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In this work we present a new method for such a non-trivial problem as the synthesis of optical filters based on non-uniform Long-Period
Fiber Gratings (LPGs). The method is based on a real-coded genetic algorithm (GA) with a new quasi-analytical procedure for solving the
Zakharov-Shabat Inverse Problem. The method possesses an improved computational stability compared to classic numerical algorithms.
The main peculiarity of the non-uniform LPG transmission gratings, compared to the Bragg gratings, is that their optical fields oscillate
rapidly. However, the quasi-analytical approach proposed allows one to reduce to a minimum the number of sampling points, without, at
the same time, losing accuracy in the solution, the method possesses an improved efficiency. The algorithm convergence was also
improved by using the relations of the law of conservation of energy between the interacting waves. It has been shown that the algorithm
works adequately even for the case of strongly over-coupled co-propagating lightwave modes, as we demonstrate in several examples of the
synthesis of ultra-wide pass-band optical filters (FWHM of 100-200 nm).

Keywords:Long-period fiber gratings; synthesis; optical filters; genetic algorithm.

En este trabajo presentamos un nuevaiagdo para un problema no-trivial como latgsis de filtro®pticos basados en rejillas de periodo

largo (Long-Period Fiber Gratings o LPGs) no uniforme. HEtado esta basado en uadigo de algoritmo gegtico real (GA) con un

nuevo procedimiento cuasi-analitico para la sduadilel problema inverso de Zakharov-Shabat. Etado posee un estabilidad de computo
mejorada compara con los algoritmos rarinos chsicos. La principal peculiaridad de la no uniformidad de las rejillas de trargsmiBiG,
comparado con las rejillas de Bragg, es que sus cagmass oscilanapidamente. Sin embargo, la aproxintaccuasi-andiica propuesta

permite reducir al imimo el limero de puntos muestreados, pero, al mismo tiempo, no pierde la@nemidia solud@n, es decir, el @todo

posee una eficiencia mejorada. La convergencia del algoritmo &arfis® mejorada usando las relaciones de la ley de consemvdeila

enerda entre las ondas que interaah. Esto ha mostrado que el algoritmo trabaja adecuadamente aun para los casos de modos de ondas
luminosas de ras fuerte co-propagdm sobre acoplada, como se demuestra en varios ejemplos enelsisde filtros de banda de paso

optica ultra-ancha (FWHM de 100-200nm).

Descriptores:Rejillas en fibras de periodo largdnsesis; filtrosopticos; algoritmo gegtico.
PACS: 42.81.Qb

