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Induced nematic-like phase in dipolar and quadrupolar colloids
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We compute the one-body probability density function of a dipolar and a quadrupolar colloid driven by an external ordering field. Colloids
with low structure in the absence of the external field, and with axially symmetric coupling potential are assumed. To compute the one-body
probability density function, it is assumed that the dynamics of the colloid are given by the Smoluchowski equation without hydrodynamic
interactions. We use an appropiate homogeneous external field for each moment. The results for the one-body probability density function
predict an axial nematic-like phase for the dipole moment, whereas a biaxial nematic-like phase is predicted for the quadrupole moment.
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Calculamos la densidad de probabilidad de un cuerpo de un coloide dipolar y uno cuadrupolar controlados por un campo externo ordenador.
Consideramos un coloide con poca estructura en ausencia del campo externo y con potencial de interacción axialmente siḿetrico. Para
calcular la funcíon de densidad de probabilidad suponemos que la dinámica del coloide esta dada por la ecuación de Smoluchowski sin
interacciones hidrodińamicas. Usamos un campo homogeneo externo apropiado para cada momento. Los resultados, para la función de
densidad de probabilidad de un cuerpo, predicen una fase axial tipo nemática para el dipolo, mientras que una fase biaxial tipo nemática se
obtiene para el momento cuadrupolar.

Descriptores: Coloide; nematico; multipolo; función de densidad de un cuerpo.
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1. Introduction

Certain materials do not show a single transition from solid
to liquid, but rather a cascade of transitions involving new
phases. The symmetry properties of these phases are in-
termediate between those of a liquid and those of a crystal.
These materials are called liquid crystals. These are systems
in which a liquid-order exists in at least one direction of space
and in which some degree of anisotropy is present [1–3].

The simplest and best known liquid-crystalline phase is
nematics, which has no long-range positional order, but does
exhibit orientational order. In nematic liquid crystals the
molecules are, on average, aligned with their symmetry axes
parallel to each other. A preferred directionn̂ is thus defined,
called the nematic director.

In recent years, colloidal dispersions in nematic liquid
crystals have emerged as a novel type of soft matter [4]. An
important example of soft material which has this behavior is
the multipolar colloids, that is, their structure and properties
are easily changed by temperature, composition, or external
fields or flows. Interacting dipolar hard spheres self-assemble
in a ferroelectric state, at high density and coupling strengths,
which is an axial nematic ferroelectric phase [5,6]. Klapp and
Patey have also shown the possibility of obtaining an induced
ferroelectric state which is driven by an external field [6], for
high density and low coupling strength. Recent experimental
results have shown in situ that a ferrofluid self-assembles in
chains at low densities and high coupling strength [7], which
was predicted many years ago by de Gennes and Pincus [8].
When vitrified in a permanent magnetic field, these chains
align and form thick elongated structures, also forming an
axial phase [7]. However, this vitrified phase is not a nematic
phase because the colloid also exhibits a positional order.

In addition to the uniaxial nematic phase, there also ex-
ist biaxial nematics. One might be surprised to find a biaxial
phase in a system with an axially symmetric shape, since no
molecular interaction in such a system can produce a macro-
scopic ordering that is less symmetric than the molecules
themselves. The second macroscopic axis must then have an
external cause for axially symmetric systems. On the other
hand, a self-assembly in a biaxial nematic phase may be ex-
pected for molecules that are not (not even effectively) axi-
ally symmetric. Most of the known biaxial nematics are mix-
tures of rod-like and plate-like molecules [2, 9]. This biaxial
phase has been questioned, and evidence has been found that
the mixture undergoes a transition to two coexisting uniax-
ial phases rather than a single biaxial phase [10, 11]. Using
computer simulations, Ibarra-Avalos et al have found a biax-
ial phase for a quadrupolar colloid, at high density and low
temperature, in the absence of an external field [12]. Another
important example in which biaxiality does play an impor-
tant role is in tumbling nematics in a shear flow of ellipsoidal
molecules, for intermediate and large shear rates [13]

There are, in principle, three possibilities that may lead
to the spontaneous formation of a one-component biaxial ne-
matic phase:

a) a molecular symmetry that is not (effectively) uniaxial,

b) strong correlations of molecules leading to aggregates
of molecules that have no uniaxial symmetry and,

c) the application of an external field.

