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At the end of the nineties a brand-new type of soliton was discovéhedembedded solitonfnitially they were found in optical systems,

and afterwards they were also found in hydrodynamic models, liquid crystal theory and discrete systems. These peculiar solitary waves are
interesting because they exist under conditions in which, until recently, the propagation of solitons was thought to be impossible. At first
these nonlinear waves were believed to be necessarily isolated and unstable, but later on it was found that they can be stable and may exis
in families. This paper explains what thesebedded solitonare, in which models they have been found, and what variants exist (stable,
unstable, continuous, discrete, etc.).

Keywords:Embedded solitons; solitary waves; nonlinear waves; liquid crystals; discrete systems.

Alfinal de los noventa se descubtin nuevo tipo de solitonekos solitones embebidoBicialmente estas peculiares ondas se encontraron en
sistema®pticos, y posteriormente tand se hallaron en modelos hidrodimicos, en la teda de cristalesifjuidos, y en sistemas discretos.

Estas ondas solitarias son de ig®porque existen en condiciones bajo las cuales, hasta hace poco, se consideraba que era imposible la
propagadn de solitones. En un principio se céegue estas ondas no lineales forzosamente eran soluciones aisladas e inestablés pero m
tarde se encorftrque pueden ser estables y existir en familias. En esteilarse explica géi son estosolitones embebidoen g modelos

han sido hallados, y guvariantes existen (estables, inestables, continuos, discretos, etc.).

Descriptores:Solitones embebidos; ondas solitarias; ondas no lineales; cridtplétols; sistemas discretos.
PACS: 42.65.Tg; 42.81.Dp; 05.45.Yv; 02.30Jr

1. Introduction This paper is structured as follows: Sec. 2 will explain
the relationship between standard solitons.,(not embed-
Solitons are solitary waves which are able to propagate imled) and the small amplitude periodic waves which are able
nonlinear mediai,e. in systems which are described by non- to propagate in a nonlinear system. Section 3 will present
linear equationsdartial differential equation¢PDES), in the  the first systems in which isolated embedded solitons were
case of continuous systems, atitferential-difference equa- found. Section 4 introduces the few systems which have
tions (DDES), in the case of discrete systems]. The solitonsontinuous families of embedded solitons, and explains what
were dicovered by Zabusky and Kruskal in 1965 [1], while double embedded solitoage. In Sec. 5, it will be shown that
they were studying the Korteweg-de Vries (KdV) equation,embedded solitons also exist in discrete systéras émbed-
and the history of this discovery can be found in several textsled lattice solitongxist). Finally, Sec. 6 contains some clos-
(see, for example, the book of Newell [2]). In the begin-ing remarks.
ning (in the sixties and early seventies), the teotitonwas
only applied to very stable waves, which recover their initial
shapes and velocities after interacting with similar waves, an
whose behavior was governed by nonlinear PDEs integrablg, any nonlinear system in which the propagation of soli-
by inverse scattering [3]. However, later on the meaning ofons is possible, the propagation of small-amplitude periodic
this term (soliton) became less restrictive, and now it is Usuwaves which satisfy the linearized version of the nonlinear
ally applied to any solitary wave capable of propagating in aquations which control the system is also possible. How-
nonlinear system. ever, for a soliton to exist, it is absolutely necessary that no
There are several categories of solitons: bright, darkresonance occur between the soliton and these linear waves.
topological, non-topological, Bragg solitons, vector and vor-Otherwise, energy will be transferred from the soliton to the
tex solitons, spatiotemporal solitons (optical bullets), latticelinear waves due to a resonant process, and the soliton will
solitons, etc.. Most of these categories have been knowweaken continuously. As we shall see next, this no-resonance
since the seventies. However, a brand-new category was disendition has different forms, depending on thal or com-
covered very recently at the end of the ninetibge embedded plexnature of the soliton.
solitons The discovery of these solitary waves was a surprise  Let us examine thesal case first. As an example of real
because they exist under conditions in which, prior to 1997solitons we consider the solitons of the KdV equation [4]:
the propagation of solitons was thought to be impossible. In ow ow  Puw
the present survey we shall see what trevabedded solitons - tbw— +
: . . ot or  0x3
are, in which models they appear, and the different types Olfn this case the solitons have the following form [5]:
embedded solitons known to dates(, stable, unstable, con- '
tinuous, discrete, etc.). w(z,t) = 2k% sec Wk (z — 4K7t) , 2)

g. Standard solitons and linear waves
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A SURVEY OF EMBEDDED SOLITONS 7

wherex is an arbitrary real constant. We can see that the veinevitably begins to radiate, and the frequency of the emitted
locity, 4x2, of these solitons is always positive. On the otherradiation is defined by the equation [13]
hand, if we substitute the function:

