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Induced nematic-like phase in dipolar and quadrupolar colloids
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We compute the one-body probability density function of a dipolar and a quadrupolar colloid driven by an external ordering field. Colloids
with low structure in the absence of the external field, and with axially symmetric coupling potential are assumed. To compute the one-body
probability density function, it is assumed that the dynamics of the colloid are given by the Smoluchowski equation without hydrodynamic
interactions. We use an appropiate homogeneous external field for each moment. The results for the one-body probability density function
predict an axial nematic-like phase for the dipole moment, whereas a biaxial nematic-like phase is predicted for the quadrupole moment.
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Calculamos la densidad de probabilidad de un cuerpo de un coloide dipolar y uno cuadrupolar controlados por un campo externo ordenador.
Consideramos un coloide con poca estructura en ausencia del campo externo y con potencial dérinsxiatmiente sirgtrico. Para

calcular la funddbn de densidad de probabilidad suponemos que landiita del coloide esta dada por la ecoacile Smoluchowski sin
interacciones hidrodamicas. Usamos un campo homogeneo externo apropiado para cada momento. Los resultados, pdma ¢ funci
densidad de probabilidad de un cuerpo, predicen una fase axial tiftinarpara el dipolo, mientras que una fase biaxial tipoatera se

obtiene para el momento cuadrupolar.

Descriptores: Coloide; nematico; multipolo; funén de densidad de un cuerpo.
PACS: 82.70.Dd; 05.40.-a; 64.70.Md

1. Introduction In addition to the uniaxial nematic phase, there also ex-
ist biaxial nematics. One might be surprised to find a biaxial
Certain materials do not show a Single transition from SOlidphase ina system with an axia”y Symmetric Shape, since no
to I|qU|d, but rather a cascade of transitions inVOIVing NeWmolecular interaction in such a System can produce a macro-
phases. The symmetry properties of these phases are igcopic ordering that is less symmetric than the molecules
termediate between those of a liquid and those of a crystaihemselves. The second macroscopic axis must then have an
These materials are called liquid crystals. These are systengkternal cause for axially symmetric systems. On the other
in which a liquid-order exists in at least one direction of spacenand, a self-assembly in a biaxial nematic phase may be ex-
and in which some degree of anisotropy is present [1-3].  pected for molecules that are not (not even effectively) axi-

The simplest and best known liquid-crystalline phase isally symmetric. Most of the known biaxial nematics are mix-
nematics, which has no long-range positional order, but doegires of rod-like and plate-like molecules [2, 9]. This biaxial
exhibit orientational order. In nematic liquid crystals the phase has been questioned, and evidence has been found that
molecules are, on average, aligned with their symmetry axeghe mixture undergoes a transition to two coexisting uniax-
parallel to each other. A preferred directioris thus defined,  jal phases rather than a single biaxial phase [10, 11]. Using
called the nematic director. computer simulations, Ibarra-Avalos et al have found a biax-

In recent years, colloidal dispersions in nematic liquidial phase for a quadrupolar colloid, at high density and low
crystals have emerged as a novel type of soft matter [4]. Aemperature, in the absence of an external field [12]. Another
important example of soft material which has this behavior ismportant example in which biaxiality does play an impor-
the multipolar colloids, that is, their structure and propertiesant role is in tumbling nematics in a shear flow of ellipsoidal
are easily changed by temperature, composition, or externaholecules, for intermediate and large shear rates [13]
fields or flows. Interacting dipolar hard spheres self-assemble There are, in principle, three possibilities that may lead
in a ferroelectric state, at high density and coupling strengthso the spontaneous formation of a one-component biaxial ne-
which is an axial nematic ferroelectric phase [5,6]. Klapp andmatic phase:

Patey have also shown the possibility of obtaining an induced
ferroelectric state which is driven by an external field [6], for
high density and low coupling strength. Recent experimental b) strong correlations of molecules leading to aggregates
results have shown in situ that a ferrofluid self-assembles in of molecules that have no uniaxial symmetry and,
chains at low densities and high coupling strength [7], which
was predicted many years ago by de Gennes and Pincus [8].
When vitrified in a permanent magnetic field, these chain8ecause many of the applications of liquid crystals are re-
align and form thick elongated structures, also forming arlated to their ability to respond strongly to the presence of an
axial phase [7]. However, this vitrified phase is not a nematiexternal field, in this work the discussion is restricted to the
phase because the colloid also exhibits a positional order. third possibility.

