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At the end of the nineties a brand-new type of soliton was discovered:the embedded solitons.Initially they were found in optical systems,
and afterwards they were also found in hydrodynamic models, liquid crystal theory and discrete systems. These peculiar solitary waves are
interesting because they exist under conditions in which, until recently, the propagation of solitons was thought to be impossible. At first
these nonlinear waves were believed to be necessarily isolated and unstable, but later on it was found that they can be stable and may exist
in families. This paper explains what theseembedded solitonsare, in which models they have been found, and what variants exist (stable,
unstable, continuous, discrete, etc.).
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Al final de los noventa se descubrió un nuevo tipo de solitones:los solitones embebidos. Inicialmente estas peculiares ondas se encontraron en
sistemaśopticos, y posteriormente también se hallaron en modelos hidrodinámicos, en la teorı́a de cristales lı́quidos, y en sistemas discretos.
Estas ondas solitarias son de interés porque existen en condiciones bajo las cuales, hasta hace poco, se consideraba que era imposible la
propagacíon de solitones. En un principio se creyó que estas ondas no lineales forzosamente eran soluciones aisladas e inestables, pero más
tarde se encontró que pueden ser estables y existir en familias. En este artı́culo se explica qúe son estossolitones embebidos, en qúe modelos
han sido hallados, y qué variantes existen (estables, inestables, continuos, discretos, etc.).

Descriptores:Solitones embebidos; ondas solitarias; ondas no lineales; cristales lı́quidos; sistemas discretos.

PACS: 42.65.Tg; 42.81.Dp; 05.45.Yv; 02.30Jr

1. Introduction

Solitons are solitary waves which are able to propagate in
nonlinear media,i.e. in systems which are described by non-
linear equations [partial differential equations(PDEs), in the
case of continuous systems, anddifferential-difference equa-
tions (DDEs), in the case of discrete systems]. The solitons
were dicovered by Zabusky and Kruskal in 1965 [1], while
they were studying the Korteweg-de Vries (KdV) equation,
and the history of this discovery can be found in several texts
(see, for example, the book of Newell [2]). In the begin-
ning (in the sixties and early seventies), the termsolitonwas
only applied to very stable waves, which recover their initial
shapes and velocities after interacting with similar waves, and
whose behavior was governed by nonlinear PDEs integrable
by inverse scattering [3]. However, later on the meaning of
this term (soliton) became less restrictive, and now it is usu-
ally applied to any solitary wave capable of propagating in a
nonlinear system.

There are several categories of solitons: bright, dark,
topological, non-topological, Bragg solitons, vector and vor-
tex solitons, spatiotemporal solitons (optical bullets), lattice
solitons, etc.. Most of these categories have been known
since the seventies. However, a brand-new category was dis-
covered very recently at the end of the nineties:the embedded
solitons. The discovery of these solitary waves was a surprise
because they exist under conditions in which, prior to 1997,
the propagation of solitons was thought to be impossible. In
the present survey we shall see what theseembedded solitons
are, in which models they appear, and the different types of
embedded solitons known to date (i.e., stable, unstable, con-
tinuous, discrete, etc.).

This paper is structured as follows: Sec. 2 will explain
the relationship between standard solitons (i.e., not embed-
ded) and the small amplitude periodic waves which are able
to propagate in a nonlinear system. Section 3 will present
the first systems in which isolated embedded solitons were
found. Section 4 introduces the few systems which have
continuous families of embedded solitons, and explains what
double embedded solitonsare. In Sec. 5, it will be shown that
embedded solitons also exist in discrete systems (i.e., embed-
ded lattice solitonsexist). Finally, Sec. 6 contains some clos-
ing remarks.

2. Standard solitons and linear waves

In any nonlinear system in which the propagation of soli-
tons is possible, the propagation of small-amplitude periodic
waves which satisfy the linearized version of the nonlinear
equations which control the system is also possible. How-
ever, for a soliton to exist, it is absolutely necessary that no
resonance occur between the soliton and these linear waves.
Otherwise, energy will be transferred from the soliton to the
linear waves due to a resonant process, and the soliton will
weaken continuously. As we shall see next, this no-resonance
condition has different forms, depending on thereal or com-
plexnature of the soliton.