A? 1, 3
w (z,t) = sin (kx — wt) (3) o T W e (11)
in the linear part of the KdV equation, we will find that these where A is the amplitude of the initial wave. Sincé?/2
linear waves must obey the dispersion relation: is precisely the wavenumber corresponding to a soliton of
5 amplitudeA, Eq. (11) is exactly the resonance condition be-
w (k) = =k, (4)  tween the soliton-like initial condition and the linear waves

gvhich satisfy the linear part of Eq. (10).

thus implying that the phase velocity of these waves is alwa
ping P y y In a similar way, it was also found that any localized ini-

negative: . " L . . .
g w2 ) tial condition (similar to a soliton) which evolves according
E ’ to the equation [14-17]
Consequently, in this case the solitons travel to the right, ) .
while the linear waves travel to the left. Due to this fact, Ou 107 9u 2,-0 12
. _ ' i 5 teag tylul"u=0, (12)
the KdV solitons do not resonate with the linear waves. 0z 20t ot

Now let us consider theomplexsolitons. In this case the necessarily begins to radiate as a consequence of a resonanc
most famous equation with complex solitons is the nonlineagyith inear waves. The frequency of the radiation is defined

Schivdinger (NLS) equation [6-9]: in this case by the equation [13]:
ou 10%u 9 2
e e — A 1
9z Taa Tlulu=0 ©) 5 = —§w2 + g0, (13)

This equation occurs in many fields, but it is particularly im-

portant in telecomunications, as it describes the propagatioW.h!Ch IS th.e. resonance.condmon between the sol|_ton-l|ke
of light pulses along optical fibers [6]. In this caséz, ) is initial condition (of amplitudeA), and the small-amplitude

a complex functionz andt¢ are real variables, and the funda- linear waves which can propagate in a system governed by

; ; ; . Eq. (12).
mental solitons of this equation have the form [7]: . .
g [7] The two above mentioned results, concerning Eqgs. (10)

A2 and (12), strengthened the assumption that a complex soliton
u(z,t) = A sech(At) exp (l 22> , (7) cannot have a wavenumber which is contained in the range

h . bi | hi , h of the (inverse) dispersion relatidnw), and this conjecture
whereA is an arbitrary real constant. This expression shows, .. —id until 1997

that the NLS solitons have an oscillatory component whos
wavenumberA? /2, is always positive. Concerning the linear )
waves, they are also complex in this case, and if we substitutd.  ISolated embedded solitons

u(z,t) =exp i (kz — wt)] (8) During the eighties and nineties, several variants of the
] ) ) ) NLS equation were thoroughly studied. Among them were
in the linear part of the NLS equation, it follows that these gq,ations which describe the propagation of ultrashort (sub-

waves must satisfy the linear dispersion relation: picosecond) pulses in optical fibers [10,13-17], and equa-
1, tions which describe the propagation of intense optical pulses
k(w) = oY (©) under conditions where the Kerr-type dependence of the re-

This expression shows that all the linear waves which aréractlve index on the intensity of light is no longer accurate

) . énough [18-28]. In the first case (ultrashort pulses) it is nec-
able to propagate in an NLS system haegativevavenum- . . : .
. . essary to consider extensions of the NLS equation which in-
bers, contrary to the solitons whose wavenumbergast

tive. Due to this difference, the NLS solitons do not resonateCIUde hlghe_r-order derlvafuves, as in (10) and (12). On the
with linear waves. other hand, in the case of intense pulses (under non-Kerr con-

The results mentioned above led to the conjecture th gmons), there are extensions of the NLS equation which con-

real solitonscannot haveelocitieswvhich are contained in the “tain saturable nonlinearities of the form [18-22]
range of velocities allowed to linear waves, amnplex soli- |u‘2

tonscannot havevavenumbersvhich are permitted to these
waves. Confidence in this conjecture increased when it was

found that a.ny SO|it0n-|ike |n|t|a| Condition Wthh eVOIVeS ac- and equations which consider po'ynomia' nonlinearities of

— (14)
1+ Juf?

cording to the equation [10-12] the form [23-29]:
8u 1 82u 83u 2 9 A

0 Taoe ! = - : 15

5: tage e tylulu=0, (10) 7 Jul” =2 [ul (15)
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8 J. FUJIOKA, A. ESPINOSA-CERN, AND R.F. RODRGUEZ

06 of wavenumbers permitted for linear waves, as can be seen
in Fig. 1.With this discovery, the widely accepted conjecture
stating that a soliton could not have a wavenumber contained
03} in the linear spectrum of the system was shown to be fhise.
the next few years, other systems with this unusual type of
soliton were discovered and will be presented below.

In 1998 Champneys, Malomed and Friedman studied the

0.0
X system of NLS-like equations [32]:
Ou  Ou 0%u 2 2
0sl z%—&—za—&—Dﬁ—&—(U\M +|v|)u+v:0, (22)
0 0 0?
Za—; - za—;} + Da—t;) + (\u|2 +o |v|2> v+u=0, (23)
06 L L which are useful in describing two different systems:
-1 0 1 (i) the propagation of two pulses of circularly polarized
® light travelling along a birefringent twisted fiber, and
FIGURE 1. Graph of the dispersion relation (21) fos = 1 and (ii) the propagation of two optical pulses travelling in op-
€4 = 24/49. The horizontal dotted line indicates the value of the posite directions along a nonlinear optical fiber with a
soliton’s wavenumbek.,; given by (20). grating (in this case we must switehandt).