1. Introduction is obvious that the cladding mode fields are very sensitive to
changes in the refractive index of the external medium sur-
The problem of optical waveguide grating synthesis initially rounding the fiber. This property, hence, can be used for the
concentrated on the well-known optical Bragg Grating Re-distributed sensing of some liquids, as well as gases, using
flectors (BGR) based on short-period perturbations of the reehemically active cover layers in the latter case. The sensi-
fractive index in optical waveguides. Their main applicationstivity of any LPG sensor can be very high because of the long
are the narrow GHz-bandwidth optical filters with a desiredinteraction length, 0.1-2 m, and differential response of the
spectral response for high density WDM fiber optic com-interacting modes to the external perturbations. The recipro-
munications, as well as distributed optical fiber sensors otal character of the coupled co-propagating lightwave pair al-
strain, temperature, etc. [1,2]. In the latter case, the aintows one, for example, to achieve a simple Mach-Zehnder in-
of the synthesis problem is to reconstruct the spatially disterferometric sensor structure, in just a single optical fiber [6].
tributed physical forces from an experimental grating specAlso, LPGs play a very important role in the photonic tech-
trum. At the same time, recent studies have shown that sarologies operating as a gain equalizing filter in erbium-doped
called Long Period Gratings (LPGs) in some cases possesiber amplifiers (EDFA) [7,8].
certain advantages over BGR [3-8]. First of all, they do
not require high resolution writing technologies because of The history of the synthesis of guided wave optical filters
their long period {) that lies between 200 — 8Qdn. LPGs  is associated with the well-known Digital Filters Concepts,
are also attractive because of their extended functionalitywhich involve the Z-Transforms for the design of Moving
They are based on the grating induced coupling between cdverage (MA), Autoregressive (AR), and mixed ARMA fil-
propagating optical waves; hence, they act as a transmissidars. Such devices present optical lattice circuits consisting of
device. In single mode optical fibers, for example, the gratwaveguide elements such as classic Mach-Zehnder interfer-
ing written in the core by deep UV causes an energy exchangameters and ring resonators [9]. Later, it was shown that non-
between a fundamental core mode and cladding modes [3]. itniform Bragg gratings are capable of providing any com-
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plex spectral response, and great attention has been paid toiform LPG with a continuous variation in the refractive
the development of new synthesis concepts for them. A vaindex profile. In contrast to the case of BGR, the synthe-
riety of inverse scattering (IS) methods have been developesis of Long Period Gratings is respectively a new problem.
to find a topology of non-uniform BGR that can satisfy a cer-Although, in principle, all the methods mentioned above are
tain desired spectral response. A complex longitudinal proapplicable to the synthesis of LPG, this has only been done
file of weak gratings with the reflection coefficier(®) < 1, by DLP on the basis of a segmented LPG in [19], and for
whered is the wavenumber mismatch parameter, can suca binary-chirped grating in the framework of GLM concept,
cessfully be obtained within the Born (first-order) approachinvolving a GA optimization [6]. However, LPGs with a con-
by means of the corresponding inverse Fourier transform ofinuously non-uniform refractive index profile that can pro-
r(0) [10]. The second group of methods is based on thevide ultra-wide filter frequency response have not been con-
famous Gelfand-Levitan-Marchenco (GLM) integral equa-sidered. Here, we describe a very simple and efficient algo-
tions, which provide exact solutions to the Zakharov-Shabatithm for this case.

(Z-S) IS problem, expressed through the coupled mode equa-
tions and their derivatives [11,12]. Basically, the algorithms
developed for GLM use the relation between the coupling™

function @), that reflects longitudinal variation of the grat- Some comments should be made, first, to describe the al-

ing parameters to be found, and the grating impulse reSPONSHarithm to be considered here. Although the equations for

The main inconvenience of these methods is their low com:
. . ] . counter-propagated (BGR) and co-propagated (LPG) waves
putational efficiency caused by the complexity of the inte- propag ( ) bropag ( )

I . In th | ) ved are similar, there is a significant difference in their integra-
gra 'eqltjatllosnlsdfystlgm. Kn t 1e genedrahcasFe, It s so V; NYon algorithm. First, for the characterization of the reflection
merically [13,14]. First Kay [15], and then Frangos an ‘Jag'gratings, it is sufficient to operate with the reflection coef-

gard [16] showed an original way to tr_ansform_ the COUp_Iedficient (") given by a relation between the incident and re-
GLM system to ordinary linear differential equations, Ieadmgflected wave amplitudesg. the solution does not require a

to an exact anglytlcal solution f@. Unfortunately, those al- separate description of these waves. Second, even close to the
gorithms require the tqrget spgctrgl response to be exp(ess%gagg resonance condition, local spectra afe smooth sat-
through rational fu_nctlons, W.h'Ch Is far from most pr_act|cal urating functions|¢-| < 1) of the propagation coordinate)(
situations. A.‘ISO’ since GLM IS an exact meth_oq, It \_N'” 9€N~ and the mismatch. In contrast, when the waves in LPG are
erate a grating with infinite length. These difficulties havealrnost phase-matched, the local scattering coeffigight)

b:aen_ohver;:ome by E. Pe_rel [17], Wt?o d_evelppgdl anhiterativ%ietermined as the relation of co-propagating waves, oscillates
algorithm for GLM equations (IA) that, in principle, has no along z, and can possesses peaked-like discontinuities, for

