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Two-dimensional delta potential wells and condensed-matter physics
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It is well-known that a delta potential well in 1D has only one bound state but that in 3D it suppant$néte number of bound states with

infinite binding energy for the lowest level. We show how this also holds for the less familiar 2D case, and then discuss why this makes 3D
delta potential wells unphysical as models of interparticle interactions for condensed-matter, many-body systems. However, both 2D and 3D
delta wells can be “regularized” to support a single bound level which in turn renders them conveniently simple single-parameter interactions,
e.g, for modeling the pair-forming dynamics of quasi-2D superconductors such as the cuprates, or in 3D of other superconductors and of
neutral-fermion superfluids such as ultra-cold trapped Fermi gases.
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Es bien sabido que un pozo de potencial delta en 1D tiene un solo estado ligado pero que en 3D fieneroimfinito de estos estados

con una eneiig de “amarre” infinita para el nivel &as bajo. Aqiimostramos @émo esto taml&én ocurre para el caso bidimensional, que es

menos familiar, para luego discutir por&los pozos de potencial delta en 3D no sisitbs como modelos de interacciones entreipalds

para sistemas de muchos cuerpos en materia condensada. No obstante, ambos pozos delta, en 2D y 3D, pueden ser regularizados pe
soportar un solo nivel ligado, lo cual los convierte convenientemente en interacciones de un&wletigampor ejemplo, para modelar la
dinamica de formaéin de pares en superconductores casi-bidimensionales tales como los cupratos, o en 3D lanfdierzaies en otros
superconductores y en superfluidos fémicos neutros tales como los gases de Fermi atrapadosiobrafr

Descriptores: Pozo de potencial delta en 2D; regaularibagisuperconductores; superfluidos.

PACS: 03.75.Ss; 03.65.-w; 03.65.Ge; 74.78.-w

1. Introduction and a cutoff) instead of the regularizégbotential’'sonly one

(a strength), can also be shown to support a single bound
The study of physical systems in dimensions lower than threstate [10] in the vacuum or two-body limit. Were it not for
has recently shed its purely academic character and becontiee (momentum-space) cutoff parameter, the Cooper/BCS in-
a real necessity in order to describe the properties of novekraction in coordinate space would also begotential, and
systems such asanotubed[1], quantumwells wires and indeed becomes such as the cutoff is properly taken to infin-
dots[2, 3], the Luttinger liquid [3, 4], etc. Reduced dimen- ity.
sionality describes superconducting phenomena in quasi-2D From elementary quantum mechanics, we first recall the
cuprates where pairing between electrons (or holes) is essebeund-state energids < 0 in a potential “square” well of
tial [5]. Whatever the actual interaction between two elec-depthV;, and range:, a common textbook example studied
trons (or holes) in a cuprate might ultimately turn out to be,in 1D [11] and 3D [12]. In 1D, the ground-state eneifgy of
the attractive delta potential is a conveniently simple modeh particle of mass: can be expanded for smafya as
to visualize and to account for pairing, an indispensable el- 9172
ement for superconductivity and neutral-fermion superfluidi- E _ 2ma’Vy
ty. It enormously simplifies calculations. Bound states in a Voa—0 h?
delta potential well in 1D and 3D are usually discussed inThus, in 1D there is always at least one bound state no mat-
textbooks, but not in 2D. Refs. 6 and 7 discuss this fromter how shallow and/or short-ranged the well. Similarly, in
a more rigorous mathematical viewpoint without explicitly 3D for a spherical well, an expansion &f in powers of
solving the Schisdinger equatione.g, for the bound energy 7 = Vpa? — h272/8m > 0 gives
levels. Here, this gap is filled by analyzing the 2D time- 5
independent Scbdinger equation with a delta potential well Ey — L0 (n%) . @)
that is then “regularized” [8] to reduce its infinite bound lev- n—0+ 2h*a?
els to only one. The single-bound-level case suffices for nowirhus, in contrast to 1D, a minimum critical or threshold value
since, e.g, the well-known simple Cooper/BCS model in- for Vya? of h272 /8m is needed in 3D for the first bound state
teraction [9] mimicking the attractive electron-phonon pair-to appear. Clearly, both 1D and 3D casespgurbativeex-
forming mechanism, but requiring two parameters (a strengtppansions in an appropriate “smallness” paraméfgt, or .