) . ) The linear analysis carried out by Champneyfsal. sug-
~ To describe the propagation of very short, intense pulsegested the existence of isolated solitary waves, and their nu-
in non-Kerr materials, the following equation has been studmerical simulations confirmed the existence of these waves.

ied [30,31]: When this paper was published, it was not realized that these
Ou 92u 9 ) 4 solitary waves might be similar to the soliton solutions for
‘9 + 252 + Ca g + 71 lul"u =2 ul u=0. (16) Eq. (16). However, if the linear coupling terms appearing

This equation, however, only applies when the frequency o*n (22)-(23) are disregarded, and the periodic waves

the carrier wave is close to the frequency at which the third- u(x,t) = exp[i (kx — wt)], (24)
order dispersion vanishes. If this restriction is removed, the

following equation should be used instead: v(z,t) = expli(—kz - w1)], (25)
S 92u Pu o are substituted in the linear parts of (22)-(23), it is easily
i teroy —iE3ay teagrtm |u|2 U found that these waves must satisfy, respectively, the linear
9z ot ot ot dispersion relations:
4 p—
In 1997 it was found that equation (16) has soliton-like solu- k(w) = w + Dw?. (27)

tions of the following form [30]:
N Since the ranges of these functions include positive and nega-
(= t):<71> zsec h< t )exp<i5”/122) (18) tive wavenumbers, it could be suspected that the isolated soli-

’ 279 V/14e4/e5 32y )7 tary waves found numerically in [32] might have wavenum-

) . . . bers immersed in the linear spectrums of the system. Later,
if the coefficientse; and-; satisty the condition: on Champneys and Malomed found that this was precisely
the case [33], and so the numerical solutions of the sys-
tem (22)-(23) found in [32] were shown to be similar to the
soliton solutions for Eq. (16).

A new interesting system with explicit soliton-like so-
598 15 &3 20 lutions was found by Yang, Malomed and Kaup (YMK)
33% T 196 e, (20)  in 1999. YMK studied the propagation of optical pulses

in a nonlinear medium (a Kerr medium), taking into ac-

On the other hand, the small-amplitude periodic waves (”n'count the interplay of the fundamental (FH) and the second-

ear waves) which satisfy the linear part of Eq. (16) must Obe}ﬁarmonic (SH) fields. Such a system is described by the
the dispersion relation: equations [34,35]:

k(W) = egw* — eqw®. (21) Ou 10%u

? —|—f—2
If 4 > 0, the range of this function contains all the pos- 0z 20t
itive values ofk, and consequently the soliton s wavenum- .dv  § 8%v 5 2 o pyl?
ber (which is positive if=; > 0) is contained in the range 9: 2002 (|v| +2ul )

€4 24 Y2

g2 4942
Note that the soliton (18) has the following wavenumber:

(19)

ksol =

o (Il +2 o) uturo=0,  (28)

1
v—|—§u2—&—qv:07 (29)
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A SURVEY OF EMBEDDED SOLITONS 9

whereu is the FHv is the SH is the propagation distance, (i) it describes a physically relevant system (a second-

is the reduced timey; and~, are the Kerr coefficients (which harmonic generating system),

are different because the FH and SH fields have different fre-

guencies)g is the group-velocity mismatch (originated by

the frequency difference of the FH and SH fields), and jji) the profiles of the FH and SH solitons are different,

the relative dispersion of the SH. the FH-soliton is given by a hyperbolic secant (which
In the particular case when SH is much weaker than FH, is usual in optical solitons), but the profile of the SH-

the system (28)-(29) reduces to: soliton is asquaredhyperbolic secant (which is usual

(i) it hasexplicitanalytical soliton solutions,

Ou  10%u 5 . in hydrodynamics, but unusual in optics), and
za—+§ﬁ+vl|u| u+u'v =0, (30)
“ (iv) if & > 0, 71,72 > 0, and (41) is satisfied, the
v § 0% 2 1, wavenumber of the-soliton is contained in the linear
9 "o el w4 =0. (31) spectrum of the system.