limitations in producing any spectral response. The method iFoss—Iess grating with strong wave coupling. In turn, this can

built on a series of multiple integrals, which describe multiple 4 1, computational errors when using IA, DLP, CLP, since

reﬂtlacti((j)ns insc,jid(; the gre:;cing.l It S_hr?md be nlote_d that the in':]efheir algorithms extensively use the inverse Fourier transform
gral order and, hence, the algorithm complexity grow as t r(z,9), or p(4,z). It should also be noted that DLP can-

reflectivity BGR approaches unity. Recently, the differentialnot, in principle, be applied to the synthesis of the wide-band
IS algorithms known as discrete layer-peeling (DLP) [18,19(]]I

Problem definition

d . | i 202 ilters, with FWHM of 10-100 nm, since its physical model
and a continuous layer-peeling (CLP) [20,21] were propose quires the presentation of the structure as a chain of uni-

These methods have been shown to be very powerful ang,, elementary gratings. The problem is that, for the wide-

fast synthesis tools for BGR. The third, most practical 9rouRyand filter, each element (or segment) should contain only a

of direct_ metths involves evolutionary algorithms suph Few grating periods, and, therefore, the conventional analyt-
a genetic algorithm (GA) [2,22,23]. GA-based teChn'ql"e%cal description of the single segment response, used in the

are physically and mathematically transparent, since they USPansfer matrix technique applied in DLP, is no longer valid

standard direct integration of wave equations. Their mai

ad\_/antage is a_result of the possibility of giving a desired A GA presented here allows us to overcome this prob-
weight to most important parts or parameters of the spectrgl,, - 11 is oitimized to be very stable even for short-length

response, in each specific practical case. The drawback PG with 100%-transmittivity that requires high and rapidly

GAis its slow convergence, compared to the Iayer—peellng/arymg values of the scattering coefficient with respect to the

algorithms, whenever one needs to obtain a solution close t&rating period. Here we consider LPG written in the fiber

an |d_eal one. I-!owever, Its main strength is a comp_le'_ce free(':ore as a quasi-sinusoidal perturbation of the refractive index
dom in the choice of mathematical methods to optimize th

Swith th litudeAn(z) that is varied along th ti
integration algorithms, and the possibility of obtaining theccl)ordir?aa,:;ng.l udeAn(z) thatis varied along the propagation

optimal solution within the given technological limitations
for the structure, for example, if the filter length should be n(z) = ny + An(z) cos (2mz/A + 6(z)) . 1)
truncated.

In this work we present a new version of GA optimized Here, A denotes the grating fundamental period that can be
for the synthesis of optical band-pass filters based on norecally shifted in the space by the functién(local chirping
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parameter), and, is the background refraction index change 1) we need to generate random numbers to f@yfn),
that can be induced in the core. Here, howettemdn, are

considered to be zero. The substitution of Eq.(1) into the 2) to calculates(d) by integration of Eq. (3), and
Maxwell equations under the slowly varying amplitude ap-
proach gives the following Z-S system:

QD) _ jDi.0) + j@(a)0(z.0)

3) to minimize the difference between the calculat&p (
and desireds) spectra.