Because many of the applications of liquid crystals are re-
lated to their ability to respond strongly to the presence of an
external field, in this work the discussion is restricted to the
third possibility.
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Since the multipolar colloidal suspensions present a rich
variety of phases as liquid crystals, in this work we study
the response of dilute colloids of hard-sphere particles with
asymmetric coupling interactions driven by an external field.
The idea is to analyze phases which exhibit a certain degree
of orientational order, between liquid and crystal, in analogy
with liquid crystals. We analyze the case in which the ordered
states reached are nematic-like, that is, they show alignment
with the nematic director, which in this case corresponds to
the direction of the external field.

The multipolar colloids are studied by combining ideas
about liquid crystals with colloidal theory. Some of the most
important quantities used to describe the ordering in dilute
colloids are the one- and two-body probability density func-
tions [14]. For computing these density functions, it is as-
sumed that the dynamics of the colloid are given by the
Smoluchowski equation [15–17]. Because we have in mind
dilute colloids, the hydrodynamic interactions are neglected.
Thus, the probability density functions will be equilibrium
solutions of the Smoluchowski equation.

To describe the nematic-like phase in a dipolar and
quadrupolar colloid driven by an external field, we consider
the simplest homogeneous tensor field in each multipole [18].
We show that these tensor fields lead us to an axial nematic-
like phase for the dipolar colloid, whereas a biaxial nematic-
like phase is obtainde for the quadrupolar colloid.

In Sec. 2 the colloid, dipolar and quadrupolar, as well as
the appropriate external homogeneous tensor fields for each
multipole moment, are defined. In Sec. 3 the one- and two-
body probability density functions solving the equilibrium
Smoluchowski equation are computed. We also provide the
approximations used in this work in order to obtain a descrip-
tion up to linear order in density and fourth order in coupling
strength. In Sec. 4 using the one-body probability density
function, results for dipole and quadrupole moments are pre-
sented. Different phases for each moment are predicted. An
axial phase is predicted for the dipolar colloid, whereas a bi-
axial phase for the quadrupolar colloid is predicted. Section 5
offers some concluding remarks.

2. Multipolar colloid driven by a field

In order to study the physical consequences of linear multi-
polar colloids driven by an external field, in this section we
define the system as well as the corresponding tensor field for
each moment. Let us consider a colloidal suspension of hard-
spherical particles with a linear dipole or quadrupole moment
embedded at the center of the particle in a carrier solution.
The configuration of the suspension can be denoted by a6N
dimensional vector(rN , ûN ) with 3N dimensional vectors
rN = (r1, . . . , rN ), ûN = (û1, . . . , ûN ), whereri and ûi

give, the position of the center and the direction of the multi-
pole moment of particlei respectively. The potential energy
of the multipolar colloid has the form

Φ(rN , ûN ) = ΦMP (rN , ûN ) + ΦEXT (ûN ), (1)

whereΦMP (rN , ûN ) andΦEXT (ûN ) are the interparticle
potential and the external ordering field potential, respec-
tively. We assume that the former is given by the sum of the
interparticle potentials for isolated pairs of particles (pairwise
additivity approximation). For particles with no internal rota-
tion, and which are in their ground electronic and vibrational
states, the pair potential is assumed to depend only on the
interparticle separation vectorr = r1 − r2, and on particle
orientationsû1 and û2 [18]. For the linear dipole moment
we have

φD(r,û1, û2) =
∑

m1m2m

u112(r) (2)

× C(112,m1m2m)Y 1
1m1

Y 2
1m2

Y ∗r
2m,

whereC(112,m1m2m) is the Clebsch-Gordan coefficient,
Y 1

1m1
= Y1m1(û1) is the spherical harmonic andu112(r) is

given by

u112(r) = −4π

√
8π

15
µ2

r3
, (3)

wherer = |r| andµ is the dipole moment. For the linear
quadrupole moment we have

φQ(r,û1, û2) =
∑

m1m2m

u224(r) (4)

× C(224, m1m2m)Y 1
2m1

Y 2
2m2

Y ∗r
4m,

whereu224(r) is given by

u224(r) =
8π

3

√
14π

3
Θ2

r5
, (5)

and Θ is the quadrupole moment. The information of the
carrier solution is contained in each moment.