+0 (V). 1)
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As in 1D, a 2D circularly symmetric well of depthy and  of (5) over the entirel-dimensional “volume” and recalling
radiusa alwayssupports a bound state, no matter how shalthat

low and/or short-ranged the well. However, this instance is

non-perturbativeas it gives [13] for the lowest bound-state / dré(r) = 1.

energy

Ey —— —5exp
Voa2—0 2ma

K2 2h2 We seek the bound-state eigenenerdies 0 from the time-
< mVoa? > ®3) independent Schdinger equation for a particle of massin
potential (4), namely

which cannotbe expanded in powers of smafa? since it 5
m

- Y S : 2 _2m _
IS- of the_ form f(\) e = 0, i.e. has anessential V2U(r) = [V(r) + |E|]¥(r) =0 (6)
singularity ath = 0.
In this paper we discuss how, just as in the better knowWhereE = — |E| . _
3D case, the 2D potential welvyd (r), vo > 0, also sup- In 1D the solutions of (6) (withr > 0 taken agx|) for

ports an infinite number of bound states, with the lowestt # 0 are¥(z) = ¢*»*. These functions have a discontinu-
bound level being infinitely bound for any fixed. For an Ous derivative at = a in the delta potential limit (5) where
N — oo many-fermion system interacting pairwise via a .

delta potential,y argumentsybased on the ngTeigh—Ritz varia- V0—>1;on,1a—>0 2aVo=v < oo ()
tional principle show that the entire system in 3D would col-
lapse to infinite binding energy per partidly N — —oo and
infinite number density, = N/V — oco. This occurs since
the lowest two-particle bound level in eaghwell between
pairs is infinitely bound, for any fixed,. To avoid this un-

and there is always a (single) bound-state energy
E = —muv2/2h% (vo #0) [11]. Note that in theinte-
gral methodof Ref. 13 applicable to shallow wells where
|E| < max |V (z)|, E for 1D would be given as

physical collapse one generally imagines square wells in 3D o0 2

(and also in 2D) “regularized” [8] inté wells —vyd (r) that F—_"" / dzV () (8)

support asinglebound-state, a procedure leaving an infinites- 2n?

imally small vg. The remainingd -potential well is partic- %

ularly useful in condensed-matter theoriegy. of supercon-  which forV(z) = —ved(x) becomes

ductivity [14] or neutral-fermion superfluidity [15,16], where 9

the required Cooper pairing can arise [17] from an arbitrarily mo, by mu}

weak attractive interaction between the particles (or holes). E=- 95,2 Y0 / dro(z)| = TRz ©)
After beginning with ad-dimensional expression for the 00

delta potential in Sec. 2, we summarize how bound stateghich agrees with Ref. 11 and is consistent with (1). The
emerge in 1D and 3D by recalling textbook rgsults. In Sec. 31D s-potential well has proved very convenient in model-
we analyze the less common 2D problem in greater detalling [18, 19] self-bound many-fermion systems in 1D, and in

In Sec. 4, we sketch the use of “regularized” 2[poten-  nderstanding Cooper pairing [20] as well as the BCS theory
tial wells for electron (or hole) pairing in quasi-2D cuprates ¢ superconductivity [21].

and in Sec. 5, we give details for the 2D case. Sec. 6 offers gq, the potential (4) in 3D, the particle wave function in

conclusions. spherical coordinates [22] (r) = R;(7)Yi,. (6, ¢), where
(Ref. 23, p. 722}, (6, ¢) are the spherical harmonics and
D R, (r) the radial wavefunctions. For< r < a, the finite (or