Let us examine thereal case first. As an example of real
solitons we consider the solitons of the KdV equation [4]:

∂w

∂t
+ 6w

∂w

∂x
+

∂3w

∂x3
= 0. (1)

In this case the solitons have the following form [5]:

w (x, t) = 2κ2 sec h2κ
(
x− 4κ2t

)
, (2)
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whereκ is an arbitrary real constant. We can see that the ve-
locity, 4κ2, of these solitons is always positive. On the other
hand, if we substitute the function:

w (x, t) = sin (kx− ωt) (3)

in the linear part of the KdV equation, we will find that these
linear waves must obey the dispersion relation:

ω (k) = −k3, (4)

thus implying that the phase velocity of these waves is always
negative:

ω

k
= −k2. (5)

Consequently, in this case the solitons travel to the right,
while the linear waves travel to the left. Due to this fact,
the KdV solitons do not resonate with the linear waves.

Now let us consider thecomplexsolitons. In this case the
most famous equation with complex solitons is the nonlinear
Schr̈odinger (NLS) equation [6-9]:

i
∂u

∂z
+

1
2

∂2u

∂t2
+ |u|2 u = 0. (6)

This equation occurs in many fields, but it is particularly im-
portant in telecomunications, as it describes the propagation
of light pulses along optical fibers [6]. In this caseu (z, t) is
a complex function,z andt are real variables, and the funda-
mental solitons of this equation have the form [7]:

u (z, t) = A sec h(At) exp
(

i
A2

2
z

)
, (7)

whereA is an arbitrary real constant. This expression shows
that the NLS solitons have an oscillatory component whose
wavenumber,A2/2, is always positive. Concerning the linear
waves, they are also complex in this case, and if we substitute

u (x, t) = exp [i (kz − ωt)] (8)

in the linear part of the NLS equation, it follows that these
waves must satisfy the linear dispersion relation:

k (ω) = −1
2
ω2. (9)

This expression shows that all the linear waves which are
able to propagate in an NLS system havenegativewavenum-
bers, contrary to the solitons whose wavenumbers areposi-
tive. Due to this difference, the NLS solitons do not resonate
with linear waves.

The results mentioned above led to the conjecture that
real solitonscannot havevelocitieswhich are contained in the
range of velocities allowed to linear waves, andcomplex soli-
tonscannot havewavenumberswhich are permitted to these
waves. Confidence in this conjecture increased when it was
found that any soliton-like initial condition which evolves ac-
cording to the equation [10-12]

i
∂u

∂z
+

1
2

∂2u

∂t2
− iε3

∂3u

∂t3
+ γ |u|2 u = 0, (10)

inevitably begins to radiate, and the frequency of the emitted
radiation is defined by the equation [13]

A2

2
= −1

2
ω2 + ε3ω

3, (11)

whereA is the amplitude of the initial wave. SinceA2/2
is precisely the wavenumber corresponding to a soliton of
amplitudeA, Eq. (11) is exactly the resonance condition be-
tween the soliton-like initial condition and the linear waves
which satisfy the linear part of Eq. (10).

In a similar way, it was also found that any localized ini-
tial condition (similar to a soliton) which evolves according
to the equation [14-17]

i
∂u

∂z
+

1
2

∂2u

∂t2
+ ε4

∂4u

∂t4
+ γ |u|2 u = 0, (12)

necessarily begins to radiate as a consequence of a resonance
with linear waves. The frequency of the radiation is defined
in this case by the equation [13]:

A2

2
= −1

2
ω2 + ε4ω

4, (13)

which is the resonance condition between the soliton-like
initial condition (of amplitudeA), and the small-amplitude
linear waves which can propagate in a system governed by
Eq. (12).

The two above mentioned results, concerning Eqs. (10)
and (12), strengthened the assumption that a complex soliton
cannot have a wavenumber which is contained in the range
of the (inverse) dispersion relationk (ω), and this conjecture
prevailed until 1997.

3. Isolated embedded solitons

During the eighties and nineties, several variants of the
NLS equation were thoroughly studied. Among them were
equations which describe the propagation of ultrashort (sub-
picosecond) pulses in optical fibers [10,13-17], and equa-
tions which describe the propagation of intense optical pulses
under conditions where the Kerr-type dependence of the re-
fractive index on the intensity of light is no longer accurate
enough [18-28]. In the first case (ultrashort pulses) it is nec-
essary to consider extensions of the NLS equation which in-
clude higher-order derivatives, as in (10) and (12). On the
other hand, in the case of intense pulses (under non-Kerr con-
ditions), there are extensions of the NLS equation which con-
tain saturable nonlinearities of the form [18-22]:

|u|2
1 + γ |u|2 , (14)

and equations which consider polynomial nonlinearities of
the form [23-29]:

γ1 |u|2 − γ2 |u|4 . (15)
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FIGURE 1. Graph of the dispersion relation (21) forε2 = 1 and
ε4 = 24/49. The horizontal dotted line indicates the value of the
soliton’s wavenumberksol given by (20).