a) a molecular symmetry that is not (effectively) uniaxial,

c) the application of an external field.
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Since the multipolar colloidal suspensions present a riclwhere @, (r™,d") and @z x7 (W) are the interparticle
variety of phases as liquid crystals, in this work we studypotential and the external ordering field potential, respec-
the response of dilute colloids of hard-sphere particles withively. We assume that the former is given by the sum of the
asymmetric coupling interactions driven by an external field.interparticle potentials for isolated pairs of particles (pairwise
The idea is to analyze phases which exhibit a certain degrezdditivity approximation). For particles with no internal rota-
of orientational order, between liquid and crystal, in analogytion, and which are in their ground electronic and vibrational
with liquid crystals. We analyze the case in which the orderedstates, the pair potential is assumed to depend only on the
states reached are nematic-like, that is, they show alignmeirterparticle separation vecter=r; — rs, and on particle
with the nematic director, which in this case corresponds t@rientationsu; andu, [18]. For the linear dipole moment

the direction of the external field. we have
The multipolar colloids are studied by combining ideas
about liquid crystals with colloidal theory. Some of the most ¢P(riy,tp) = > u'?(r) )
important quantities used to describe the ordering in dilute mimzm
colloids are the one- and two-body probability density func- x C(112,mymam)Y, Y2, Yoo

tions [14]. For computing these density functions, it is as-
sumed that the dynamics of the colloid are given by thewhere C(112,m;mqm) is the Clebsch-Gordan coefficient,
Smoluchowski equation [15-17]. Because we have in mind’},, = Yi,,, (1;) is the spherical harmonic and'?(r) is
dilute colloids, the hydrodynamic interactions are neglectedgiven by

Thus, the probability density functions will be equilibrium

solutions of the Smoluchowski equation. W2 (r) 4 87 p? 3)

T\l =% 3

To describe the nematic-like phase in a dipolar and 15 r3
quad_rupolar colloid driven by an e>_<terr?al field, we _conmderwherer — |r| and . is the dipole moment. For the linear
the simplest homogeneous tensor field in each multipole [18

) ) Quadrupole moment we have
We show that these tensor fields lead us to an axial nematic-
I!ke phase for the.dlpolar colloid, whereas a b|§X|aI nematic- ¢ (r, 4y, 1p) = Z ) (4)
like phase is obtainde for the quadrupolar colloid.

In Sec. 2 the colloid, dipolar and quadrupolar, as well as T
the appropriate external homogeneous tensor fields for each x (224, mymam)Yay,, Yo, Yim,
multipole moment, are defined. In Sec. 3 the one- and tWOWhereu224(r) is given b
body probability density functions solving the equilibrium 9 y
Smoluchowski equation are computed. We also provide the 8t [14n ©2

. . . . . . . 224
approximations used in this work in order to obtain a descrip- u™(r) = SV 3 5
tion up to linear order in density and fourth order in coupling
strength. In Sec. 4 using the one-body probability densityand © is the quadrupole moment. The information of the
function, results for dipole and quadrupole moments are precarrier solution is contained in each moment.
sented. Different phases for each moment are predicted. An For the external ordering field potentidlzxo(a) is
axial phase is predicted for the dipolar colloid, whereas a biconsidered
axial phase for the quadrupolar colloid is predicted. Section 5

N
offers some concluding remarks. dpxr() = Z oML (W), (6)
=1

mimasm

®)

2. Multipolar colloid driven by a field where¢? L.(4;) is the potential interaction between the ex-

In order to study the physical consequences of linear multi:[eg::l ordering field and thth particle. For the dipole mo-

polar colloids driven by an external field, in this section we Ment
define the system as well as the corresponding tensor field for =~ ~

Y ) SP gten Ppxr (W) = —pt; - EP, @)
each moment. Let us consider a colloidal suspension of hard-

spherical particles with a linear dipole or quadrupole momenfyhereEP — Ek is the external homogeneous field, afig

embedded at the center of the particle in a carrier solutiong the field strength. For the quadrupole moment