For the external ordering field potentialΦEXT (ûN ) is
considered

ΦEXT (ûN ) =
N∑

i=1

φMP
EXT (ûi), (6)

whereφMP
EXT (ûi) is the potential interaction between the ex-

ternal ordering field and thei-th particle. For the dipole mo-
ment,

φD
EXT (ûi) = −µûi ·ED, (7)

whereED = E0k̂ is the external homogeneous field, andE0

is the field strength. For the quadrupole moment,

φQ
EXT (ûi) = −1

3
Qi : ∇EQ, (8)

whereQi is the traceless quadrupole moment tensor defined
by

Qi =
Θ
2

(3ûiûi − I), (9)
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whereûiûi represents the dyadic product andI is the unit
tensor. In Eq. (8),EQ = E0zk̂ is the external field, so that
∇EQ = E0k̂k̂ is a constant gradient field. In both cases an
electric field is used; for the dipole a constant field is used,
whereas for the quadrupole the electric field is linear in thez-
direction. The simplest external ordering tensor field is cho-
sen at each moment, inasmuch as this is sufficient for obtain-
ing nematic-like phases in each case.

3. One body density function

The reducedn-body probability density function (pdf)
Pn(rn, ûn) can be obtained from theN -body pdf
PN (rN , ûN ) by integrating out all butn of the N vari-
ables. Thus we find a hierarchy of equations of motion for
the reduced pdf, which makes them impossible to solve with-
out some approximation which terminates the hierarchy [16].
This work considers values up ton = 2, since the great-
est quantities we measure experimentally can be expressed
in terms of one-body or two-body pdf’s. Due to the hi-
erachy, the equation of motion forPn(rn, ûn) depends on
Pn+1(rn+1, ûn+1); therefore this hierachy is truncated, con-
sidering until two-body, neglecting contributions of three-
body. Consequence, the equation of motion for the one-body
depends on the two-body pdf. Thus, we must solve the one-
body pdf consistently with the two-body one. The physical
reason for this is that, as we shall see, if we only consider the
equation of motion for the one-body pdf, neglecting the two-
body pdf, then we are not taking into account the presence of
the other particles in the colloid.

The dynamics of the colloid are described by theN -body
Smoluchowski equation valid in the overdamped limit, that is
for timest À tB , wheretB is Brownian time [15, 16]. This
is the equation for theN -body pdf of the phase space coor-
dinates for the multipolar colloid. Its integration, neglecting
hydrodynamic interactions, leads to the following equation
for the two-body pdfP2(r,û1, û2) in the equilibrium state:

0 =
{

2DT
0 ∇2

r + DR
0

(
R̂2

1 + R̂2
2

)
+ 2βDT

0 ∇r · [∇rφMP ]

+
[
R̂1 ·

(
R̂1φMP

)
+ R̂2 ·

(
R̂2φMP

)]

+
[
R̂1 ·

(
R̂1φEXT

)
+ R̂2 ·

(
R̂2φEXT

)]}

× βDR
0 P2 (r, û1, û2) . (10)

HereDT
0 andDR

0 are the translational and rotational diffu-
sion coefficients, respectively, of a single non-interacting col-
loidal particle.β is the thermal energy and̂R. . .=û×∇û. . .
is the gradient operator in the orientation space. The solution
for Eq. (10) is

P2(r, û1, û2) = cP 0
1 (û1)P 0

1 (û2)g(r,û1, û2), (11)

whereP 0
1 (û1) is the one-body equilibrium pdf for a non-

interacting colloid, dipolar and quadrupolar, driven by an ex-

ternal field, which can be written as

P 0
1 (û1) = c1e

−βφEXT (û1). (12)

This one-body equilibrium pdf is also a solution for the
Smoluchowski equation considering non-interacting colloids
in the presence of the external field.g(r,û1, û2) is the pair
correlation density function, which is approximated by

g(r,û1, û2) = 1− βφMP (r,û1, û2) + · · · (13)