To describe the propagation of very short, intense pulses
in non-Kerr materials, the following equation has been stud-
ied [30,31]:

i
∂u

∂z
+ ε2

∂2u

∂t2
+ ε4

∂4u

∂t4
+ γ1 |u|2 u− γ2 |u|4 u = 0. (16)

This equation, however, only applies when the frequency of
the carrier wave is close to the frequency at which the third-
order dispersion vanishes. If this restriction is removed, the
following equation should be used instead:

i
∂u

∂z
+ ε2

∂2u

∂t2
− iε3

∂3u

∂t3
+ ε4

∂4u

∂t4
+ γ1 |u|2 u

− γ2 |u|4 u = 0. (17)

In 1997 it was found that equation (16) has soliton-like solu-
tions of the following form [30]:

u (z, t)=
(

γ1

2γ2

) 1
2

sec h

(
t√

14ε4/ε2

)
exp

(
i

5
32

γ 2
1

γ2
z

)
, (18)

if the coefficientsεi andγi satisfy the condition:

ε4

ε 2
2

=
24
49

γ2

γ 2
1

. (19)

Note that the soliton (18) has the following wavenumber:

ksol =
5
32

γ 2
1

γ2
=

15
196

ε 2
2

ε4
. (20)

On the other hand, the small-amplitude periodic waves (lin-
ear waves) which satisfy the linear part of Eq. (16) must obey
the dispersion relation:

k (ω) = ε4ω
4 − ε2ω

2. (21)

If ε4 > 0, the range of this function contains all the pos-
itive values ofk, and consequently the soliton s wavenum-
ber (which is positive ifε4 > 0) is contained in the range

of wavenumbers permitted for linear waves, as can be seen
in Fig. 1.With this discovery, the widely accepted conjecture
stating that a soliton could not have a wavenumber contained
in the linear spectrum of the system was shown to be false.In
the next few years, other systems with this unusual type of
soliton were discovered and will be presented below.

In 1998 Champneys, Malomed and Friedman studied the
system of NLS-like equations [32]:

i
∂u

∂x
+ i

∂u

∂t
+ D

∂2u

∂t2
+

(
σ |u|2 + |v|2

)
u + v = 0, (22)

i
∂v

∂x
− i

∂v

∂t
+ D

∂2v

∂t2
+

(
|u|2 + σ |v|2

)
v + u = 0, (23)

which are useful in describing two different systems:
(i) the propagation of two pulses of circularly polarized

light travelling along a birefringent twisted fiber, and
(ii ) the propagation of two optical pulses travelling in op-

posite directions along a nonlinear optical fiber with a
grating (in this case we must switchx andt).

The linear analysis carried out by Champneyset al. sug-
gested the existence of isolated solitary waves, and their nu-
merical simulations confirmed the existence of these waves.
When this paper was published, it was not realized that these
solitary waves might be similar to the soliton solutions for
Eq. (16). However, if the linear coupling terms appearing
in (22)-(23) are disregarded, and the periodic waves

u (x, t) = exp [i (kx− ωt)] , (24)

v (x, t) = exp [i (−kx− ωt)] , (25)

are substituted in the linear parts of (22)-(23), it is easily
found that these waves must satisfy, respectively, the linear
dispersion relations:

k (ω) = ω −Dω2, (26)

k (ω) = ω + Dω2. (27)

Since the ranges of these functions include positive and nega-
tive wavenumbers, it could be suspected that the isolated soli-
tary waves found numerically in [32] might have wavenum-
bers immersed in the linear spectrums of the system. Later,
on Champneys and Malomed found that this was precisely
the case [33], and so the numerical solutions of the sys-
tem (22)-(23) found in [32] were shown to be similar to the
soliton solutions for Eq. (16).

A new interesting system with explicit soliton-like so-
lutions was found by Yang, Malomed and Kaup (YMK)
in 1999. YMK studied the propagation of optical pulses
in a nonlinear medium (a Kerr medium), taking into ac-
count the interplay of the fundamental (FH) and the second-
harmonic (SH) fields. Such a system is described by the
equations [34,35]:

i
∂u

∂z
+

1
2

∂2u

∂t2
+γ1

(
|u|2 +2 |v|2

)
u+u∗v=0, (28)

i
∂v

∂z
−δ

2
∂2v

∂t2
+2γ2

(
|v|2 +2 |u|2

)
v+

1
2
u2+qv=0, (29)
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whereu is the FH,v is the SH,z is the propagation distance,t
is the reduced time,γ1 andγ2 are the Kerr coefficients (which
are different because the FH and SH fields have different fre-
quencies),q is the group-velocity mismatch (originated by
the frequency difference of the FH and SH fields), andδ is
the relative dispersion of the SH.