0z
00(z, 0 1 . i
W) %00 +i@ a0, @ > Drectproblem

describing the coupling between the complex amplitudes oft is possible to show that numerical integration of Eq. (2)
the coreu=uexp(—j0z/2) and claddingv=vexp(joz/2)  or (3) by conventional methods, for example, like a fourth-
modes, co-propagating in the direction with the propa- order Runge-Kutta technique proposed for CLP [20,21], does
gation constants},,, and 3, correspondingly. In Eq. (2) not guarantee the stability of the procedure at a reasonable
0 denotes the wavenumber miss-matgh- Ag — 27/A,  discretization ste@\z. This is true for two reasons. First,
AL = By — By = 27 (Neore(N) —Nerad(N)) /A = 2 Ange /A, when solving the equations numerically, the instability in any
where the typical effective refractive—index difference be-numerical algorithm exhibits an amplification effect foand
tween theu andv modeg\n,.. = 0.002,\ is the optical wave- v that takes place whez is not sufficiently small com-
length;Q(z) is the envelope of the local coupling coefficient pared to the local period of a quasi-periodic energy exchange
q(2) = Q(z)cos (2rz/A + 0(z)). For single mode optical between the modes, given By~ 7L~1/,/0.2562 + Q2.
fibers the coupling functio®(z) = Q*(z) = (n/\)IAn(z),  For example, if the total grating length = 10 cm, and
wherel is the mode overlap integral, add\n is the induced @ =6 = 10 cnT !, the number of the discretization points in
effective index perturbation that can reaglo x 10~2 [3]. the grating should bé& > 10000 to provideAz < ¢ nec-
It is assumed that the incident lightwave can excite inessary for good convergence of a numerical method. How-
LPG the fundamental core mode with spectral characterisever, this makes the algorithm too slow to be used in the
tic (0, 0)=uyp, and the desired output spectral response foevolutionary methods (notd,, Q andd can be larger). Sec-
the cladding mode is given by(L,d) = s(5), whereL is  ond, at the conditio))d >> 1, the local reflection coefficient
the grating length. It is convenient to reformulate Eq.(2) top(z, §) has sharp discontinuities (in the case of uniform grat-
the Riccati equation by introducing the local scattering coefing p(z,0) oc tan(zQ®"Y), which give rise to serious com-
ficientp(z,0) = 9(z,9)/u(z,9): putational errors.

0 ) . ) To provide a high stability and efficient integration of

&P(Zﬁ) = —jop(z,0) — jQ(2)p°(2,0) + jQ(z). (3) Eq. (3) we propose to divide the local scattering effect by

Equations (2) and (3) are further used here to find théwo steps. Let us suppose that only the pure scattering takes
apodization functior)(z) that satisfies(s), according to the  place within a small space interv@d;, z;+1 = z;+ Az}, and

general concept of evolutionary algorithms. The basic prinihat the phase delay effect acts only within the next interval
ciple to do this is the following: {zi+1, zi+2}. Therefore, the analytical presentation of this

|  two-step mathematical model looks as follows:

0
Ep(z,é) =jQ(2) — iQ(2)p*(2,6), (n—1)Az <z <nAz,

4
ap(z,é):—jép(z,é), nAz<z<(n+1)Az n=1...N.
In this case we can operate with the analytical solutions to (4) within the corresponding intgrvals
{ p(z,8) =jtan (2 [Q(z)dz +C1), (n—1)Az<z<nAz, )
p(z,0) = Coexp (—jd z), nAz<z<(n+1)Az n=1...N.

The step-like-variable integration constants&dC- in the system (5) have to be redefined at each coordinafeom
local initial conditions as:

Cay(nAz, ) = p((n — 1)Az,0),

and

1+ p(zn-1, 5)) . ©6)

Cl(zn)Z—Qj/Q(znfl)dZ +In (1 o 1,0)
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Therefore, at each point, = 2nAz, the solution to where the amplitude modulus and arguments are given by
Eg. (3) can finally be expressed by: Eq. (10) and Eq. (8), respectively. Finally, Eq.(12) can be
presented in a discrete form by the above step-like expres-
P(6) = pn-1(8) * P(8) = S(Qn, pn-1(6)) x P(6), (7)  sion for p(z,) and any conventional integration algorithm