In the thermodynamic limit, the normalization constant
c = V 2, while c1 depends on each multipole. For the dipole
moment we get

cD
1 =

1
4π

E∗
0D

Si nhE∗
0D

, (14)

whereE∗
0D = βµE0 is the reduced field strength andSi nhx

is the hyperbolic sine. For the quadrupole moment we get

cQ
1 =

1
2
√

π3

√
E∗0Q

2

Erfi[
√

E∗0Q

2 ]
, (15)

where the reduced field strength is defined asE∗
0Q = βΘE0

andErfi[x] is the imaginary error function.
In using Eq. (13), the effect of the external field on

g(r, û1, û2) is neglected, because this quantity is nothing
more than the equilibrium conditional pdf for the position
r1 and r2 of two particles with prescribed orientationŝu1

and û2 for linear order in density. The assumption here is
that the effect of an external field on positional correlations
is much less pronounced than its aligning effect on the one-
body equilibrium pdf. From the results obtained by Patey
and Klapp [6], it is observed that in the case of dipolar parti-
cles for low density, a high reduced field strength is necessary
to induce orientational order, whereas for high density a low
external field strength is necessary. Consequence we believe
that for the values of density considered in this work, for both
multipoles, a high external field is required so that the colloid
will undergo certain ordering; this means that our approxi-
mation in Eq. (13) is reasonable for low values of the field.
Comparing with the results of Patey and Klapp, we feel that
the approximation given by Eq. (13) is reasonable for values
up toE∗

0 - 14. As we shall see below, the main predictions
of this work are for values which lie in this range.

In order to compute the one-body equilibrium pdf, theN -
body equilibrium Smoluchowski equation again is integrated.
Integrating this we obtain the following equation forP1(û):

0 =
{

R̂2
1 − ρβR̂1 · P 0

1 (û1)
∫

dû2
−→τ (û1, û2)P 0

1 (û2)

+βR̂1 · [R̂1φExt]
}

P1(û), (16)

whereρ is the density of the colloid. To write Eq. (16),
Eq. (11) is used in the second term [16]. The torque−→τ (û1, û2) is given by

−→τ (û1, û2) = −
∫

dr
[
R̂1φMP

]
g(r, û1, û2). (17)
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It is observed in Eq. (16) that if the two-body pdf is ne-
glected [Eq. (11)], then this becomes the equation for a one-
body pdf in presence of the external field, that is, without
coupling between particles.

It is assumed that the solution of Eq. (16) is given by a
spherical harmonic series

P1(û1) =
∞∑

l=0

l∑

p=−l

αlpY
1
lp, (18)

where the coefficients are given by

αlp =
∫

dû1P1(û1)Y ∗1
lp . (19)

In evaluating the integral in Eq. (16), we expand the entire
integral in a spherical harmonic series also. Hence

∞∑

l=0

l∑

p=−l

γlpY
1
lp = ρβR̂1 · P 0

1 (û1)

×
∫

dû2
−→τ (û1, û2)P 0

1 (û2), (20)

with

γlp = β

∫
dû1Y

∗1
lp R̂1

·
[
P 0

1 (û1)
∫

dû2
−→τ (û1, û2)P 0

1 (û2)
]

. (21)

The integral in Eq. (17) is well defined only after the
boundary conditions are specified. For the case of the dipole
moment, we consider an (infinite) sample surrounded by a
conductor. Such conditions are often applied (approximately)
in computer simulations [19] and have been used in integral
studies [20] and density functional theory treatments [21]
of dipolar spheres as well. These boundary conditions are
a reasonable choice because, for example, they eliminate
depolarization fields which tend to favor domain structures
rather than the homogeneous orientational order considered.
The boundary conditions are implemented using the so-called
mean reaction field [6]. Similar conditions are used for the
quadrupole moment.

In induced nematics, the one-body equilibrium pdf must
be invariant under rotation about the direction of the director
(external field) [14]. Therefore,P1(û1) has to depend only
on the angleθ between the moment direction and the external
ordering homogeneous field direction. Hence, the expansion
in spherical harmonics Eq. (18) reduces to a Legendre poly-
nomial expansion, because this is the suitable basis set for the
external field chosen [Eqs. (7) and (8)]. Therefore, Eq. (18)
can be written as

P1(cos θ) =
∞∑

l=1

αlpl(cos θ), (22)

wherepl(cos θ) is the Legendre polynomial of orderl. In
Eq. (22), the coefficientsαl are given by

αl =
∫

dûpl(cos θ)P1(cos θ). (23)