In the particular case when SH is much weaker than FH,
the system (28)-(29) reduces to:

i
∂u

∂z
+

1
2

∂2u

∂t2
+ γ1 |u|2 u + u∗v = 0, (30)

i
∂v

∂z
− δ

2
∂2v

∂t2
+ 4γ2 |u|2 v +

1
2
u2 + κv = 0. (31)

This system has the soliton solutions:

u (z, t) = A eikz sec h
(√

2kt
)

, (32)

v (z, t) = B e2ikz sec h2
(√

2kt
)

, (33)

where

k =
1

2 (1 + 2δ)

[
q − 3δ

2 (4γ2 + 3δγ1)

]
, (34)

A = −3δk/2γ2, (35)

B = 2k (1 + 3δγ1/4γ2) . (36)

If we now substitute the periodic waves

u (z, t) = exp [i (kz − ωt)] , (37)

v (z, t) = exp [2i (kz − ωt)] , (38)

in the linear parts of (30) and (31), we find the follow-
ing linear dispersion relations corresponding, respectively, to
u (z, t) andv (z, t):

k = −1
2
ω2, (39)

2k = 2δω2 + q. (40)

The range of the linear dispersion relation (39) contains only
negative wavenumbers, and since the wavenumberk of the
soliton (32) is necessarily positive (because of the root

√
2k),

the u-soliton is a normal soliton (with a wavenumber lying
outside the linear spectrum). Something different occurs in
the case of thev-soliton. In this case, the range of the lin-
ear dispersion relation (40) containspositivewavenumbers if
δ > 0, and consequently the wavenumber of thev-soliton
(which is2k) might be contained within the linear spectrum.
If q > 0, this will occur for2k > q, and if q < 0 this will
happen for2k > 0. These two inequalities imply that the
wavenumber of thev-soliton will be contained within the lin-
ear spectrum ifδ is positive,γ1 andγ2 are negative, andq is
contained in the interval:

3δ

2 (4γ2 + 3δγ1)
< q < − 3

4 (4γ2 + 3δγ1)
. (41)

Consequently, there are four features that make the sys-
tem (30)-(31) a very interesting one:

(i) it describes a physically relevant system (a second-
harmonic generating system),

(ii ) it hasexplicit analytical soliton solutions,

(iii ) the profiles of the FH and SH solitons are different,
the FH-soliton is given by a hyperbolic secant (which
is usual in optical solitons), but the profile of the SH-
soliton is asquaredhyperbolic secant (which is usual
in hydrodynamics, but unusual in optics), and

(iv) if δ > 0, γ1, γ2 > 0, and (41) is satisfied, the
wavenumber of thev-soliton is contained in the linear
spectrum of the system.

Yang, Malomed and Kaup recognized that thev-solitons
were particularly interesting, and decided to baptize these pe-
culiar waves with a new name:embedded solitons, thus indi-
cating that the wavenumber of these solitons is “embedded”
in the linear spectrum of the system.

In the same year (1999), Champneys and Malomed
extended the model (22)-(23), including second-derivative
(wave) terms, as shown below [33]:

i
∂u

∂t
+ i

∂u

∂x
+ (2k)−1

(
∂2u

∂x2
− ∂2u

∂t2

)

+
(
σ |u|2 + |v|2

)
u + v = 0, (42)

i
∂v

∂t
− i

∂v

∂x
+ (2k)−1

(
∂2v

∂x2
− ∂2v

∂t2

)

+
(
σ |v|2 + |u|2

)
v + u = 0. (43)

Proceeding as in Ref. 32, Champneys and Malomed found
that this system hasmoving embedded solitons, and they
found that these solitons are isolated and unstable. No ex-
plicit analytical expressions for these embedded solitons are
known in this case.