The configuration of the suspension can be denoteddiy a

dimensional vectotr”, ") with 3N dimensional vectors Q (v _ 1o VEQ 8
¢EXT(ul> 3Qz- s ( )

rV = (ry,...,ry), 0¥ = (Uy,...,dy), wherer; andi;

give, the position of the center and the direction of the mum‘whereQi is the traceless quadrupole moment tensor defined
pole moment of particlé respectively. The potential energy by

of the multipolar colloid has the form

O . .
oV, @V) = @pp(r, GV) + Ppxr@Y), (1) Q; = 5 (3wt — ), ©)

7
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whereu;u; represents the dyadic product ahds the unit  ternal field, which can be written as

tensor. In Eq. (8)E? = Eyzk is the external field, so that PO ) — oo Bbmxr(n) 12
VE® = Eykk is a constant gradient field. In both cases an 1) = cre ' (12)
electric field is used; for the dipole a constant field is usedThis one-body equilibrium pdf is also a solution for the
whereas for the quadrupole the electric field is linear inthe  Smoluchowski equation considering non-interacting colloids
direction. The simplest external ordering tensor field is choin the presence of the external field(r,u;, ;) is the pair
sen at each moment, inasmuch as this is sufficient for obtairgorrelation density function, which is approximated by

ing nematic-like phases in each case.

g(r,uy, ) =1 — Boprp(r,uy,uy) + - - (13)
) ) In the thermodynamic limit, the normalization constant
3. One body density function ¢ = V?, while ¢; depends on each multipole. For the dipole

t t
The reducedn-body probability density function (pdf) moment we ge

P,(r",u™) can be obtained from theN-body pdf P = ii7
Py (e, 4) by integrating out all but» of the N vari- 4m SinhEgp
ables. Thus we find a hierarchy of equations of motion forwhereEj, = SuEy is the reduced field strength aBtnhz
the reduced pdf, which makes them impossible to solve withis the hyperbolic sine. For the quadrupole moment we get

(14)

out some approximation which terminates the hierarchy [16]. o5
This work considers values up to = 2, since the great- Q 1 5
. . oy = —, (15)
est quantities we measure experimentally can be expressed /73 B fi [E,
in terms of one-body or two-body pdf's. Due to the hi- rfily =%

erachy, the equation of motion fd?, (r",u") depends on where the reduced field strength is defined:gs = 0 Eo
P, 1 ("t 4nth); therefore this hierachy is truncated, con- and Er fi[z] is the imaginary error function.
sidering until two-body, neglecting contributions of three-  In using Eqg. (13), the effect of the external field on
body. Consequence, the equation of motion for the one-body(r, u;, us) is neglected, because this quantity is nothing
depends on the two-body pdf. Thus, we must solve the onanore than the equilibrium conditional pdf for the position
body pdf consistently with the two-body one. The physicalr; andry of two particles with prescribed orientatiofig
reason for this is that, as we shall see, if we only consider thandu, for linear order in density. The assumption here is
equation of motion for the one-body pdf, neglecting the two-that the effect of an external field on positional correlations
body pdf, then we are not taking into account the presence 6 much less pronounced than its aligning effect on the one-
the other particles in the colloid. body equilibrium pdf. From the results obtained by Patey
The dynamics of the colloid are described by ffibody  and Klapp [6], it is observed that in the case of dipolar parti-
Smoluchowski equation valid in the overdamped limit, that iscles for low density, a high reduced field strength is necessary
for timest > tp, wheretz is Brownian time [15, 16]. This to induce orientational order, whereas for high density a low
is the equation for thévV-body pdf of the phase space coor- external field strength is necessary. Consequence we believe
dinates for the multipolar colloid. Its integration, neglecting that for the values of density considered in this work, for both
hydrodynamic interactions, leads to the following equationmultipoles, a high external field is required so that the colloid
for the two-body pdfP, (r,u;, Us) in the equilibrium state: will undergo certain ordering; this means that our approxi-
mation in Eq. (13) is reasonable for low values of the field.