This system has the soliton solutions: , .
Yang, Malomed and Kaup recognized that theolitons

u(z,t) = Ae™**sech (\/ 2kt) , (32)  were particularly interesting, and decided to baptize these pe-
culiar waves with a new namembedded solitonghus indi-
v (2,t) = Be?* sech? (@t) , (33)  cating that the wavenumber of these solitons is “embedded”

in the linear spectrum of the system.

where In the same year (1999), Champneys and Malomed
J— 1 7 36 (34) extended the model (22)-(23), including second-derivative
~2(1+29) ) (4y2 + 36m1) |’ (wave) terms, as shown below [33]:
A = —30k/2vs, (35) Ou  du L (0u B
Zi+27+(2]€) (2—2)
B =2k (14 3671 /472) . (36) ot 0Ox Ox ot
If we now substitute the periodic waves + (0 u® + |v\2) u+v=0, (42)
u(z,t) = expli(kz — wt)], (37) o O (8% 9%
i— —i— + (2k) (2 - 2)
v(z,t) = exp[2i (kz — wt)], (38) ot Ox Ox ot
in the linear parts of (30) and (31), we find the follow- + <a|v|2 + |u\2) v+u=0. (43)
ing linear dispersion relations corresponding, respectively, to
u(z,t) andv (z,1): Proceeding as in Ref. 32, Champneys and Malomed found
1, that this system hamoving embedded solitons, and they
k= oY (39)  found that these solitons are isolated and unstable. No ex-
9% = 260° + 4. (40) plicit analytical expressions for these embedded solitons are

known in this case.

The range of the linear dispersion relation (39) contains only By the year 2000, it was clear that embedded solitons may
negative wavenumbers, and since the wavenumbafrthe  exist in different optical systems. However, it was not clear
soliton (32) is necessarily positive (because of the k6t),  why these solitons can exist, because at first sight it seemed
the u-soliton is a normal soliton (with a wavenumber lying that these solitary waves should resonate with linear waves,
outside the linear spectrum). Something different occurs iosing energy in the process. Qualitative explanations for the
the case of the-soliton. In this case, the range of the lin- existence of embedded solitons appeared in 2001 [36], and
ear dispersion relation (40) contaipssitivewavenumbers if ~a quantitative explanation was presented in 2003 [37], in a
5 > 0, and consequently the wavenumber of theoliton  paper dealing with Eq. (17). In Ref. 37, it was proved that
(which is2k) might be contained within the linear spectrum. Eq. (17) has bright and dark soliton solutions, and the bright

If ¢ > 0, this will occur for2k > ¢, and if¢ < 0 this will solitons have the form:

happen for2k > 0. These two inequalities imply that the

wavenumber qf t_he-so_li_ton will be contained W?thin the _Iin- u(z,t) = A sech (75_6‘2) expli(qgz+7t)],  (44)
ear spectrum ib is positive,y; and~, are negative, ang is w

contained in the interval:
30 3
— << 41
2 (4y2 + 3071) 1 4 (42 + 36m) “1)

6
Consequently, there are four features that make the sys- A= <5>
tem (30)-(31) a very interesting one: 72

where the soliton parameters are defined by the equations:

v
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10 J. FUJIOKA, A. ESPINOSA-CERN, AND R.F. RODRGUEZ

In Ref. 37, it was shown that these solitons are embed-
e, 1/4 4 ded ife; and~; are positive, and satisfy the conditieh> 0.
w= ( > (46)  To explain why these solitons do not resonate with the linear

s A waves (in spite of having a wavenumber contained in the lin-
r= 573’ (47)  ear spectrum of the system), it is necessary to calculate the
dey double Fourier transform (in space and time) of Eq. (17).
a=2¢eor + 8e4r>, (48)  To calculate the Fourier transforms of the nonlinear terms,
12 u (ZZ t)is c_onsidered tg_have has Lhe folrm giv;anhin (44), with-
2 4 2 Y2 out imposing any conditions on the values of the parameters
¢ =g = 3ear” + (&2 + 6eur”) (2454) A, a, w, ¢ andr. In this way it is found that the double

Yo Fourier transform ofi (z, t) has the following form:
x A? + ﬂA4. (49)

TwA {sech <%)} 24: (cpw™)d(k—gqg—a(r+w))

n=0
, 50
— (g4 ar) — aw — eaw? + £3w3 + 4w (50)

u(k,w) =

where the coefficients, are functions ofy;, v2, A, w andr.

Expressions such as this usually imply that resonances occ%& o . . -
. . licitly on the dispersive coefficients, £3 ande4. Hence,
at the values of the frequencies where the denominator be; phcttly P e3 c4

) X . he existence of this polynomial is a consequence of the non-
comes zero, since at these frequencies the Fourier transfor,

. : fllear terms which appear in Eq. (17). On the contrary, the
diverges. In the present case, the denominator becomes Zeﬂ8lynomia| in the denominator of (50) depends on the dis-
whenw is any of the roots of the equation:

persive coefficients (and the pulse parameters andr ),
but it does not depend explicitly on the nonlinear coefficients.
Hence, the existence of this polynomial is a consequence of

which is precisely the resonance condition between the solit—he dispersive terms of Eq. (17). Therefore, the mutual can-

ton (whose intrinsic wavenumber is+ ar) and the linear cellation of these two polynomials is the result of a delicate

waves. The mystery with embedded solitons is thatreso- balance between nonlmlearltyland d|sper5|gn.