By the year 2000, it was clear that embedded solitons may
exist in different optical systems. However, it was not clear
why these solitons can exist, because at first sight it seemed
that these solitary waves should resonate with linear waves,
losing energy in the process. Qualitative explanations for the
existence of embedded solitons appeared in 2001 [36], and
a quantitative explanation was presented in 2003 [37], in a
paper dealing with Eq. (17). In Ref. 37, it was proved that
Eq. (17) has bright and dark soliton solutions, and the bright
solitons have the form:

u (z, t) = A sec h

(
t− az

w

)
exp [i (qz + rt)] , (44)

where the soliton parameters are defined by the equations:

A=
(

6
5γ2

) 1
2

[
γ1 −

(
2ε2+

3
4

ε2
3

ε4

)(
γ2

24ε4

) 1
2
] 1

2

, (45)
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w =
(

24 ε4

γ2

)1/4 1
A

, (46)

r =
ε3

4 ε4
, (47)

a = 2 ε2r + 8 ε4r
3, (48)

q = −ε2r
2 − 3 ε4r

4 + (ε2 + 6 ε4r
2)

(
γ2

24 ε4

)1/2

×A2 +
γ2

24
A4. (49)

In Ref. 37, it was shown that these solitons are embed-
ded ifεi andγi are positive, and satisfy the conditionA > 0.
To explain why these solitons do not resonate with the linear
waves (in spite of having a wavenumber contained in the lin-
ear spectrum of the system), it is necessary to calculate the
double Fourier transform (in space and time) of Eq. (17).
To calculate the Fourier transforms of the nonlinear terms,
u (z, t) is considered to have has the form given in (44), with-
out imposing any conditions on the values of the parameters
A, a, w, q and r. In this way it is found that the double
Fourier transform ofu (z, t) has the following form:

ũ(k, ω) =
πwA

[
sec h

(
πw(r+ω)

2

)] 4∑
n=0

(cnωn) δ (k − q − a (r + ω))

− (q + ar)− aω − ε2ω2 + ε3ω3 + ε4ω4
, (50)

where the coefficientscn are functions ofγ1, γ2, A, w andr.
Expressions such as this usually imply that resonances occur
at the values of the frequencies where the denominator be-
comes zero, since at these frequencies the Fourier transform
diverges. In the present case, the denominator becomes zero
whenω is any of the roots of the equation:

q + ar = ε4ω
4 + ε3ω

3 − ε2ω
2 − aω, (51)

which is precisely the resonance condition between the soli-
ton (whose intrinsic wavenumber isq + ar) and the linear
waves. The mystery with embedded solitons is thatthis reso-
nance does not occur. And the solution of the mystery lies in
the expression (50). We can see on the r.h.s. of this equation
that both the numerator and the denominator, contain fourth-
order polynomials inω. Consequently, if we could make
these two polynomials coincide, they would cancel each other
out, and the denominator in Eq. (50) would disappear, thus
eliminating the divergence of̃u(k, ω), and eliminating the
resonance between the soliton and the linear waves.

To find out if the two polynomials occurring in (50) can
indeed cancel each other out, we can equate the coefficients
of similar powers ofω appearing in these polynomials. In
this way we obtain a system of five simultaneous equations
for the parametersA, w, a, q, andr, whose solution (as the
reader may have already guessed) is obtained when these pa-
rameters take the values defined by the Eqs. (45)-(49). There-
fore, the values of the parametersA, w, a, q, andr presented
in (45)-(49) are precisely the values required to cancel the
two polynomials occurring in (50). When these polynomi-
als vanish, the resonances also disappear. That is why the
embedded solitons of Eq. (17) do not resonate with linear
waves.

It is worth observing that the coefficientscn of the fourth-
order polynomial which appears in the numerator of Eq. (50)
depend on the nonlinear coefficientsγ1 andγ2 (and also on
the pulse parametersA, w, andr), but they do not depend

explicitly on the dispersive coefficientsε2, ε3 andε4. Hence,
the existence of this polynomial is a consequence of the non-
linear terms which appear in Eq. (17). On the contrary, the
polynomial in the denominator of (50) depends on the dis-
persive coefficients (and the pulse parametersq, a andr ),
but it does not depend explicitly on the nonlinear coefficients.
Hence, the existence of this polynomial is a consequence of
the dispersive terms of Eq. (17). Therefore, the mutual can-
cellation of these two polynomials is the result of a delicate
balance between nonlinearity and dispersion.