0= {2D§V§ + Dl (ﬁf + f{%) +28DTV, - [V, éup) Comparing with the results of Patey and Klapp, we feel that
the approximation given by Eqg. (13) is reasonable for values
i [ﬁl . (ﬁlqup) TR, (§2¢MP)} up to £ 3 14. As we shall see below, the main predictions
of this work are for values which lie in this range.
+ [ﬁq : (§1¢EXT) Ry (§2¢EXT)} } In order to compute the one-body equilibrium pdf, ftie
body equilibrium Smoluchowski equation again is integrated.
x BDEPy (r, 1y, Uy) . (10)  Integrating this we obtain the following equation By (u):

Here DI and D{ are the translational and rotational diffu- 0= {Ef — pBR; - Pf)(ﬁ1)/dﬁ27}(ﬁ1, Uz) Py (42)
sion coefficients, respectively, of a single non-interacting col-
loidal particle.s is the thermal energy anfl. . .=uxVy. .. 5 —~

: : . ) : Q--e : o] PPL(T), (16
is the gradient operator in the orientation space. The solution HORy - [Radman] (1 (@), (16)

for Eq. (10) is where p is the density of the colloid. To write Eq. (16),
Eg. (11) is used in the second term [16]. The torque
7 (U, U is given by

where PP (1) is the one-body equilibrium pdf for a non- 7 (81, o) = —/dr |:§1¢]VIP:| g(r, T, 02).  (17)
interacting colloid, dipolar and quadrupolar, driven by an ex- ’ T

Py(r, 1y, 6z) = Py (W) Py (G2)g(r,ar, d2),  (11)
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It is observed in Eqg. (16) that if the two-body pdf is ne- where p;(cos ) is the Legendre polynomial of ordér In
glected [Eg. (11)], then this becomes the equation for a onekq. (22), the coefficients; are given by
body pdf in presence of the external field, that is, without
coupling between particles. o = /dﬁpl(cos 0) Py (cos ). (23)
It is assumed that the solution of Eq. (16) is given by a

spherical harmonic series To compute they, coefficients for each moment consid-

ered, we substitute the expansions Eqg. (22) and (20) into

i) = Z Z aszli,, (18) Ea. (16). By equating coefficients of the same Legendre poly-
=0 p——1 nomial order, we gety; = o;(vip=0); and finally,~;, coeffi-
cients are computed using Eqg. (21). General expressions for
where the coefficients are given by the first two coefficients; in the expansion and foy,—, are
provided in the Appendix, for both moments. We do not re-
ap = /dﬁlPl(ﬁl)Yl;l. (19)  port all the expressions because nothing is learned from them
and they are lengthy. Terms up to 14 are considered for the

dlpole and up to 12 for the quadrupole. Observing the behav-
or of the one-body equilibrium pdf, we believe that it must
be sufficient to give the essential features correctly, because

In evaluating the integral in Eq. (16), we expand the entire
integral in a spherical harmonic series also. Hence

oo 1 the peaks presented do not change their position with the dif-
Z Z pYih = pBR: - PY(41) ferent number of terms in the expansion. Itis hard to say any-
1=0 p——1 thing about the convergence of the expansion of Eq. (22) with

increasing the reduced field strength. To have an idea about
X /dﬁg?(ﬁl, u,) P (liz), (20) this convergence with increasing, the difference between two
consecutive terms of the expansion is computed. Compar-
with ing these differences, we observe whether the difference de-
creases or increases when subsequent pairs are considerec
-3 / dt, Yy R, T_he reduced field strength is increas_ed until the consequtive
P differences no longer decrease, but increase. The maximum
values of the reduced field strength are approximat&lfor
: [Pf(ﬁﬂ/dﬁz?(ﬁhﬁﬁpf)(ﬁz) . (21)  the dipole ands0 for the quadrupole.
As an application of the approach developed here, the
The integral in Eq. (17) is well defined only after the induced-assembly in dipolar and quadrupolar colloids is de-
boundary conditions are specified. For the case of the dipolgcribed in the next section, considering the system as a func-
moment, we consider an (infinite) sample surrounded by &on of the external reduced field strength, for fixed density
conductor. Such conditions are often applied (approximatelyfnd multipole moment strength.
in computer simulations [19] and have been used in integral
studies [20] and density functional theory treatments [21] L
of dipolar spheres as well. These boundary conditions arg' Nematic-like phase
a reasonable choice because, for example, they elimina
depolarization fields which tend to favor domain structures
rather than the homogeneous orientational order considere
The boundary conditions are implemented using the so-calle
mean reaction field [6]. Similar conditions are used for th