2. Review of delta potential wells in 1D and 3 ) : : )
regular) radial solutions are spherical Bessel functions of the

The attractive square potential welldrdimensions first kind jy (Kr) of orderl, with K = 2m(V, — |E|)/1?,
sincej;(Kr) < oo atr = 0. Forr > a, the linearly-
V(r) = —Vob(a —7) (4) independent radial solutions are the so-called modified spher-

ical Bessel functiong; (kr), with k> = 2m |E| /h?, where
where the Heaviside step functiéiiz) = %[1 + sgn(z)], a k;(kr) decays exponentially as— oo. The boundary con-
is the well range, andl; > 0 its depth. An attractive delta ditions atr = a expressing the continuity of the radial wave
potential—vyd(r) (vy > 0) can then be constructed from the functionR; (r) and of its first derivative can be combined into

double limit the single relation
Vob(a 1) —uod(x) (5) djl.(KT)/d'f‘ _ dky(kr)/dr (10)
Vo — 00,a—0 Ju(Kr) |, ki(kr) | —as
Ay _
> aVp = const. Taking! = 0 and recalling (Ref. 23, pp. 730, 733) that
jo(x) = sin(x)/x, andkq(x) = e~ % /x, (10) gives
where wvo=cqa?Vy, is a positive constant, with Jo(®) (2)/ o(a) /v, (10) g
cq = 72T (d/2 + 1) as follows on integrating both sides K cot(Ka) = —k, (1=0). (11)
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We can write the [=0 bound-state energies
E, = —h?/2ma® (7?/4 +¢2), wheree, are the dimen-
sionless roots of (11), withn 1,2,.... The standard
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Jo (z) oscillates for alk: so that it diverges positively when-
ever Jo(z) = 0, then changes sign and thus drives the |hs
to —oo (see full curve in figure). Clearly, there is always an

graphical solution [12] of condition (11) shows that thereintersection (bound state, marked by dots in figure) between

are precisely: bound! = 0 states whenever the well param-
eters are such that [24]

2mVya?
h2

(n—1/2)7 < ( )1/2 <(n+1/2)m;

., 00). (12)
Thus, the first bound state n€£1) appears when
Voa? > 2h?/8m, as was mentioned below (2), and= 2
requires a deeper well depty and/or larger well range, etc.

The 3D delta potential wel-v,d (r), as defined in (5),
integrated over all space gives

vy = /d?’rvoé /dSrVQ a—r)
< o0

lim
Vo—00,a—0

Vo—o00,a—0

4
?Voa (13)
Hence, asly; — oo, a — 0, the middle term in (12)
(2mVya? /h*)Y? = (3mug/2nh?a)'/? — oo, so that the
number of bound-states in the 3D delta potential well
—upd(r) isinfinite for any finite fixed strengtha.

3. 2D delta potential well

This same result holds in 2D but is not as apparent. Here the

solutions of (6) arel(r) = f(r)e™?, withv = 0,1,2,...
and the angular variabler < ¢ < 7. For0 < r < q,
the radial solutions Which are finite at= 0 are cylindrical
Bessel functiond,, ( = V2Kr/mj,_1/2(Kr) (Ref. 23,
p. 669) 0f|ntegerorderz/ with K2 = 2m(V, — |E|)/h?. For

two consecutive zeros df)(z). For a given interval irka, the
closer these poles are, the more bound-states there will be.
Thus, for any given square well, all of the allowed bound-
states lie inside an interval betwe@nand k.,.xa, where
Emax = (2mVy/h%)'/2. In such an interval the number

of bound states (zeros) will be = INT(akmaxa/m), with

a = (Vo/|E| —1)"/?, where the INT¢) function rounds a
numberz down to the nearest integer. Of course, the expres-
sion forn is only valid after the appearance of the first pole.
Then forV;/ |E| = 300 as in Fig. 1,n = 3 in the interval
betweerd andk,,.xa = 0.5. In Fig. 2 are shown the bounds
for Vo /E = 2700 where there are = 7 bound states in the
interval betweer) andk,,..a = 0.4, as it should be.