In the systems mentioned in the preceding paragraphs the
embedded solitons were found to beisolated solutions. That
is, in each case the embedded soliton has a unique ampli-
tude, a unique width, and a unique wavenumber. The val-
ues of these parameters are determined by the coefficients of
the equation considered. Moreover, these solitons aresemi-
stablesolutions. In other words, when one of these solitons is
perturbed, and the perturbation increases its energy, the per-
turbed soliton tends to stabilize, approaching the exact soli-
ton configuration. On the other hand, when the perturbation
diminishes the soliton’ s energy, it starts resonating with the
linear waves, and loses energy in the process. In this case the
perturbed soliton does not attain a new equilibrium state. For
some time it was believed that all embedded solitons should
(necessarily) be isolated and semi-stable. However, as we
shall see in the next section, the embedded solitons can exist
in families, and in this case they can be stable solutions.

4. Continuous families of embedded solitons

The first example which showed that embedded solitons can
exist in continuous familieswas found by Champneys and
Malomed in 1999 [38], while studying the interaction of three
spatial solitons propagating in a planar waveguide (with a
quadratic nonlinearity), which has a set of parallel scores

Rev. Mex. F́ıs. 52 (1) (2006) 6–14
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which act as a Bragg grating. The process considered was
the following: two light pulses (with carrier waves of equal
frequencies) are introduced in the planar waveguide, making
opposite angles with the Z axis (which is the direction of the
parallel scores). Due to the nonlinearity, a second-harmonic
wave is generated, which propagates in the direction of the
parallel scores (i.e. along the Z direction) [39]. A diagram of
the system can be seen in Fig. 2. The evolution of the three
waves is then described by the following equations:

i
∂u

∂z
+ i

∂u

∂x
+ v + wv∗ = 0, (52)

i
∂v

∂z
− i

∂v

∂x
+ u + wu∗ = 0, (53)

2i
∂w

∂z
+ D

∂2w

∂x2
− qw + uv = 0, (54)

whereu andv are the two components of the fundamental
harmonic (FH),w is the second-harmonic (SH) wave,q is
a phase mismatch, andD is an effective diffraction coeffi-
cient. To find out if this system may have soliton solutions,
Champneys and Malomed analyzed the linearized problem,
proposing solutions which asymptotically (at the tails of the
solitons) behave in the form:

u (z, x) ∼ exp (ikz) exp (λξ) , (55)

v (z, x) ∼ exp (ikz) exp (λξ) , (56)

w (z, x) ∼ exp (2ikz) exp (2λξ) , (57)

whereξ = x − cz. Substituting these expressions in the
linearized equations, and calculating the eigenvalues, it was
found that the linear analysis indicates that embedded soli-
tons may exist, isolated and in families (depending on the
value of q), and the existence of some of these embedded
solitons was corroborated numerically.

Two years later (in 2001), anexplicit family of embedded
solitons was found by Yang while studying a complicated ex-
tension of the Korteweg-de Vries equation [40]:

ut + 6uux + uxxx + uxxxxx + 10uuxxx + 20uxuxx

+30u2ux = εF (u) , (58)

where:

F (u) = − (
auuxxx + buxuxx + cu2ux

)
(59)

is a perturbative term(ε ¿ 1), anda, b, c are real constants.
In this case, however, theembeddingis different, because
now the solitons are real. In this case, the quantity that is em-
bedded in the linear spectrum of the system is not awavenum-
ber (or afrequency), but thevelocityof the solitons. The form
of the solitons of Eq. (58) is:

u (x, t) =
1
2
k2 sec h2

[
k

2
(x− Ct)

]
, (60)

whereC = k2 + k4 is the velocity of the soliton, andk > 0
is an arbitrary parameter. In Ref. 40, Yang proved that all the

solitons of this family are embedded if the coefficients occur-
ring in (59) satisfy the condition(a, b, c) ∝ (1,−1, 3). This
was the first continuous family ofreal andexplicitembedded
solitons reported in the literature.

In the complex case,explicit continuous familiesof em-
bedded solitons also exist. An example of such a family was
found in 2003, in a model which describes the propagation of
light in liquid crystals. In a first approximation, the propaga-
tion of a light pulse in a liquid-crystal waveguide is similar to
the propagation of light in a solid optical fiber. The pulse has
a tendency to disperse because different frequencies travel at
different velocities, but this dispersion effect can be balanced
by the nonlinear dependence of the refractive index on light
intensity. Because of this, in a first approximation the NLS
equation is useful in describing the behavior of a light pulse
in a liquid-crystal waveguide. In liquid crystals, however,
the nonlinear effect is much stronger than in a solid optical
fiber, and therefore a correction is needed. In Ref. 41, it was
shown that the NLS approximation can be improved by using
the following equation:

∂u

∂z
− ε

∂3u

∂t3
− γ |u|2 ∂u

∂t
= 0. (61)

Since this equation reduces to the modified Korteweg-de
Vries (mKdV) equation whenu is real, it is evident thatreal
solitons exist. A not so evident result is that Eq. (61) also has
acontinuous familyof complexsolitons of the form:

u (z, t) = A sec h

(
t− az

w

)
exp [i (qz + rt)] , (62)

FIGURE 2. Diagram of the system described by Eqs. (52)-(54).
k1 andk2 are the wavenumbers corresponding to the two FH (fun-
damental harmonic) waves, andk3 is the wavenumber of the SH
(second harmonic) wavek3. The horizontal lines indicate the di-
rection of the parallel scores which form the Bragg grating.