To compute theαl coefficients for each moment consid-
ered, we substitute the expansions Eq. (22) and (20) into
Eq. (16). By equating coefficients of the same Legendre poly-
nomial order, we getαl = αl(γlp=0); and finally,γlp coeffi-
cients are computed using Eq. (21). General expressions for
the first two coefficientsαl in the expansion and forγlp=0 are
provided in the Appendix, for both moments. We do not re-
port all the expressions because nothing is learned from them
and they are lengthy. Terms up to 14 are considered for the
dipole, and up to 12 for the quadrupole. Observing the behav-
ior of the one-body equilibrium pdf, we believe that it must
be sufficient to give the essential features correctly, because
the peaks presented do not change their position with the dif-
ferent number of terms in the expansion. It is hard to say any-
thing about the convergence of the expansion of Eq. (22) with
increasing the reduced field strength. To have an idea about
this convergence with increasing, the difference between two
consecutive terms of the expansion is computed. Compar-
ing these differences, we observe whether the difference de-
creases or increases when subsequent pairs are considered.
The reduced field strength is increased until the consecutive
differences no longer decrease, but increase. The maximum
values of the reduced field strength are approximately45 for
the dipole and50 for the quadrupole.

As an application of the approach developed here, the
induced-assembly in dipolar and quadrupolar colloids is de-
scribed in the next section, considering the system as a func-
tion of the external reduced field strength, for fixed density
and multipole moment strength.

4. Nematic-like phase

This section presents results for colloids that have a low
structure in the absence of the external ordering field, that
is, for low density and low multipole moment strength as
well. Standard scaled variables are used for the density,
ρ∗ = ρσ(= 0.005 for both moments) whereσ is the diam-
eter of the colloidal particle, and the dipole and quadrupole
moments are scaled as follows:µ∗2 = βµ2/σ3(= 0.40) and
Θ∗2 = βΘ2/σ5(= 0.40), respectively.

We first discuss briefly the case of non-interacting dipolar
and quadrupolar colloids driven by an external ordering field.
To analyze this case, we consider the one-body equilibrium
pdf, given by Eq. (12), which is the equilibrium solution of
the Smoluchowski equation for one-body neglecting the two-
body pdf contribution. In the non-interacting case the one-
body equilibrium pdf is an exponential function of the exter-
nal potential with its appropriate normalization constant. For
the dipole moment, the external potential is given by Eq. (7)
and the normalization constant by Eq. (14), whereas for the
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quadrupole moment they are given by Eqs. (8) and (15), re-
spectively. In the case of the dipole, its one-body equilib-
rium pdf, as a function of the external reduced field strength,
presents two peaks, atθ = 0 and2π. Therefore it predicts an
axial phase, with all the dipole moments parallel to the exter-
nal field. For the quadrupole moment, the one-body equilib-
rium pdf predicts an axial phase also. In this case, the equilib-
rium pdf, as a function of the external reduced field strength,
presents three peaks, atθ = 0, π and2π. The difference here,
compared with the dipole moment, is that we now have par-
allel and antiparallel quadrupole moments in the direction of
the external field. Both moments present an axial nematic-
like phase when a colloid is driven by an external ordering
field without taking into account the interaction between par-
ticles. It is important to note that both ordered phases, for
each moment, are independent of the value of the external re-
duced field strength, that is, the same phase is obtained for
low and high values of the field; the difference is only in the
height of the peaks.

The situation is clearly more complicated with interact-
ing particles. By computing the one-body equilibrium pdf,
we obtain a nematic-like phase for both reduced moments
also, as in the non-interacting case. From the results ob-
tained in the last section, two different nematic-like phases
are observed in both moments, depending on the external
reduced field strength. This difference is clearly observed
in the quadrupolar colloid. Considering small values of the
reduced field strength, the one-body equilibrium pdf for the
dipole presents one peak inθ = π, as can be seen in Fig. 1.
This means that the dipole moment is antiparallel to the ex-
ternal field. In the case of the quadrupole momentP1(cos θ)
presents two peaks, forθ = π/2 and3π/2, which can be
seen in Fig. 2. The directions of the quadrupole moments are
perpendicular to the external field direction. In both cases,
we observe that the influence of the external field together
with the interactions between macroparticles leads to an axi-
ally symmetric orientational order. The difference is that one
is aligned parallel to the direction of the field, whereas the

FIGURE 1. One-body probability density function versusθ for a
dipolar colloid for differentE∗

0D: ¥ 6, 7, N 8, andH 9.