lhs
17 .-
@7 rhs | “bound |state
O T T T T T ka
0.1 0.3 0.5
-1 —

FIGURE 1. Rhs (dashed curve) and lhs (full curve) of (15) for the

r > a, as linearly-independent solutions one has the modi2D well with V5/ | E| = 300. Intersections of both curves marked

fied Bessel functiond(, (kr) with k> = 2m |E| /A2, which
are regular as — oo. The two boundary conditions at= a
can again be written as a single relation

by dots signal bound states. There is always a bound state between
every two consecutive zeros 8§ (x), or poles of the Ihs of (15).

dJ,(Kr)/dr
Ju(Kr)

r=a

dK, (kr)/dr
K, (kr)

r=at

(14)

As we want to ensure against collapse in our many- 21

body system interacting pairwise with thie potential, it

is enough to show this for the lowest bound level with
v=0. In this case, sincelJ, (Kr) /dr=—KJ; (Kr) and
dKg (kr) /dr=—EkK; (kr) (Ref. 25, p. 361 and 376, respec-
tively), (14) becomes

Jl(K(l)
Jo(Ka)

K1 (ka)
Ko(ka)

Ka = ka (15)
Since K (xz) > Ky(xz) > 0 for all z, the rhs of (15) is al-
ways a positive and increasing function /af; it is plotted

in Fig. 1 forV,/ |E| = 300 (dashed curve). As for the Ihs,

lhs
bpund | statles
e —-— 4 rr-‘bfﬁ—— — g —-— —§—
| T T T T T . k a
¢.2 0.4

-2

FIGURE 2. Same as Fig. 1 but fdry/ | E| = 2700 suggesting that
the number of bound states increases indefinitely as the potential
well approaches the Diratwell limit (5).
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To construct a delta potential wellvgd (r) in 2D from

the finite-ranged well (4), and ensure that
lhs
/d2r5 (r)=1 2
requires that \t M n
L lm Vora® = v < oo, (16) MI\!\AAMMVW e ka
| LLLASAAAALANINS
Thus, as long agF| is finite, UUV
kaz(\/2m|E|/h2)av — 0O 5 P M 2 4
and we can use (Ref. 17, p. 612) 1

xK;(z)/Ko(z) = —1/Inx
;or ghe rns of (15). Ir; this c'aste ';Ee numgeof ?ound Stftt:S m FIGURE 3. The bound states for the 2Bwell are associated with
or o-well corresponds again to the nNumDer of eros ot the Ny ;o165 of the Ihs of Eq. (17), plotted on the vertical axis. For

of (15) but in the delta limit. Here, from (16) Vo/|E| = 1000, this graph illustrates the roots (bound states)

of (17) which become an infinite set as we approch todiveell
Ka = ka(Vy/ |E| — 1)1/2 VO_E)_}O\/2TTL’U()/7TH2 < o0 Iim(it. ) bp

(not necessarilgg 1). We shall see below that the case
Ka < 1 corresponds to the shallow 2D potential well of ~ Applying the integral method of Ref. 13 for= 0 for a
Ref. 13. But even ifKa is not< 1, Bessel functions oscil- shallow potential wellj.e,, V, — 0 and|E| < V;, one can
late for large arguments, although their period is not constantake bothK'a andka — 0. Thus, we can use
In this latter case (Ref. 25, p. 364),

Ji(z) — /2/7x cos(x — 37 /4)

x>1

allows us to locate the zeros of the lhs of (15) which, as the rhs of (15), and in the Ihs of (15) we note that (Ref. 25,
Vo/ |E| is increased, approach each other on/thexis, so  p. 360)

that in the delta well limit, a3,/ |E| — oo, the number
n of bound-states increases indefinitely. Moreover, rewrit- T (@) — 2¥ /2
ing (15) as <1

