

FIGURE 13. The synthesized coupling functionQ(z) for the spec-
trum shown in Fig. 12.

FIGURE 14. The spatial evolution of the cladding mode
(|v(z)|2 / |u0|2) in non-uniform LPG with the coupling function
Q(z) shown in Fig.(4b), atδ =0.01 cm−1.

FIGURE 15. The synthesized spectrum of the cladding mode in
non-uniform LPG with the slowly varying coupling function shown
in Fig. 16, and at truncated lengthL = 15 cm (this can be said only
for the specific considered spectrum). The continuous curve was
obtained by our GA; the dashed and short dot curves was obtained
by RKA, at a different number of the discretization points (N).

FIGURE 16. The synthesized coupling functionQ(z) for the spec-
trum shown in Fig. 15. This case presents “realizable” non-uniform
LPG for an ultra-wide-band filter.

FIGURE 17. The spatial evolution of the cladding mode
(|v(z)|2 / |u0|2) in non-uniform LPG with the “realizable” cou-
pling functionQ(z) shown in Fig. 16 and 10b, atδ =0.01 cm−1.
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The above problem associated with the ultra-wide band-
pass filters can only be overcome if we use more soft re-
quirements to the filter response. The realizable coupling
function and its spectral response for ultra-wide filter with
∆λ = 100 nm are shown in Fig. 16 and 15, respectively. The
results were obtained by limiting the number ofsincterms in
Eq. (15), hereM = 4, and by truncating the grating length.
At these conditions the GA cannot synthesize “ideal”Q(z);
however the structure, as can be seen from Fig. 17, possesses
now more real characteristics, and the spectral response is
quite acceptable.

To verify and estimate the efficiency of our method,
we substituted the obtained coupling functions into a stan-
dard fourth-order Runge-Kutta algorithm (RKA) applied to
Eq. (2). These results are shown in Fig. 9 and 15. One can
see from the data that RKA, in general, reproduces the form
of the spectra well, however, it can easy violate the law of
conservation of energy because of the amplification effect de-
scribed above. Moreover, it requires an extremely large num-
ber of the discretization points to eliminate this effect and to
approach the maximum values of normalized curves to unity:
N = 60000 for an “ideal” filter (as one can see in Fig. 9 this
number is still not sufficient) andN = 30000 for an “real-
izable” filter. As the result, the computing time of the GA
with incorporated RKA increases up to 380 minutes, com-
pared to our two-step integration procedure that takes only
10-15 minutes with P-IV class PC. It should be noted, in the
case that we want to synthesize a wide-band non-ideal filter

with a moderate peaked transmission, for example of 80% ,
the synthesis by the GA will take 1-2 minutes.

7. Conclusions

In this work, on efficient method for the synthesis of ultra-
wide pass-band optical filters based on Long-Period Optical
Fiber Gratings is described. The method is developed in the
frame work of a standard genetic algorithm where we in-
corporate the original, accurate, and very effective two-step
procedure for the direct solution of the differential (Riccati)
problem that covers the case of rapidly oscillating fields. The
peculiarity of the method is that it is capable of providing
quite accurate solutions at very hard conditions for the pa-
rameters of the structure. For example, the method works
well even when the coupling function possesses a continu-
ous profile with very rapid variations in space, compared to
the grating period, as required for the filters with an ultra-
wide and sharp-edged frequency response and 100% in-band
transmission. The main advantage of our method compared
to the IA, DLP, CLP methods proposed earlier, is that we use
a quasi-analytical algorithm in the direct integration of the
differential equations. Also, here we proposed to involve the
relations of the conservation laws between the fields to im-
prove the stability and accuracy of the synthesis procedure.
As result, the method allows one to synthesize an “ideal” fil-
ter response in a reasonably (for GA) short time of 10-15 min.
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