FIGURE 2. One-body probability density function versusθ for
a quadrupolar colloid for differentsE∗

0Q: ¥ 11,  12, N 13,
andH 14.

other is aligned perpendicularly. Contrary to non-interacting
dipolar colloids, the dipole moment now presents antipar-
allel alignment. In the same manner, the quadrupole mo-
ment presents an orientation change with respect to the non-
interacting colloid, which is now in a perpendicular, instead
of a parallel and antiparallel, alignment.

In Figs. 1 and 2 our main prediction is observed, namely,
the values of reduced field strength for which each moment
would have a phase transition. For the dipole moment, this
value lies between 8.13 and 8.18, whereas for the quadrupole
moment it occurs between 12.50 and 12.55. It is important
to note that these transition phase values of reduced field
strength do not present a quantitative change when different
numbers of terms are considered in the expansion [Eq. (22)].

For high reduced field strength, the ordered phase reached
is different, mainly for the quadrupole moment. For the
dipole, three peaks are observed, in the one-body pdf: at
θ = 0, π and 2π, as is shown in Fig. 3. Thus, an axially sym-
metric phase with parallel and antiparallel dipole moments in
the direction of the field is obtained. For the quadrupolar col-
loid, P1 presents five peaks: atθ = 0, π/2, π, 3π/2 and2π,
as shown in Fig. 4, and corresponds to a biaxially symmet-
ric phase, which has quadrupole moments parallel, antipar-
allel and perpendicular to the direction of the external field.
Therefore, the results predict a different nematic-like phase
for the dipolar and quadrupolar colloids: for the former an ax-
ial phase, whereas for the latter, a biaxial phase. From the re-
sults, Figs. 1–4, a cooperative effect in each moment for inter-
acting colloids is observed. Therefore, both moments present
first an ordered transitional phase, which could be a pretran-
sitional phase, and finally they reach an ordered nematic-like
phase. This pretransitional phase is dominated by the effec-
tive coupling strength, driven by the external field, whereas
the final phase is a cooperative effect between the reduced
field strength and the effective coupling strength. In fact, in
Eq. (16) it is possible to define an effective coupling potential
by using the second term in this equation.
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FIGURE 3. One-body probability density function versusθ for a
dipolar colloid forE∗

0D = 30.

FIGURE 4. One-body probability density function versusθ for a
quadrupolar colloid forE∗

0Q = 30.

From Figs. 1–4 one can see that the one-body equilib-
rium pdf takes negative values between the peaks, which is
of course unphysical. This is a numerical error due to the ap-
proximation in terms of the Legendre polynomials, Eq. (22).
The physical value is the average which can be seen in these
figures going to zero between the peaks. On the other hand, it
is observed from these Figs. (1–4) that the qualitative descrip-
tion of the alignment reached for the colloids is not affected
by this numerical error.

Considering self-assembly at high density and coupling
strength or at low density driven by an appropriate field, it is
observed that it is possible to obtain a similar phase in dipolar
and quadrupolar colloids: for the former, an axially symmet-
ric phase, whereas for the latter a biaxially symmetric phase.
Our physical scheme of the biaxial phase reached is that a
quadrupolar colloid is not an effectively axially symmetric
system, because of the linear order of the quadrupole consid-
ered.

5. Concluding remarks

We develop the easiest model for computing the induced-
assembly of dipolar and quadrupolar colloids up to linear
order in density, and fourth order for the multipole moment
strength. We reported results for both multipoles as a func-
tion of the reduced field strength, at fixed density and cou-
pling strength. Using the ideas of colloidal theories to de-
scribe the order reached by the multipolar colloids, we com-
pute the one-body equilibrium pdf, which is assumed to
be the equilibrium solution of the one-body Smoluchowski
equation. In this approach, hydrodynamic interactions are ne-
glected, a reasonable assumption for linear order in density.
The two-body equilibrium pdf is a necessary ingredient in
solving the one-body Smoluchowski equation. To solve this
equation consistently, it is also assumed that the two-body
function is also provided by the Smoluchowski equation, ob-
taining this input as its equilibrium solution also.

Considering a homogeneous electric field for the dipole
moment and a constant gradient electric field for the
quadrupole, an axial nematic-like phase is obtained for the
former, whereas for the latter, we get a biaxial nematic-like
phase. These ordered phases are also observed in dipolar and
quadrupolar colloids at high densities and coupling strengths
with a self-assembly process. We believe that this feature of
the quadrupolar colloid is due to the fact that it is not effec-
tively uniaxial. Induced assembly in non-interacting colloids
is also observed; the results show aligned phases which are
axially symmetric. We believe that the difference between
a non-interacting and an interacting colloid is due to a co-
operative effect between the reduced field and the coupling
strength.