2Kq(x)/Ko(x) = —1/Inz

a1 (@) Ko(zn) = on B (@n)Jolawn) =0 QA7) iy, — ¢ and 1, so thatzJ; (x)/Jo(x) — x?/2. Hence

bound states are easily identified from Fig. 3, where the rootae write (15) as
of (17), say 1 In ka

~

Tp = kna = (W) a, (Ka)? 2

are seen to form an infinite set as— oo. Therefore, the so that, on putting, — |E| ~ V;, (18) becomes precisely (3).
2D delta potential well supports amfinite number of states In fact, for any shallow 2D circularly-symmetric potential
for any fixedwy, precisely as in the 3D case, this being thewell V' (r), the first bound state in Ref. 13 is given by

main conclusion of the paper. Table | shows the first few

(numerical)z,, roots whereE,, = —h%x2 /2ma?, for three 0

2
extreme values of/ | E|. B g exp |~ fm| [ drrv(n (19)
ma
0

(18)

TABLE |. First few rootsz, = (\/2m|E,|/h?)a of (17) for

bound-states?,, of 2D potential well according to (15), for dif- which for potential (4) reduces to (3). This result in the delta

ferent values ot/ |E| . limit of (16) finally becomes
Vo/ |E| T1 T2 T3 T4 52
10 0.3738 1.4216 2.4674 3.5137 E ~ ~ g 6XP (—2n%m /muy) (20)
108 0.0218 0.1248 0.2245 0.3240
10° 0.0123 0.0223 0.0323 0.0422 wherev < oo.
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] ¢ 3
2D or 3D delta 4
potential
(schematic) m . ¢I y
1 \aY 2 dimer gas
\/ (schematic)
N-1 N

FIGURE 4. An N-fermion system with thé-well pairwise inter-
actions produces collapse &s— oc in 3D since both the binding
energy per particle and the particle density diverge.

FIGURE 5. A dimer gas formed by single-bound-state regularized

é-wells, schematically depicted. In this case, the 3D many-fermion
system will not collapse since the Pauli exclusion principle prevents
more than two particles from being bound in a given well.

respondingy-well possesses only one-(vave) bound state.
This also occurs with the Cooper/BCS model interaction [10]
definable in anyd and with the barej-well in 1D. The
~ single-bound-staté-well then ensures thainly pair “clus-
Real condensed matter systems are made of many particlgss” form, in agreement with quantized magnetic flux exper-
(bosons and/or fermions) interacting via attractive and/or rejments in either elemental [26, 27] or cuprate superconduc-
pulsive forces. Attractive forces between fermions can formg,g [28] in rings where the smallest flux trapped is found to
pairs needed for many properties such as superconductivifys h/2e (with h being Planck’s constant andthe electron
in solids or superfluidity in fermion liquids or trapped atomic charge). This contrasts with/e as London conjectured just
fermion gases. However, addressing these problems with &, dimensional grounds, as well as witfine (n = 3,4,...)
physically realistic interaction is oftentimes difficult. As in \yhich isnot observed in superconductors, as one would ex-
1D with a “bare” j-potential well, a regularized attractive pactin vacuoin other many-particle systems with attractions
_(S-w_ell prevents collapse in 3D, prgvide_g the requir_ed pairghat produce clusters of any size. The fact that only pair clus-
in either 2D or 3D and, of course, simplifies calculations.  tgrs occur with electrons (or “holes”) in superconductors is
It is easy to imagine a trial wave function whereby, likely associated with the very cold Fermi sea.
with an attractive baré-function interfermionic interaction
(i.e., beforeregularization), a 30V-fermion system would
have infinitely negative energy-per-particle (as well as infi-