quadrupole moment. _ eter of the colloidal particle, and the dipole and quadrupole
In induced nematics, the one-body equilibrium pdf mMust ,oments are scaled as follows*2 = Bu2/o3(= 0.40) and
be invariant under rotation about the direction of the d|rector®*2 302 /5%(= 0.40), respectively.

(external field) [14]. Thereforel’; (u,) has to depend only

" @ betw h t directi dth ‘ | We first discuss briefly the case of non-interacting dipolar
on the angl&’ between the moment diréction and the externa, ., guadrupolar colloids driven by an external ordering field.

ordering homogeneous field direction. Hence, the EXpansiog, analyze this case, we consider the one-body equilibrium
in spherical harmonics Eg. (18) reduces to a Legendre poly: df, given by Eq. (12), which is the equilibrium solution of

nomial expansion, because this is the suitable basis set for t 3 . : :
e Smoluchowski equation for one-body neglecting the two-
external field chosen [Egs. (7) and (8)]. Therefore, Eq. (18)oody pdf contribution. In the non-interacting case the one-

can be written as body equilibrium pdf is an exponential function of the exter-
nal potential with its appropriate normalization constant. For

1 (cos 6) Z a;py(cosd), (22)  the dipole moment, the external potential is given by Eq. (7)
and the normalization constant by Eq. (14), whereas for the

tf%ms section presents results for colloids that have a low
tructure in the absence of the external ordering field, that
% for low density and low multipole moment strength as
eII Standard scaled variables are used for the density,
= po(= 0.005 for both moments) where is the diam-
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quadrupole moment they are given by Egs. (8) and (15), re- o2} > T % % o2
spectively. In the case of the dipole, its one-body equilib-
rium pdf, as a function of the external reduced field strength, 020 1 Jo20

presents two peaks, &t= 0 and2x. Therefore it predicts an
axial phase, with all the dipole moments parallel to the exter-
nal field. For the quadrupole moment, the one-body equilib-
rium pdf predicts an axial phase also. In this case, the equilib- o~
rium pdf, as a function of the external reduced field strength, ~ *™
presents three peaks,fat 0, # and2x. The difference here,
compared with the dipole moment, is that we now have par- 0.05 - 100
allel and antiparallel quadrupole moments in the direction of
the external field. Both moments present an axial nematic- 0.00 0.00
like phase when a colloid is driven by an external ordering o 1 2z 3 s 5 6
field without taking into account the interaction between par- 0
ticles. It is importgnt to note that both ordered phases, fOIi:IGURE 2. One-body probability density function versésfor
each moment, are independent of the value of the external rg; q,adrupolar colloid for differentd;,: W 11, @ 12, 4 13,
duced field strength, that is, the same phase is obtained fgjnqvy 14.
low and high values of the field; the difference is only in the
height of the peaks. o , , .
The situation is clearly more complicated with interact- of[her IS allgn_ed perpendlcularly. Contrary to non-mtera(_:tlng
ing particles. By computing the one-body equilibrium pdf, dlpolar_ colloids, the dipole moment now presents antipar-
we obtain a nematic-like phase for both reduced momentg"”eI alignment. In Fhe same manner,_the quadrupole mo-
also, as in the non-interacting case. From the results Odpent pr.esents an orle_ntat_|on chqnge with respect tolthe non-
tained in the last section, two different nematic-like phaseénteractlng colloid, Wh'Ch IS how'In a perpendicular, instead
are observed in both moments, depending on the extemg(aparallel and antiparallel, alignment.
reduced field strength. This difference is clearly observed In Figs. 1 and 2 our main prediction is observed, namely,
in the quadrupolar colloid. Considering small values of thethe values of reduced field strength for which each moment
reduced field strength, the one-body equilibrium pdf for thewould have a phase transition. For the dipole moment, this
dipole presents one peakin= 7, as can be seen in Fig. 1. value lies between 8.13 and 8.18, whereas for the quadrupole
This means that the dipole moment is antiparallel to the exmoment it occurs between 12.50 and 12.55. It is important
ternal field. In the case of the quadrupole momBr(icos§) ~ to note that these transition phase values of reduced field
presents two peaks, fér = 7/2 and 37 /2, which can be strength do not present a quantitative change when different
seen in Fig. 2. The directions of the quadrupole moments aréumbers of terms are considered in the expansion [Eq. (22)].
perpendicular to the external field direction. In both cases, For high reduced field strength, the ordered phase reached
we observe that the influence of the external field togetheis different, mainly for the quadrupole moment. For the
with the interactions between macroparticles leads to an axidipole, three peaks are observed, in the one-body pdf: at
ally symmetric orientational order. The difference is that oneg = 0, = and 2r, as is shown in Fig. 3. Thus, an axially sym-
is aligned parallel to the direction of the field, whereas the metric phase with parallel and antiparallel dipole moments in
the direction of the field is obtained. For the quadrupolar col-