We note that this approach can be applied for multipole
moments of higher order also. The results reported here can
be used as a reference for other theories, computer simula-
tions or experimental results. Thus, the idea is to take this
model as a starting base and to improve it, considering, for
instance, concentrated colloids, in which the pairwise addi-
tive approximation does not hold, a feature that represents a
real challenge.
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Guanjuato, Ḿexico, for a fruitful discussion on liquid crys-
tals.

A Appendix

In this appendix we provide the expressions for the first two
αl coefficients in the expansion Eq. (22) in terms of theγlp=0

coefficients.
For the dipole, the first two coefficients areα1

and α2; therefore we have,αD
1 = FD11 + ρ∗FD12, and

αD
2 = FD21 + ρ∗FD22.
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The coefficientsFDij are given by

FD11[E0∗D] = − 7
2
√

3π

E0∗DFD1[E0∗D]
FD2[E0∗D]

,

FD12[E0∗D] =
7
2

FD1[E0∗D]γD
10[E0∗D]

FD2[E0∗D]
+
√

15
2

E0∗DFD3[E0∗D]γD
20[E0∗D]

FD2[E0∗D]
+

1
12

√
7
3

E0∗2D FD4[E0∗D]γD
30[E0∗D]

FD2[E0∗D]

+
√

3
20

E0∗3D FD5[E0∗D]γD
40[E0∗D]

FD2[E0∗D]
+

7
30

√
11
3

E0∗4D FD6[E0∗D]γD
50[E0∗D]

FD2[E0∗D]
+

1
2

√
13
3

E0∗5D FD7[E0∗D]γD
60[E0∗D]

FD2[E0∗D]

+
17
√

5
8

E0∗6D FD8[E0∗D]γD
70[E0∗D]

FD2[E0∗D]
+

119
1656

√
17
3

E0∗7D FD9[E0∗D]γD
80[E0∗D]

FD2[E0∗D]

+
595
138

√
19
3

E0∗8D FD10[E0∗D]γD
90[E0∗D]

FD2[E0∗D]
+

119
√

7
2530

E0∗9D FD11[E0∗D]γD
100[E0∗D]

FD2[E0∗D]

+
357
44

√
3
23

E0∗10D FD12[E0∗D]γD
110[E0∗D]

FD2[E0∗D]
+

595
3588

√
3

E0∗11D FD13[E0∗D]γD
120[E0∗D]

FD2[E0∗D]

+
1479
598

E0∗12D γD
130[E0∗D]

FD2[E0∗D]
+

17
690

√
29
3

E0∗13D γD
140[E0∗D]

FD2[E0∗D]
,

FD21[E0∗D] =
3
2

√
5
π

E0∗2D FD3[E0∗D]
FD2[E0∗D]

,

FD22[E0∗D] =
3
√

15
2

E0∗DFD3[E0∗D]γD
10[E0∗D]

FD2[E0∗D]
− 15

2
FD3[E0∗D]γD

20[E0∗D]
FD2[E0∗D]

− 5
12
√

35
E0∗DFD4[E0∗D]γD

30[E0∗D]
FD2[E0∗D]

− 9
12
√

5
E0∗2D FD5[E0∗D]γD

40[E0∗D]
FD2[E0∗D]

− 14
12

√
11
5

E0∗3D FD6[E0∗D]γD
50[E0∗D]

FD2[E0∗D]
−
√

65
2

E0∗4D FD7[E0∗D]γD
60[E0∗D]

FD2[E0∗D]

− 17(56925)
√

3
91080

E0∗5D FD8[E0∗D]γD
70[E0∗D]

FD2[E0∗D]
− 7(55)(17)

√
5(17)

91080
E0∗6D FD9[E0∗D]γD

80[E0∗D]
FD2[E0∗D]

− 17(7)(12)(275)
√

5(19)
91080

E0∗7D FD10[E0∗D]γD
90[E0∗D]

FD2[E0∗D]
− 17(7)(12)(3)

√
5(21)

91080
E0∗8D FD11[E0∗D]γD

100[E0∗D]
FD2[E0∗D]

− 17(12285)
√

23
39468

√
5

E0∗9D FD12[E0∗D]γD
110[E0∗D]