L . for EqQ. (9).
where the subscript signifies the current coordingte a- )
exp (7(6)) — 1 Figures 1 to 4 show the calibration curves obtained for
S(@ns pn-1(9)) = exp (v(8)) + 1 the uniform grating from Eq. (7-10). As seen from the fig-
ures, they are in very good agreement with the data obtained
with
0)=2jQ,Az+In | ——————= |,
’Y( ) ]Q (1 - pn—l(é)
11
andP(0) = exp(—jdAz). Note, 1.0
% 0.9
/QndZ*/Qn—ldzanAza E o8
'E 0.7
and, also, Eq. (6) are presented in the form suitable for C++% °°
programming. %E o8
o 0.4
N 03
4. Calculation of spectra g 02
o 01
The calculation of the spectrum of the cladding mode S oo
v(L,0) = s(d) is the important feature in the problem con- -1 . pn pp p
sidered. Formally, it can be expressed through the local scat- GRATING LENGTH. om

tering coefficien and, also, by involving Eq. (2):

v(z,0) = p(z,6)u(z, 0); ®)
FIGURE 1. The periodical energy exchange between the core
where 1) and the cladding 2) optic modes in uniform LPGaf..0 cm?,
andQ = 0.5 cnT!, obtained by our algorithm (continuous curves)

z
§5) = . 5 8) d3 9 and by the exact solution (circles) from Eq. (13). The results
u(z,0) =exp | j [ Qp(%,0) dZ |, ©) present the following relations: [1)|? / |uo|*, and 2)|v|? / |uol>.
0

However, the numerical realization of Eq. (8) is accom-
panied by significant calculation difficulties associated with
the discontinuities irp(z, d) discussed above. The problem

o

can be overcame by involving the energy conservation law | 1)
[u(8)|* + |v(8)]* = Const= |ue|* that reduces the problem [
to the equations s 2T
o |
2 -
@ = 1O ’
! ol + lon (8 :
and 5 : T\QQQR
; 2+
Ju(z,8)[* = [uol® = v(z,8)[*, (10) L
which have a very smooth function on their right-hand side, [ . .« .« .« . . v v
0 2 4 6 8 10 12 14 16 18 20 22

and allow us to simulate strongly-overcoupled gratings. In
turn, the argument of the waves can be calculated without
any problem by Eq. (8). Thus, the complex wave amplitudes
can be expressed as follows:

GRATING LENGTH, cm

FIGURE 2. The phase evolution of the core 1) and the cladding 2)
v(z,0) = |v(z,0)| exp (jarg(p(z,d) u(z,9)), (11)  optic modes in uniform LPG ai=1.0 cm!, andQ = 0.5 e ?,
. obtained by our algorithm (continuous curves) and by the exact so-
u(z,6) = |u(z,0)| exp (j arg(u(z,9))) , (12) lution (circles).
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FIGURE 3. The curve shows the normalized intensity of the
cladding mode|v|® / |uo|* calculated by the algorithm at the

second term that allows one to obtain a desired phase re-
sponse programmed byrg(s(d)) (in this work . = 0). In
principle,Q(z) can be modeled by a wide class of functions.
We suppose, however, that a more natural way for the case
of the band-pass filter is to expre@s$z) with the help of the
following series:

_ [ [
Qz) = ; O T (15)

since thesinclike solution is valid for the weak gratings,

/Q(z)dz < 7/2.

distance of L = 20 cm in overcoupled uniform LPG with Therefore, the problem is to find the vectars= ao...a%},

Q=05cm?.
20

0}

PHASE RESPONSE, rad

-100 |-

-120 |-

-140 L L

F=mno... MT, ¢ =1y ...¢%, which will satisfy® — f.

The above optimization problem was solved by real-

I coded GA with the standard cyclic computational operations:
20 initialization, mutation, fitness evaluation, and selection of
-40 - the best individuals (see review [24], or our work [25]). Here,
60 | we describe some key operations applied in our version of the
80 |- GA. lts first step consists in the initialization of normally dis-
tributed random numbers forming the first parent generation
of the populationsy,,, 7j,, 1/70, whereo = 1,...0; and the
total number of populations; = 500. The evolutionary cy-