nance does not occuAnd the solution of the mystery lies in In the systgms mentioned in th? preceding p_aragraphs the
the expression (50). We can see on the r.h.s. of this equatidi"Pedded solitons were found toiselated solutionsThat
that both the numerator and the denominator, contain fourthS: I €ach case the embedded soliton has a unique ampli-
order polynomials ins. Consequently, if we could make tUde @ unique width, and a unique wavenumber. The val-
these two polynomials coincide, they would cancel each otheyes of these parameters are determined by the coefficients of

out, and the denominator in Eq. (50) would disappeatr, thu e equatpn considered. Moreover, these solltonssal_m- ,
eliminating the divergence ai(k,w), and eliminating the stablesolutions. In other words, when one of these solitons is
) il

resonance between the soliton and the linear waves. perturbed, and the perturbation increases its energy, the per-
To find out if the two polynomials occurring in (50) can turbed soliton tends to stabilize, approaching the exact soli-

indeed cancel each other out, we can equate the coefficien n _C(_)nfiguration. _On the other h_and, when the pertur_bation
of similar powers ofw appearing in these polynomials. In iminishes the soliton’ s energy, it starts resonating with the

this way we obtain a system of five simultaneous equationgnear waves,.and loses energy in the PrOCESS. _In this case the
for the parametersl, w, a, ¢, andr, whose solution (as the perturb_ed s.ollton doe_s not attain a new equnlbrlu_m state. For
reader may have already guessed) is obtained when these g me time It was_belleved that all e_mbedded solitons should
rameters take the values defined by the Eqgs. (45)-(49). Ther necessarily) be isolated and semi-stable. However, as we
fore, the values of the parametetsw, a, ¢, andr presented
in (45)-(49) are precisely the values required to cancel th
two polynomials occurring in (50). When these polynomi-
als vanish, the resonances also disappear. That is why the  Continuous families of embedded solitons
embedded solitons of Eq. (17) do not resonate with linear
waves. The first example which showed that embedded solitons can
It is worth observing that the coefficients of the fourth-  exist in continuous familiesvas found by Champneys and
order polynomial which appears in the numerator of Eq. (50Malomed in 1999 [38], while studying the interaction of three
depend on the nonlinear coefficientsand-y, (and also on spatial solitons propagating in a planar waveguide (with a
the pulse parameterd, w, andr), but they do not depend quadratic nonlinearity), which has a set of parallel scores

g+ ar = g0t + e30° — 20° — aw, (51)

shall see in the next section, the embedded solitons can exist
én families, and in this case they can be stable solutions.

Rev. Mex. 5. 52 (1) (2006) 6-14



A SURVEY OF EMBEDDED SOLITONS 11

which act as a Bragg grating. The process considered wasolitons of this family are embedded if the coefficients occur-
the following: two light pulses (with carrier waves of equal ring in (59) satisfy the conditiofa, b, ¢) « (1,—1,3). This
frequencies) are introduced in the planar waveguide, making/as the first continuous family eéal andexplicitembedded
opposite angles with the Z axis (which is the direction of thesolitons reported in the literature.

parallel scores). Due to the nonlinearity, a second-harmonic | the complex caseexplicit continuous familiesf em-
wave is generated, which propagates in the direction of thgedded solitons also exist. An example of such a family was
parallel scoresi . along the Z direction) [39]. A diagram of  found in 2003, in a model which describes the propagation of
the SyStem can be seen in F|g 2. The eVO|uti0n of the threﬁght in ||qu|d Crysta's_ In a ﬁrst approximation, the propaga_

waves is then described by the following equations: tion of a light pulse in a liquid-crystal waveguide is similar to
Ou  Ou the propagation of light in a solid optical fiber. The pulse has
Y92 + Y on +v+wv' =0, (52) a tendency to disperse because different frequencies travel at
Py Py different velocities, but this dispersion effect can be balanced
i— —i— +u+wu =0, (53) by the nonlinear dependence of the refractive index on light
92 2855 intensity. Because of this, in a first approximation the NLS
0w 07w . equation is useful in describing the behavior of a light pulse
gy TP gz —awtu =0, D e liquid-crystal waveguide. In liquid crystals, however,

whereu andv are the two components of the fundamentalthe nonlinear effect is much stronger than in a solid optical
harmonic (FH),w is the second-harmonic (SH) wavg,s fiber, and therefore a correction is needed. In Ref. 41, it was
a phase mismatch, andl is an effective diffraction coeffi- Shown that the NLS approximation can be improved by using
cient. To find out if this system may have soliton solutions,the following equation:

Champneys and Malomed analyzed the linearized problem,

proposing solutions which asymptotically (at the tails of the Ou 5@ B |u|2 Ou _ 0 61)
solitons) behave in the form: a: ‘o o
u(z,x) ~ exp (ikz) exp (AL) , (55)  since this equation reduces to the modified Korteweg-de

(56) Vries (mKdV) equation whem is real, it is evident thateal
solitons exist. A not so evident result is that Eqg. (61) also has
w (2, x) ~ exp (2ikz) exp (2AE), (57)  acontinuous familpf complexsolitons of the form:

v(z,x) ~ exp (ikz) exp (),

where{ = x — cz. Substituting these expressions in the :
linearized equations, and calculating the eigenvalues, itwas « (z,t) = A sech (‘az) expli(gz+rt)], (62)
found that the linear analysis indicates that embedded soli- w
tons may exist, isolated and in families (depending on the
value of ¢), and the existence of some of these embedded
solitons was corroborated numerically.