nite number-density). This is because the lowest bound levgkegularization in either 2D or 3D starts from a finite-range
of the two-bodys-well is infinitely deepin 3D, and indeed  square well and yields-well with an infinitesimally small
also in 2D, as was shown in the preceding sections. By thgtrengthy,, as we now illustrate. To be specific, we con-
Rayleigh-Ritz variational principle, the expectation energycentrate on the regularization of the 2D finite potential wells
associated with the trial wave function is a rigorous uppeheeded to mimic, in a simple way, the presence of Cooper
bound to the exadV-fermion ground-state energy, and hencepairs in superconductors. We thus seek a two-body square
produces collapse of the true 3D ground state of the systeige|| interaction such that, in thelimit, it possesses only one
asN — oc. In this picture, each particle “makes its own (s.wave) bound state. Following Ref. 8, fdr= 2 we sub-
well” but will attract to itself every other particle, two for stjtute (4) by an effective two-body square-well interaction

each level, to minimize the trial expectation energy. We thug,, () which in the limita — 0+ becomes—u,d(r) with
get anN-fermion system as schematically sketched in Fig. 4, - (, and is given by

(where the Pauli exclusion principle is explicitly being ap- 52 9
plied) thatcollapsesas N — oo. To avoid this unphysical Va(r) = o—~————10(a
collapse in 3D, and at the same time ensure pair formation 2m* a?Ina/agl
in either 2D or 3D, one can “regularize” [8] the 2D and 3D wherem* = m/2 is the reduced mass of the paiiis still the
finite interparticle potential wells so that, in the limit, the cor- well range, and, is an arbitrary parameter that measures the

4. Need toregularize in condensed-matter sys-
tems

5. Regularized 2D delta well

—r), (ag>a>0) (21)
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actual strength of the interaction. Potential (21) in the delteextensively in the literature [30,31] to mimic the pair-forming
limit (5) gives ad-well strength interfermion interaction in, for example, quasi-2D cuprate as
well as in otherwise 3D superconductors [31,32] and neutral-
vo (a) = —/dQTVa (r)

fermion superfluids [15, 16].
and is thus infinitesimally small as — 0. However, this
parameter can be eliminated in favor of the binding energy;  Conclusions
By > 0 of the single level, which now serves as a coupling
parameter. Indeed, using (a) in Eq. (20) for a shallow-well
as in Ref. 13 but withm™* instead ofm, we obtain for the
lowest energy

—nh?/m*1n|a/ag| > 0

A graphical proof was provided of how a 2Bpotential
well supports an infinite number of bound-states as does
the more familiar 3D5-potential well. Using Rayleigh-Ritz
variational-principle upper-bound arguments, we then il-
lustrated how in 3D the binding energy-per-particle of an
where0 < B, < oo is the magnitude of the pair binding en- N -fermion system must grow indefinitely as the number of
ergy. This straightforward procedure then guarantees a sinfermions increases. In order to prevent this unphysical col-
ple finite-lowest-energjevel well—as in 1D, see (9). Once |apse in modeling such a system, one can respilarized

we set the regularized two-body interaction model, result (22)-potentials in 3D as well as in 2D that by construction
can be varied as the coupling describing our superconduct@upport a single bound state. This provides useful inter-
model. One possibility we have now is to fi%, which fixes  fermion interaction models to study 2D and 3D condensed-
the value ofao; the second possibility is to sét; by fixing  matter problems. An appealing motivation for regularized
the parametet,, which can represent the range of the waves-potentials is that they fit easily within the framework of the
function of the particles. One can also reduce the infinitQime-independent Scbdinger equation in either coordinate
number of bound states to only one by shifting the center obr momentum space. Indeed, solving the two-body problem
the 2DJ-potential from the origin along the radial axis [29]; in the Fermi sea already allows one to exhibit Cooper pairing
however the topology of this nefivpotential is unsuitable for  phenomena, which is the starting point for any treatment of

simulating real interactions between electrons. superconductivity or neutral-fermion superfluidity.
In 3D, regularization proceeds similarly [8] as in 2D ex-

cept that there is no log term in (21), and instead of the

binding energy (22) as coupling parameter one employs th&cknowledgments
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