138 140 142 144 146 148 150 152 154 156 158 1.60 162 cle (P) looks as follows. A certain part of the parens (s
WANELENGTH, pm selected under the criterion that they provide the smallest val-
FIGURE 4. The phase response of the cladding mode at the sameies of the objective functiof, to generate what are known
conditions as in Fig. 3. as child populations, whose total numbey is also equal to
oy. Itis realized by:

by the well-known exact solution for the simple uniform
case [26,27]:

u/ug = [cos sz — j(/2s) sin sz] exp(j0.50 z)
v/ug = —j(Q/s) sin sz exp(—350.50z),

s =/02/4+ Q2. (13)

5. Solution of the inverse problem by a genetic
algorithm

In the framework of a GA, the synthesis problem can be
formulated as finding an optiméal(z) that would minimize
what is known as the objective functidnwithin the interval

5max - 5min:

d max
o= [ ()]~ oL, D)5
d min
d max
+u / (arg(s(8))— arg(v(L,0)))? d6— min=f, (14)
d min

where the first integral gives the solution for the amplitude
spectral response, andis the weighted coefficient for the

1) the individual mutation operation

O%T = @5 + Za&k,
k

s+ Y Ok,
k

/‘Z; = 1;& iZaQZka
k

1t
If

3

r

where da;, On;, O; < ay, 1;,%; are normally dis-
tributed random numbers; = 1,...0,6 = l..o./k
(0¢/k is a natural number}; =5 is the number of new
individuals obtained by the mutation of each parent;
and

2) the recombination operation established as
ai(new) = 0.75d; + 0.25d;,
aj(new) = 0.75d; + 0.25d;

(for ﬁg,Jg it was done in a similar manner), with
the probability decreasing from 0.1 to 0.01 depend-
ing on the quality of the individuals participating in
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the crossover operation. The next operation is agaimliscritization is that both wide-band (smdl), and narrow-

the selection of the best,, 7., 1;7 by means of the band gratings, which possess FWH¥§L0 nm, largeL, but
evaluation of the objective functiofr. The data ob- harrow calculation window ofz 50 nm, will be synthesized
tained in a cycleP are considered, then, as the par- for equal computing time, and with acceptable accuracy. It
ent data in the next cyclB+1. Note that the mutation IS very important to stress that our quasi-analytical two-step
step must be decreased each time when the smalleéheme presented here is 20-50 times faster than the conven-
®(P) > ®(P + 1). This loop of the algorithm con- tional fourth-order Runge-Kutta algorithm.

tinues until a smallesb < f or the computing time The results of the synthesis of the structure with square
is exhausted. An a acceptable solution can usually b@mplitude spectral responses obtainedXor= 200 nm, 100

obtained forP =30-50, which takes 12-15 min with a "M, and 10 nm are presented in Figs. 5 to 17. For all the
PIV- class PC. cases, we usefy = 600 spatial intervalg\z when solving