FD2[E0∗D]
− 17(11)(175)

39468
√

5
E0∗10D FD13[E0∗D]γD

120[E0∗D]
FD2[E0∗D]

− 17(11)(2)(1305)
√

3
39468

√
5

E0∗11D γD
130[E0∗D]

FD2[E0∗D]
− 17(11)(13)

√
29

39468
√

5
E0∗12D γD

140[E0∗D]
FD2[E0∗D]

,

where theγD
l0 [E0∗D] coefficients are given by

γD
l0 [E0∗D] =

8π

135

√
1
2
l(l + 1)

µ∗4E0∗2D

Si nh[E0∗D]2
FD

l00[E0∗D]
(
FD

00[E0∗D] + FD
11[E0∗D]

)
.

The functionsFDl[E0∗D], FD
l00[E0∗D] andFD

ij [E0∗D] are lengthy expressions which we do not provide explicitly.
For the quadrupole, the first two coefficients areα2 andα4, because all the odd coefficients are zero. Therefore, we have

αQ
2 = FQ21 + ρ∗FQ22,

and

αQ
4 = FQ41 + ρ∗FQ42
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The coefficientsFQij are given by

FQ21[E0∗Q] = −17
√

5
2

E0∗QFQ1[E0∗Q]
FQ2[E0∗Q]

,

FQ22[E0∗Q] =
85
2

FQ1[E0∗Q]γQ
20[E0∗Q]

FQ2[E0∗Q]
+

85(513513)
255255

√
5

E0∗QFQ3[E0∗Q]γQ
40[E0∗Q]

FQ2[E0∗Q]

+
85(4)(429)

√
13

255255
√

5

E0∗2Q FQ4[E0∗Q]γQ
60[E0∗Q]

FQ2[E0∗Q]
+

85(4)(2)(3289)
√

17
255255

√
5

E0∗3Q FQ5[E0∗Q]γQ
80[E0∗Q]

FQ2[E0∗Q]

+
85(4)(2)(600)(13)

√
21

255255
√

5

E0∗4Q FQ6[E0∗Q]γQ
100[E0∗Q]

FQ2[E0∗Q]
+

85(4)(2)(600)(594)
255255

√
5

E0∗5Q γQ
120[E0∗Q]

FQ2[E0∗Q]
,

and

FQ41[E0∗Q] =
171
2
√

π

E0∗2Q FQ3[E0∗Q]
FQ2[E0∗Q]

,

FQ42[E0∗Q] =
171
2
√

5

E0∗QFQ3[E0∗Q]γQ
20[E0∗Q]

FQ2[E0∗Q]
− 171

4
FQ9[E0∗Q]FQ3[E0∗Q]γQ

40[E0∗Q]
FQ2[E0∗Q]

− 429
√

13
3003

E0∗QFQ9[E0∗Q]FQ4[E0∗Q]γQ
60[E0∗Q]

FQ2[E0∗Q]
− 2(3289)

√
17

3003
E0∗2Q FQ9[E0∗Q]FQ5[E0∗Q]γQ

80[E0∗Q]
FQ2[E0∗Q]

− 2(600)(13)
√

21
3003

E0∗3Q FQ9[E0∗Q]FQ6[E0∗Q]γQ
100[E0∗Q]

FQ2[E0∗Q]
− 2(600)(594)

3003
E0∗4Q FQ9[E0∗Q]γQ

120[E0∗Q]
FQ2[E0∗Q]

,

where theγQ
l0[E0∗Q] coefficients are given by

γQ
l0[E0∗Q] =

32
315

√
l(l + 1)

6
Θ∗4E0∗Q

Erfi[
√

E0∗Q
2 ]

(
3FQ

l00[E0∗Q]
(
−FQ

22[E0∗Q]− 2
5
FQ

11[E0∗Q] +
3
5
FQ

00[E0∗Q]
)

+
√

6FQ
l01[E0∗Q]

(
31
10

FQ
22[E0∗Q] +

8
5
FQ

11[E0∗Q]− 3
2
FQ

00[E0∗Q]
))

.

The functionsFQl[E0∗D], FQ
l00[E0∗D], FQ

l01[E0∗D] andFD
ij [E0∗D] are also lengthy expressions and are not provided explic-

itly.
We do not give the explicit expressions for the other coefficients, but they will be provided by the author upon request.
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