Rev. Mex. F́ıs. 52 (1) (2006) 6–14



12 J. FUJIOKA, A. ESPINOSA-CEŔON, AND R.F. RODŔIGUEZ

where the parametersA, a, w, q y r must satisfy the following
three conditions:

A2w2 =
6ε

γ
, (63)

a = 3εr2 − 1
6
γA2, (64)

q =
1
2
γA2r − εr3. (65)

Due to the presence of the third derivative in (61), the range
of the dispersion relationk (ω) contains the entere real axis,
and so the intrinsic wavenumber (q + ar) of any soliton of
the family (62) is necessarily immersed in the linear spec-
trum. Consequently,all the solitons of this family are embed-
ded solitons(according to their wavenumbers). Moreover, if
aε > 0, thevelocityfor the soliton is contained in the range
of velocities permitted to linear waves. Therefore, in this case
(whenaε > 0), both thewavenumberand thevelocityof the
soliton are contained in the corresponding linear spectrums.
These are thedouble embedded solitons. Whenaε < 0 only
the soliton’s wavenumber is contained in the linear spectrum,
and we speak in this case ofsingle embedded solitons.

The numerical results presented in [41] showed that the
solitons of Eq. (61) arestable solutions. This is an interest-
ing result, since it is the only example known to date ofstable
embedded solitonswith anexplicit analytical expression.

The following extension of Eq. (61):

∂u

∂z
+

∂3u

∂t3
+ 6 |u|2 ∂u

∂t
= iα |u|2 u− γ

∂ |u|2
∂t

u (66)

was also studied by Yang [42], who found that this equation
also has afamily of stableembedded solitons. However, in
this case no analytical solutions were found.

5. Embedded lattice solitons

By 2003 it was known that the embedded solitons can appear
in very different contexts, such as liquid crystals, hydrody-
namic models, and several types of optical systems. How-
ever, all these systems share at least one common character-
istic: they arecontinuoussystems. When this common de-
nominator is recognized, a question immediately arises:can
embedded solitons exist in discrete systems?In other words:
do embedded lattice solitons exist?The answer to this ques-
tion was found recently [43], when it was shown that explicit
embedded lattice solitons are solutions of a discrete version
of Eq. (16) of the following form:

i
∂rn

∂t
+ ε242 rn + ε444 rn +

1
2
γ1 |rn|2 (rn+1 + rn−1)

−2
3
γ2 |rn|4 [rn+2 + 4α (rn+1 + rn−1) + rn−2] = 0,

wherern (t) is a complex-valued function of time defined at
the lattice sites, the coefficientsε2, ε4, γ1, γ2 andα are real,

and∆2 and∆4 are the finite-difference operators defined as
follows:

∆2rn ≡ rn+1 − 2 rn + rn−1

(∆x)2
, (67)

∆4 rn ≡ rn+2 − 4 rn+1 + 6 rn − 4 rn−1 + rn−2

(∆x)4
, (68)

where∆x is the lattice spacing. In Ref. 43 it was shown
that Eq. (67) has bright and dark lattice solitons, if the coeffi-
cients of the equation satisfy certain conditions. In particular,
the bright solitons have the form

rn = A e− i C tsech(B n4x), (69)

where the constantsA, B andC are defined by the following
set of algebraic equations:

A2 =
√

3ε4

2γ2

sinh2(2B4x)
(4x)2

, (70)

cosh6 (B4x)−
(

3 γ 2
1 (4x)4

32γ2ε4
+ 1

)
cosh4 (B4x)

+

(
ε2 (4x)2

4 ε4
− 1

)
cosh3 (B4x)

+
1
4

cosh2(B4x)− 1
2

(
ε2 (4x)2

4 ε4
− 1

)
cosh (B4x)

+
1
4

(
ε2

4 ε4
(∆x)2 − 1

)2

= 0, (71)

C = − 2 ε2

(4x)2
[cosh (B4x)− 1]