Two years later (in 2001), aaxplicit family of embedded
solitons was found by Yang while studying a complicated ex-
tension of the Korteweg-de Vries equation [40]:

Ut + 6uly 4+ Ugrr + Uzrzrr + 10UULze + 20U, Ugy 1/' .
+30u*u, = €F (u), (58) K
3
where: —' *****

F (U) = - (a’uumazx + bumuww + CU2UI) (59)

is a perturbative ternfe < 1), anda, b, ¢ are real constants. 2
In this case, however, thembeddings different, because
now the solitons are real. In this case, the quantity that is em-
bedded in the linear spectrum of the system is msh@enum-

ber (or afrequency, but thevelocityof the solitons. The form

of the solitons of Eq. (58) is: Z
1.4 9 | K FIGURE 2. Diagram of the system described by Eqgs. (52)-(54).
u(z,t) = ik sech {2 (@—-Ct), (60) k, andk, are the wavenumbers corresponding to the two FH (fun-

' ' ' damental harmonic) waves, akd is the wavenumber of the SH
whereC = k? + k* is the velocity of the soliton, and > 0 (second harmonic) wavies. The horizontal lines indicate the di-
is an arbitrary parameter. In Ref. 40, Yang proved that all theection of the parallel scores which form the Bragg grating.

Rev. Mex. 5. 52 (1) (2006) 6-14



12 J. FUJIOKA, A. ESPINOSA-CERN, AND R.F. RODRGUEZ

where the parameters a, w, g y r must satisfy the following andA, andA, are the finite-difference operators defined as

three conditions: follows:
6e Tn+1 — 2rn + Tn—1
A?w? = =, 63 Aor,, = , 67
v Y (63) 2 (Ax)2 (67)
1 _ —
a=3er® — —yA?, (64) Agry = 2 = AT £ 60 — A1t g
6 4
(Az)
1 )
q= 571427’ —er’. (65)  whereAxz is the lattice spacing. In Ref. 43 it was shown

that Eq. (67) has bright and dark lattice solitons, if the coeffi-
Due to the presence of the third derivative in (61), the rangeients of the equation satisfy certain conditions. In particular,
of the dispersion relatioh (w) contains the entere real axis, the bright solitons have the form
and so the intrinsic wavenumbey ¢ ar) of any soliton of ‘
the family (62) is necessarily immersed in the linear spec- rn=Ae "< ’sech(BnAx), (69)
trum. Consequenthgll the solitons of this family are embed- : )
ded solitongaccording to their wavenumbers). Moreover, if Where the constants, B andC' are defined by the following

ae > 0, thevelocityfor the soliton is contained in the range Set of algebraic equations:

of velocities permitted to linear waves. Therefore, in this case 321 sinh?(2BA)
(whenae > 0), both thewavenumbeand thevelocityof the A% = ,/2—472, (70)
soliton are contained in the corresponding linear spectrums. 72 (Ax)
These are thdouble embedded solitang/henae < 0 only 342 (Ax)4
the soliton’s wavenumber is contained in the linear spectrum,  cosh® (BAz) — <312 + 1) cosh* (BAz)
and we speak in this case sihgle embedded solitons V284
The numerical results presented in [41] showed that the . (Ax)2
solitons of Eq. (61) arstable solutions This is an interest- <24 — 1) cosh® (BAz)
ing result, since it is the only example known to datstable €4
embedded solitonsith anexplicit analytical expression. 1 1 (A )2
The following extension of Eq. (61): + 1 cosh2(BAx) -5 (52451’ _ 1> cosh (BAx)
4
ou  u 2 Ou 2 |ul®
— 4+ — +6 — =1 e 66 2
5 Tas T |ul N ialul®u —y T (66) +i<4€;(ASC)21> —0, (71)
4
was also studied by Yang [42], who found that this equation 5
also has damily of stableembedded solitons. However, in (¢ = — 622 [cosh (B Ax) — 1]
this case no analytical solutions were found. (Ax)
) ) - iﬂ [cosh (BAz) —1)°, (72)
5. Embedded lattice solitons (Ax)

By 2003 it was known that the embedded solitons can appeeﬁnd the coefficient: must satisfy the following condition:
in very different contexts, such as liquid crystals, hydrody- 1—2 cosh?(BAz)
namic models, and several types of optical systems. How- = 3