0.15 |-

L L S S S S loid, P, presents five peaks: at= 0, 7/2, 7, 37/2 and2m,
Rl as shown in Fig. 4, and corresponds to a biaxially symmet-
14 - N 14 ric phase, which has quadrupole moments parallel, antipar-
w2l T o2 L wa 1.5 allel and perpendicular to the direction of the external field.
Iy vAO*'Av 1 Therefore, the results predict a different nematic-like phase
T ooffbn, e, A 10 for the dipolar and quadrupolar colloids: for the former an ax-
fa 1114 ™ 1 . .
o ot  » Hos ial phase, whereas for the latter, a biaxial phase. From the re-
sl o0 08 vr % los sults, Figs. 1-4, a cooperative effect in each moment for inter-
1 1 ] acting colloids is observed. Therefore, both moments present
04 - i ) 104 first an ordered transitional phase, which could be a pretran-
02 L 1o sitional phase, and finally they reach an ordered nematic-like
phase. This pretransitional phase is dominated by the effec-
00 00 tive coupling strength, driven by the external field, whereas
0 1 2 3 4 5 6 the final phase is a cooperative effect between the reduced
0 field strength and the effective coupling strength. In fact, in
FIGURE 1. One-body probability density function versagor a Eqg. (16) itis possible to define an effective coupling potential
dipolar colloid for differentE;,: M6, @ 7, A 8, andv 9. by using the second term in this equation.
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5 : : . : i —5 5. Concluding remarks

We develop the easiest model for computing the induced-
- assembly of dipolar and quadrupolar colloids up to linear
1 order in density, and fourth order for the multipole moment
3 . e E strength. We reported results for both multipoles as a func-
a . ; tion of the reduced field strength, at fixed density and cou-
4> pling strength. Using the ideas of colloidal theories to de-
d scribe the order reached by the multipolar colloids, we com-
" pute the one-body equilibrium pdf, which is assumed to
be the equilibrium solution of the one-body Smoluchowski
~ . equation. Inthis approach, hydrodynamic interactions are ne-
or 'ﬂu' L rs vy ﬁ' 1° glected, a reasonable assumption for linear order in density.
The two-body equilibrium pdf is a necessary ingredient in
solving the one-body Smoluchowski equation. To solve this
FIGURE 3. One-body probability density function versagor a equation consistently, it is also assumed that the two-body
dipolar colloid for £, = 30. function is also provided by the Smoluchowski equation, ob-
taining this input as its equilibrium solution also.
Considering a homogeneous electric field for the dipole