the Riccati Eq. (3). As one can see from Figs. 5, 9, and
) ) 12, the transmission spectra possess quite sharp transitions
6. Results and discussions at the edges of the band-pass and close to -45 dB suppres-
) o ] ] sion of the signal lying out of the operation transmission band
Let us consider the principle steps in the synthesis of LPGag an example see Fig. 6). Such a solution can be referred
band-pass filter with square amplitude spectral responsgg «geal’, taking into account that the curves lie very close
v(L, 6)=s(0)=1 within 6, <6 <05 (O Amin <A<Amaz) @M {4 the target square response. The coupling functip()
s(d) = 0 elsewhere, at the input conditior{0,6) = 1. It ghown in Figs. 7, 10, and 13 providing these as “ideal” results
is very important, first, to Qeflne_proper ranges for randomly,ere synthesized a/ = 40, thesincterms in Eq. (15). Al-
generated numbers; , 7j,, ¢, This determines how fastthe hqygh the results seem to be more than satisfactory from the
® will converge to the global minimum. Here, we are inter- mathematical point of view, there is a very important point
ested in finding the solution for the central filter wavelength pe discussed here. Figures 8 and 11, which present the
Ac = 1.5pm. HenceAf = 2mAnc./A. = 85 cm™!, and spatial evolution of the scattered mode within the the pass-
the conditions = Aj + 2r/A = 0 gives us the fundamen- pang in the case of ultra wide-band “ideal” filters, demon-
tal A = 750um. Itis easy to see that the spatial frequencysirate that within initial short part of the grating there is a
n in (15) determines the deviation in the f_undamental per'°d100%-energy exchange between the modes and, moreover,
n~ (2r/A —2r/A) ~ d(27/A). Taking into account the  {he scattered mode oscillates too quickly. If we estimate the
fact that we want to obtain the flat-top transmittance curve Oberiod of the mode oscillation, we can see that it is compara-
the filter within the given range (in general, it is sufficient to pe with only a few grating periods. Hence, it is obvious, the
consider any transmittance function), it is reasonable to a$spysical realization of the corresponding coupling functions
sume that the grating should simultaneously phase-match thg yery problematic, because the existing UV writing tech-
waves withing, < ¢ < dy, or, atleast, a = d1. Thisis  pgjogies for the optical fiber gratings cannot provide such a
equivalent to the condition rapid growth in the induced refractive index, within two-three
grating periods, as required for the synthesig¥d) describ-
dé/d\ =0 = —2mAnce/A* = d(2m/A)/dX = 0, ing the “ideal” ultra-wide band-pass filters. Note that in the
= 1~ 20 Ance(Amaz — Amin) /2. case of the narrow-band filteA@ = 10 nm) both the mode
spatial evolution shown in Fig. 14 and the coupling function
For example, ifAX = Az — Amin = 200 Nnm (ultra-wide i Fig. 13 vary sufficiently slowly and can be realized tech-
band-pass filter)) ~ 27.8A\ = 5.56 cnt!. Also, itis  nologically.
clear that the grating length must be related to the period -
27 /n. In particular, the amplitude response with sharp edges% 1.0
requiresL ~ 2mp/n, wherep > 10. i

TEN

The numerical error in the method is mainly associated £ °°
with the maximal detuning used in each specific case con- § oL
sidered. On the one hand, we are interested in increasing the
discretization ste@\z to make our GA faster. However, on 3 ,,|
the other hand, a maximal value Af has to be limited by 3
minimal phase delayAz for each intervak;, z;11 to guar- Bo2f

antee acceptable accuracy of the algorithm. Since we use thé i

analytical solution within these intervals, this allows us to in- % 0.0

crease the critical phase delay value up fo: ~ /8, and, = 1.20.1.125.1.130‘1.135‘1.110‘1.:15.1A150‘1.;511.;30‘1.:55.1}70.1.175‘1.;30
thereforeAz™** ~ 7 /(84). This estimation shows that we WAVELENGTH, ym

can operate only wittv. = L/Az™** = 500 intervals when Figure 5. The synthesized spectrum presents the normalized in-
L =10 cm and the calculation window is as wide as 500 nm¢ensity of the cladding modg(L, \)|* / |uo|*>. The LPG length

as required for a wide-band filter. The advantage of such & =20 cm.
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FIGURE 6. The logarithmic scale of the spectrum presented in

Fig. 5.

20

COUPLING FUNCTION Q(z), 1/cm

-5 L. ! ! ! ! L

0O 1 2 3 4 5 6 7 8

GRATING LENGTH, cm

FIGURE 7. The synthesized coupling functi@p(z) providing the

spectrum shown in Figs. 5 and 6.
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FIGURE 9. The spectra of the cladding mode a) calculated by our
method, and b) calculated by fourth-order Runge-Kutta numerical
method with the coupling function synthesized with the help of
the GA that is shown in Fig.(10, curve (a)). The grating length
L=20cm.