16 cosh”(BAx)
ever, all these systems share at least one common character-
istic: they arecontinuoussystems. When this common de- To find out if the soliton (69) is an embedded lattice soliton, it
nominator is recognized, a question immediately arisas.  is necessary to determine whether its internal frequéncy
embedded solitons exist in discrete systeinsither words:  contained within the range of frequencies permitted for lin-
do embedded lattice solitons existRe answer to this ques- ear wavesi(e. within the range of the dispersion relation).
tion was found recently [43], when it was shown that explicitin this case we pay attention to tfiequenciesinstead of
embedded lattice solitons are solutions of a discrete versiothe wavenumbersbecause in Eq. (67) the evolution variable

(73)

of Eq. (16) of the following form: is thetime, whereas in equations such as (16) the evolution
5 1 variable was the propagation distance along the nonlinear
z% + ey Ty +Heg DNy Ty F oM 70l (Frgt + Tno1) medium. Reference 43 shows ti@tfalls within the range

of the linear dispersion relation if the following inequalities
2

_§’72 |rn|4 [rn+2 +4a (TnJrl + Tnfl) + Tn72] = 07 are satisfied:
wherer, (t) is a complex-valued function of time defined at £2 (Az)?
the lattice sites, the coefficients, ¢4, 71, 72 anda are real, 1 —cosh (BAz) < Tom, <3 —cosh(BAz). (74)
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Depending on the values of the coefficieats v, anda,  whether new ES could be found in systems involving third-
these two inequalities may or may not be fulfiled. Whenharmonic generation and/or other types of periodic media.

they are satisfied, the soliton (68) isembedded lattice soli- It is important to observe that there are different types of
ton. If any of these conditions is not satisfied, we will have aES, and we can classify them in different ways. There are iso-
standardi(e. not embedded) lattice soliton. lated ES and continuous families of ES. There are stable and
unstable ES. There are continuous and discrete ES. Finally,
6. Conclusions we have ES described by explicit analytical expressions, and

ES for which no analytical expressions are known.
Embedded solitons (ES) are particularly interesting nonlin-  The discovery of the ES has shown that the destructive
ear waves because they exist under conditions under whichesonances that frequently hinder the propagation of soli-
until recently, it was believed that the propagation of solitonstary waves in nonlinear systems, can be cancelled (in certain
was impossible. As we have seen in this brief survey, thicases) by higher-order nonlinear terms. This idea suggests
field is rather new, but it has grown faster than expected. Athat new embedded solitons might be found in highly nonlin-
first (1997), it was thought that the existence of these pecuear systems not yet studied.
liar waves was a very rare and isolated phenomenon. How- Even in the systems with embedded solitons already
ever, soon enough these new solitons were found in sever&hown, there are several aspects which merit a further study.
nonlinear models. Most of these models are related to th&he emission of radiation byerturbedembedded solitons is
propagation of light in nonlinear media, and in every case th@ne of these issues. Thability of the embedded solitons
existence of the ES is the result of the interplay between nonwhich appear in families is another.
linearity and dispersion. To understand why nonlinear optics  The rigorous mathematical analysis of the systems with
is such a fruitful source of models with ES, we must observeembedded solitons is another field which is just beginning to
that in materials such as silica glass or liquid crystals the nongrow [44]- [46], and where surely there is plenty to do.
linear dependence of the refractive index on light intensity  Note added in proff: while the proofs of this article were
leads naturally to partial differential equations with severalpeing revised, the first example of stable embedded lattice

nonlinear terms, which may balance the effect of the dispersolitons appeared in the paper B.A. Malonetdal., Chaos
sive terms. Moreover, there are many different systems whereg (2006) 013112,

light pulses (or light rays) may interact, and there are many

parameters that can be controlled: light intensity, direction of

light, number of rays, light frequency, dispersive characterAcknowledgements

istics of the systems, periodicity of the media, etc.. When

the propagation of a single light pulse is considered, usuWe wish to thank DGSCA-UNAM (Direcoin de Servicios
ally only one equation is needed. Equations (16), (17), (61ye Computo Acaémico of UNAM) for their authorization
and (66) are examples of these types of models. On the oth&® use their computers Origin 2000 and Bakliz in our study
hand, when we want to describe the interaction of two (orof embedded solitons. The numerical results presented in
more) pulses, a system of equations is usually needed. SyRefs. 31, 37, 41, and 43 were obtained with the aid of
tems (22)-(23), (28)-(29), (42)-(43) and (52)-(54) are exam+these computers. We also wish to thank the DGAPA-UNAM
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1. N.J. Zabusky and M.D. KruskaPhys. Rev. Lettl5(1965) 240. 8. N.N. Akhmediev and A. AnkiewicZsolitons: Nonlinear pulses
2. A.C. Newell, Solitons in Mathematics and Physi¢SIAM, and beamgChapman & Hall, London, 1997) Chap. 2.
Philadelphia, 1985). 9. J. Fujioka,NLS: Una Introducdin a la Ecuaddbn No Lineal de

3. M.J. Ablowitz and H. SegufSolitons and the Inverse Scattering Schivdinger(Serie FENOMEC, UNAM, Mxico, 2003).
Transform(SIAM, Philadelphia, 1981).