0 1 2 3 4 5 6
0

o 1 2 3 4 5 6 moment and a constant gradient electric field for the
035 T ' T —%%® quadrupole, an axial nematic-like phase is obtained for the
030 | - = Jo3o former, whereas for the latter, we get a biaxial nematic-like
s e 1 phase. These ordered phases are also observed in dipolar an
oz 1°% quadrupolar colloids at high densities and coupling strengths
020 | .- -t Jo20 with a self-assembly process. We believe that this feature of
o _ . T the quadrupolar colloid is due to the fact that it is not effec-
0o o015 L] - [ ] - 0.15 . . . . . . .
] tively uniaxial. Induced assembly in non-interacting colloids
010 b = = . s = Jot0 is also observed; the results show aligned phases which are
005 '1 . . _"_ . . :0'05 axially .symme'tric. We bellieve thgt the difference between
. P = ] a non-_mteractmg and an interacting co_IIO|d is due to a co-
000 - m gyl WL, W W W0 operative effect between the reduced field and the coupling
P e T St S ST S 0 (PPN strength.
0 1 2 g 5 6 We note that this approach can be applied for multipole

moments of higher order also. The results reported here can
FIGURE 4. One-body probability density function versdsor a e used as a reference for other theories, computer simula-
quadrupolar colloid fos,, = 30. tions or experimental results. Thus, the idea is to take this
model as a starting base and to improve it, considering, for

From Figs. 1-4 one can see that the one-body equilipinstance, concentrated colloids, in which the pairwise addi-

rium pdf takes negative values between the peaks, which jive approximation does not hold, a feature that represents a
of course unphysical. This is a numerical error due to the apt€@l challenge.

proximation in terms of the Legendre polynomials, Eq. (22).

The physical value is the average which can be seen in theggcknowledgement

figures going to zero between the peaks. On the other hand, it

is observed from these Figs. (1-4) that the qualitative descripAfe are grateful to A. Gil-Villegas, from the Universidad de
tion of the alignment reached for the colloids is not affectedGuanjuato, Mxico, for a fruitful discussion on liquid crys-

by this numerical error. tals.

Considering self-assembly at high density and coupling
strength or at low density driven by an appropriate field, itisA ~ Appendix
observed that it is possible to obtain a similar phase in dipolar
and quadrupolar colloids: for the former, an axially symmet-In this appendix we provide the expressions for the first two
ric phase, whereas for the latter a biaxially symmetric phasey; coefficients in the expansion Eq. (22) in terms ofife.o
Our physical scheme of the biaxial phase reached is that eoefficients.
guadrupolar colloid is not an effectively axially symmetric For the dipole, the first two coefficients are;
system, because of the linear order of the quadrupole consi@nd a.; therefore we haveq? = FDy; + p*F D15, and
ered. OLQD = FDo; + p*FDQQ.
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The coefficientd’D;; are given by
7 EO0LFDI[EO}]

FDy,[E0,) = — :
nlE0p] 2v3r  FD2[E0})]
FDy[E0L] = 7 FD1[E0} v R[E0L] | V15 EOL F D3[E0}]v5[E0})] \f E02 F DA[EOH /R E0%)]
DI ST FD[EOY)] 2 FD2[E0})] 12V 3 FD2[E0%)]
V3 B0 FD5[E0 W RIE0Y] | 7 [11 B0 FD6[E0)VRE0L] | 1 [13 B0 FDT[E0L IR [E0)]
20 FD2[E0})] 30V 3 FD2[E0})] 2V 3 FD2[E0})]

N 17V/5 E0;S FD8[EOL VR [E0}] | 119 [17 E0F FDI[EO} v [E0})
8 FD2[E0%)] 1656 V 3 FD2[E0%)]

595 [19 B0 FDI10[E0S WA [E0S]  119v7 E0 FD11[E0;|vR[E0%]

138V 3 FD2[E0%)] 2530 FD2[E0%)]
357 | 3 EOHOFDI12[E0]vH[E0%] 595 E0HIFDI13[E0% v [E0%)
44\ 23 FD2[E03)] 3588/3 FD2[E0%))
1479 B0 030[E0p] | 17 [29 E0p3q{)0[E0})]
598  FD2[E0}) 690V 3 FD2[E0%]

3 [5 E022FD3[E0%)]
FDy[E0,] = o4 - —L2————D-
21[E0p)] 2\/; FD2[E0;]

3v15 B0, FD3[E0p]vRIE0;] 15 FD3[E0RWRIE0L] 5 E0LFDAE0,]vR[E0}]
2 FD2[E0%] 2 FD2[E0%] 12v/35 FD2[E0%]