− 4ε4

(4x)4
[cosh (B4x)− 1]2 , (72)

and the coefficientα must satisfy the following condition:

α =
1− 2 cosh2(B4x)
16 cosh3(B4x)

. (73)

To find out if the soliton (69) is an embedded lattice soliton, it
is necessary to determine whether its internal frequencyC is
contained within the range of frequencies permitted for lin-
ear waves (i.e. within the range of the dispersion relation).
In this case we pay attention to thefrequencies, instead of
thewavenumbers, because in Eq. (67) the evolution variable
is the time, whereas in equations such as (16) the evolution
variable was the propagation distance along the nonlinear
medium. Reference 43 shows thatC falls within the range
of the linear dispersion relation if the following inequalities
are satisfied:

1− cosh (B ∆x) <
ε2 (∆x)2

2ε4
< 3− cosh (B ∆x) . (74)

Rev. Mex. F́ıs. 52 (1) (2006) 6–14



A SURVEY OF EMBEDDED SOLITONS 13

Depending on the values of the coefficientsεn, γn and α,
these two inequalities may or may not be fulfilled. When
they are satisfied, the soliton (68) is anembedded lattice soli-
ton. If any of these conditions is not satisfied, we will have a
standard (i.e. not embedded) lattice soliton.

6. Conclusions

Embedded solitons (ES) are particularly interesting nonlin-
ear waves because they exist under conditions under which,
until recently, it was believed that the propagation of solitons
was impossible. As we have seen in this brief survey, this
field is rather new, but it has grown faster than expected. At
first (1997), it was thought that the existence of these pecu-
liar waves was a very rare and isolated phenomenon. How-
ever, soon enough these new solitons were found in several
nonlinear models. Most of these models are related to the
propagation of light in nonlinear media, and in every case the
existence of the ES is the result of the interplay between non-
linearity and dispersion. To understand why nonlinear optics
is such a fruitful source of models with ES, we must observe
that in materials such as silica glass or liquid crystals the non-
linear dependence of the refractive index on light intensity
leads naturally to partial differential equations with several
nonlinear terms, which may balance the effect of the disper-
sive terms. Moreover, there are many different systems where
light pulses (or light rays) may interact, and there are many
parameters that can be controlled: light intensity, direction of
light, number of rays, light frequency, dispersive character-
istics of the systems, periodicity of the media, etc.. When
the propagation of a single light pulse is considered, usu-
ally only one equation is needed. Equations (16), (17), (61)
and (66) are examples of these types of models. On the other
hand, when we want to describe the interaction of two (or
more) pulses, a system of equations is usually needed. Sys-
tems (22)-(23), (28)-(29), (42)-(43) and (52)-(54) are exam-
ples of these models. It is worth observing that these systems
involve two interesting ingredients: second-harmonic gen-
eration and resonant gratings. It remains an open question

whether new ES could be found in systems involving third-
harmonic generation and/or other types of periodic media.

It is important to observe that there are different types of
ES, and we can classify them in different ways. There are iso-
lated ES and continuous families of ES. There are stable and
unstable ES. There are continuous and discrete ES. Finally,
we have ES described by explicit analytical expressions, and
ES for which no analytical expressions are known.

The discovery of the ES has shown that the destructive
resonances that frequently hinder the propagation of soli-
tary waves in nonlinear systems, can be cancelled (in certain
cases) by higher-order nonlinear terms. This idea suggests
that new embedded solitons might be found in highly nonlin-
ear systems not yet studied.

Even in the systems with embedded solitons already
known, there are several aspects which merit a further study.
The emission of radiation byperturbedembedded solitons is
one of these issues. Thestability of the embedded solitons
which appear in families is another.

The rigorous mathematical analysis of the systems with
embedded solitons is another field which is just beginning to
grow [44]- [46], and where surely there is plenty to do.

Note added in proff: while the proofs of this article were
being revised, the first example of stable embedded lattice
solitons appeared in the paper B.A. Malomedet al., Chaos
16 (2006) 013112.
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43. S. Gonźalez-Ṕerez-Sandi, J. Fujioka, and B.A. Malomed,Phys-
ica D 197(2004) 86.

44. D.E. Pelinovsky and J. Yang,Proc. R. Soc. Lond. A458(2002)
1.

45. T. Wagenknecht and A.R. Champneys,Physica D177(2003)
50.

46. D.J. Kaup and B.A. Malomed,Physica D184(2003) 153.

Rev. Mex. F́ıs. 52 (1) (2006) 6–14