4. P.G. Drazin and R.S. Johns@ylitons: an IntroductiofCam- 10. P.K.A. Wai, H.H. Chen, and Y.C. Le®hys. Rev. A1 (1990)
bridge University Press, 1989). 426.

5. M. Toda, Nonlinear Waves and SolitofKTK Scientific Pub-  11. P.K.A. Wai, C.R. Menyuk, Y.C. Lee, and H.H. CheDpt. Lett.

lishers, Tokyo 1989) Chap. 5. 11(1986) 464.

6. ghlszgrawal,Nonllnear Fiber Optic§fAcademic Press, 1989) 12. H.H. Kuehl and C.Y. Zhangphys. FluidsB2 (1990) 889.

7. Y.S. Kivshar and G.P. AgrawaQptical Solitons(Academic ~ 13. N.N. Akhmediev and M. KarlssonPhys. Rev. A1 (1995)
Press, San Diego, CA, 2003) Chap. 1. 2602.

Rev. Mex. 5. 52 (1) (2006) 6-14



14

14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24,

25.

26.
27.
28.
29.
30.
31.

32.

J. FUJIOKA, A. ESPINOSA-CERN, AND R.F. RODRGUEZ

A. Ho0k and M. KarlssonQpt. Lett.18(1993) 1388. 33
M. Karlsson, and A. 8ok, Opt. Commun104(1994) 303.

N.N. Akhmediev, A.V. Buryak, and M. KarlssotQpt. Com- 34
mun.110(1994) 540,

A.V. Buryak and N.N. AkhmedievPhys. Rev. E51 (1995)  35.

3572.

J. Herrmanny). Opt. Soc. Am. B (1991) 1507. 36.

S. Gatz and J. Herrmand, Opt. Soc. Am. B (1991) 2296.

S. Gatz and J. Herrman®pt. Lett.17 (1992) 484. 37.

J.M. Hickmanret al., Opt. Lett.18 (1993) 182.

W. Krolikowski and B. Luther-Daviespt. Lett.18(1993) 188. 38

D. Mihalache and D. Mazilu]. Opt. Soc. Am. B (1988) 565.

B.J. LeMesurier, G. Papanicolaou, C. Sulem, and P.L. Sulem,
Physica D31(1988) 78.

A. Cloot, B.M. Herbst, and A.C. Weidemad, Comput. Phys.

J. HerrmannQpt. Commun87 (1992) 161.

C. Zhou, X.T. He, and S. CheRhys. Rev. 46 (1992) 2277. 42.
K. Hayata and M. Koshib&hys. Rev. 51 (1995) 1499. 43.

J. Fujioka and A. Espinosd, Phys. Soc. Japasb (1996) 2440.

J. Fujioka and A. Espinosd, Phys. Soc. Japa86(1997) 2601. 44

A. Espinosa-Cém, J. Fujioka, and A. Bmez-Rodiguez.,Rev.

Mex. Fis.49 (2003) 493. 45.

A.R. Champneys, B.A. Malomed, and M.J. Friedm&nys.

Rev. Lett80 (1998) 4169. 46.

40.
86 (1990) 127. 41.

A.R. Champneys and B.A. Malomed, Phys. A32 (1999)
L547.

J. Yang, B.A. Malomed, and D.J. Kauphys. Rev. Lett83
(1999) 1958.

J. Yang, B.A. Malomed, D.J. Kaup, and A.R. Champneys,
Mathematics and Computers in Simulat®e®(2001) 585.

A.R. Champneys and B.A. Malomed, J. Yang, and D.J. Kaup,
Physica D152-153(2001) 340.

A. Espinosa-Cdém, J. Fujioka, and A. Gmez-Rodiguez,
Physica Scripté7 (2003) 314.

A.R. Champneys and B.A. MalomeBhys. Rev. 61 (2000)
886.

39. W.C.K. Mak, B.A. Malomed, and P.L. ChiRhys. Rev. E58

(1998) 6708.
J. Yang,Studies in Appied Mathemati¢96(2001) 337.

R.F. Rodiguez, J.A. Reyes, A. Espinosa-Ger J. Fujioka, and
B.A. Malomed,Phys. Rev. B8 (2003) 036606-1/14.

J. Yang,Phys. Rev. Let®1 (2003) 143903-1/4.

S. Gonalez-Rerez-Sandi, J. Fujioka, and B.A. Malom&hys-
ica D 197(2004) 86.

D.E. Pelinovsky and J. Yan@roc. R. Soc. Lond. A58(2002)
1.

T. Wagenknecht and A.R. Champneyysica D1772003)
50.

D.J. Kaup and B.A. Malomedhysica D184 (2003) 153.

Rev. Mex. 5. 52 (1) (2006) 6-14