COUPLING FUNCTION Q, 1/cm

10 12
GRATING LENGTH, cm

FIGURE 10. The synthesized coupling functi@p(z) providing the
spectra shown in Fig. 9.For the comparison the curve b) shows
Q(z) for the “realizable” filter presented in Fig. 15.
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The spatial evolution of the cladding mode
([v(2)]? / |uo|?) in non-uniform LPG ab =0.01 cm *, for the cou-
pling function@(z) shown in Fig. 10.
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FIGURE 15. The synthesized spectrum of the cladding mode in
non-uniform LPG with the slowly varying coupling function shown
FIGURE 12. The synthesized spectrum of the cladding mode. The in Fig. 16, and at truncated length= 15 cm (this can be said only
grating lengthZ = 200 cm. for the specific considered spectrum). The continuous curve was
obtained by our GA; the dashed and short dot curves was obtained
by RKA, at a different number of the discretization poindé)(
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FIGURE 16. The synthesized coupling functi@p(z) for the spec-
FIGURE 13. The synthesized coupling functi@p(z) for the spec-  trum shown in Fig. 15. This case presents “realizable” non-uniform
trum shown in Fig. 12. LPG for an ultra-wide-band filter.
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FIGURE 17. The spatial evolution of the cladding mode
FIGURE 14. The spatial evolution of the cladding mode (|v(z)|*/|uo|®) in non-uniform LPG with the “realizable” cou-
(Jv(2)|* / |uo|?) in non-uniform LPG with the coupling function  pling functionQ(z) shown in Fig. 16 and 10b, &t=0.01 cn!.
Q(z) shown in Fig.(4b), af =0.01 cni !,
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The above problem associated with the ultra-wide bandwith a moderate peaked transmission, for example of 80% ,
pass filters can only be overcome if we use more soft rethe synthesis by the GA will take 1-2 minutes.
quirements to the filter response. The realizable coupling
function and its spectral response for ultra-wide filter with
A\ =100 nm are shown in Fig. 16 and 15, respectively. The/. Conclusions
results were obtained by limiting the numbersricterms in
Eq. (15), hereM = 4, and by truncating the grating length. In this work, on efficient method for the synthesis of ultra-
At these conditions the GA cannot synthesize “ide@(z);  Wide pass-band optical filters based on Long-Period Optical
however the structure, as can be seen from Fig. 17, possesdager Gratings is described. The method is developed in the
now more real characteristics, and the spectral response fgame work of a standard genetic algorithm where we in-
quite acceptable. corporate the original, accurate, and very effective two-step

To verify and estimate the efficiency of our method, Procedure for the direct solution of the differential (Riccati)
we substituted the obtained coupling functions into a stanproblem that covers the case of rapidly oscillating fields. The
dard fourth-order Runge-Kutta algorithm (RKA) applied to Peculiarity of the method is that it is capable of providing
Eq. (2). These results are shown in Fig. 9 and 15. One cafiuite accurate solutions at very hard conditions for the pa-
see from the data that RKA, in general, reproduces the forniameters of the structure. For example, the method works
of the spectra well, however, it can easy violate the law ofwell even when the coupling function possesses a continu-
conservation of energy because of the amplification effect deous profile with very rapid variations in space, compared to
scribed above. Moreover, it requires an extremely large numthe grating period, as required for the filters with an ultra-
ber of the discretization points to eliminate this effect and towide and sharp-edged frequency response and 100% in-band
approach the maximum values of normalized curves to unitytransmission. The main advantage of our method compared
N = 60000 for an “ideal” filter (as one can see in Fig. 9 thisto the IA, DLP, CLP methods proposed earlier, is that we use
number is still not sufficient) andv = 30000 for an “real- @ quasi-analytical algorithm in the direct integration of the
izable” filter. As the result, the computing time of the GA differential equations. Also, here we proposed to involve the
with incorporated RKA increases up to 380 minutes, com-elations of the conservation laws between the fields to im-
pared to our two-step integration procedure that takes onlprove the stability and accuracy of the synthesis procedure.
10-15 minutes with P-IV class PC. It should be noted, in theAs result, the method allows one to synthesize an “ideal” fil-
case that we want to synthesize a wide-band non-ideal filtelfer response in areasonably (for GA) short time of 10-15 min.
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