FDqs|E0}] =

9  EOFFD5[E0LvR[E0L] 14 [11 EOF FDG[EOLWR[E0L] V65 B0 FDT[E0L Y& [E0)]
125 FD2[E0%)] 12V 5 FD2[E0%)] 2 FD2[E0})]

17(56925)v/3 E0} FDS[E0LWR[E0,]  7(55)(17)y/5(17) E03S FDI[EO0;, W [E0})
91080 FD2[E0%)] 91080 FD2[E0%)]

)(12)(275)/5(19) E03 FD10[E0L WG [E0S]  17(7)(12)(3)/5(21) B0 FD11[E0) R [E03)]
91080 FD2[E0%] 91080 FD2[E0%]

~ 17(12285)v/23 B0 FD12[E0}) J4110[E0}]  17(11)(175) B0 FD13[E0 |v{ [E0p]
394685 FD2[E0%)] 39468v/5 FD2[E0%)

_ 17(11)(2)(1305) V3 EOF i [EOp]  17(11)(13)v/29 B0y [E0}]
39468v/5 FD2[E0p] 39468v/5 FD2[E0L]

where they/J[E0%] coefficients are given by

st 1 B0

S Vg nimon e

D *
FE = —
’Yzo[ 0p) 135V 2

iy [E0p) (FRIE0D] + FRIE0D))

The functionsE' DI[EO%)], F/5 [E0%)] andF}j’ [E07,] are lengthy expressions which we do not provide explicitly.
For the quadrupole, the first two coefficients ascanday, because all the odd coefficients are zero. Therefore, we have

af = FQa + p*FQu,

and

af = FQu + p*FQuo
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INDUCED NEMATIC-LIKE PHASE IN DIPOLAR AND QUADRUPOLAR COLLOIDS 27
The coefficientd’Q);; are given by

17v/5 EO) FQ1[E0]
2 FQ2[E0]

FQan[E0g] = —

FQulE0] @FQl[EOZQ]%%[EOZg] 85(513513) E0%5 FQ3[E0%] 5[ E0%)

21500] = 5 FQ2[E0)] 255255v/5 FQ2[E0)]

85(4)(429)/13 B0 FQA[EOL]v6h [E05]  85(4)(2)(3289)v17 EOS FQ5[E0) | vsh [ E0%)]
255255v/5 FQ2[E07)] 255255/5 FQ2[E0})]

85(4)(2)(600)(13)v/21 B0z FQO[E0L |50 [E0S]  85(4)(2)(600)(594) OGS0 [E03)]
255255./5 FQ2[E0})] 255255./5 FQ2[E0p]

and

171 E0¢ FQ3[E0)]

2T FQ2[E0;]

171 B0, FQ3[E0 i [E0,] 171 FQIIE0L]FQ3[E0S ]G [E0))]

25 FQ2[E0})] 4 FQ2[E0)]

 420V/13 E0G FQI[E0S| FQAE0S NG [E0g]  2(3280)v/I7 EOG FQIIE0S]FQ5[E0S e [E0p)
3003 FQ2[E0)] 3003 FQ2[E0)]

2(600)(13)v/21 EOZ FQI[E0LFQBIE0, e [E0,]  2(600)(594) B0 FQI[E0S]y %, [E0y)]
B 3003 FQ2[E0)] ~ 3003 FQ2[E0)] ’

FQu [EO*Q] =

FQu[EOg] =

where theyl% [E05)] coefficients are given by

§ 32 [I1+1) O*E0; . ) 1. 3 .
VRlE0G] = —— O (3F5,[B0) | —Fsy[E05)] - gFﬁ[EOQ] + 5Fo%[E0Q]

315 6 .+ [EO0:
Erfil\) —*]

31

+V6FZ [E0)) (wFQ%[EoQ] + gFﬁ [E03)] — FO%[EOQO >

2
The functionsFQI[E0F,], ngo [E0%], Flffl [E07,] andF;7[E07,] are also lengthy expressions and are not provided explic-

itly.
We do not give the explicit expressions for the other coefficients, but they will be provided by the author upon request.
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