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Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories
obtained using only Noether’s theorem
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The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of
translations in spacetime via a systematic implementation of Noether’s theorem. For the source-free neutral Proca field, the same procedure
yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors
is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without
using Belinfante’s symmetrization techniques which are usually employed to this end.
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Los tensores de energı́a-momento invariantes de norma y simétricos para las teorı́as de Maxwell y Yang-Mills sin fuentes son obtenidos
mediante traslaciones en el espacio-tiempo mediante una aplicación sisteḿatica del teorema de Noether. Para el campo de Proca neutral
y sin fuentes, el mismo procedimiento proporciona también el tensor de energı́a-momento siḿetrico. En todos los casos, el punto clave
para obtener las expresiones correctas de los tensores de energı́a-momento es el manejo adecuado de las ecuaciones de movimiento y de las
identidades de Bianchi. Debe ser enfatizado que estos resultados son obtenidos sin usar las técnicas de simetrización de Belinfante las cuales
son usualmente empleadas para este fin.

Descriptores:Tensor de energı́a-momento; teorema de Noether; teorı́a de campo de norma.

PACS: 03.50.-z; 11.30.-j

1. Introduction

One of the most beautiful and remarkable results in theoreti-
cal physics is that provided by Noether’s theorem, which es-
tablishes a relationship between the symmetries of a given
action and the conserved quantities for the dynamical sys-
tem associated with this action principle [1]. However, the
standard implementation of Noether’s theorem to field theory
leads, in the generic case, to a non-symmetric expression for
the correspondingcanonical energy-momentum tensorΘµ

ν

Θµ
ν =

∂L
∂(∂µφ)

∂νφ− δµ
νL , (1)

whereφ denotes the collection of independent fields involved
in the Lagrangian densityL and so in the action, and where
all possible internal indices have not been explicitly written.
Next, Θµ

ν is “improved” by Belinfante’s method to obtain
thesymmetric energy-momentum tensorTµν [2]

Tµν = Θµν + ∂γKµνγ , (2)

with Kµνγ = −Kµγν and so

∂νTµν = ∂νΘµν + ∂ν∂γKµνγ = ∂νΘµν

(see Ref. 3 for a detailed description of Belinfante’s method).
A symmetric energy-momentum tensor,Tµν , is needed, for

instance, when such matter fields are coupled to gravity in the
context of general relativity [4]. For Maxwell theory, taking
L = −(1/16π)FµνFµν , Eq. (1) acquires the form

Θµ
ν = − 1

4π
Fµα∂νAα +

1
16π

δµ
ν FαβFαβ , (3)

while for Yang-Mills theory, takingL = −(1/16π)Fµν
a F a

µν ,
Eq. (1) becomes

Θµ
ν = − 1

4π
Fµα

a ∂νAa
α +

1
16π

δµ
ν Fαβ

a F a
αβ , (4)

which are neither symmetric nor gauge-invariant under their
corresponding gauge transformations [3, 5, 6]. On the other
hand, for the neutral Proca field, taking

L = − 1
16π

(
FµνFµν − 2m2AµAµ

)
,

Eq. (1) gives also the wrong expression [3]

Θµ
ν =− 1

4π
Fµα∂νAα +

1
16π

δµ
ν FαβFαβ

− 1
8π

m2δµ
ν AαAα . (5)

As already mentioned, Eqs. (3), (4), and (5) can be “fixed”
by using Belinfante’s ideas [2,3].
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Let us call the combination of standard Noether’s the-
orem and Belinfante’s symmetrization techniques simply
Noether-Belinfante’s method. In spite of the success of
Belifante’s symmetrization techniques to fix the canoni-
cal energy-momentum tensorΘµν obtained by the standard
Noether’s theorem, it must be emphasized that Belifante’s
procedure is anad hocone which also has the ambiguity as-
sociated with the freedom of adding divergence terms toΘµν .
In spite of these properties, Belinfante’s method has become
to be very popular. Moreover, its permanent implementation
in gauge theories to “fix” the energy-momentum tensorΘµν

has created a paradigm consisting in the claim that Noether’s
theorem isnotenough to determine the right form (via space-
time translations) for the energy-momentum tensor in gauge
theories.

In this paper the issue of the incompleteness or correct-
ness of Noether’s theorem for gauge theories is analyzed,
and our conclusion is that the paradigm is not correct. Our
analysis includes Maxwell, Yang-Mills, and Proca fields,i.e.,
Abelian, non-Abelian, and massive gauge fields are analyzed.
More precisely, using spacetime translations, it is shown that
the systematic implementation of Noether’s theorem to the
source-free Maxwell and Yang-Mills theories leads to sym-
metric and gauge-invariant expressions for their correspond-
ing energy-momentum tensors, while for the Proca field
the procedure yields also the symmetric and right energy-
momentum tensor. In all three cases, the obtention of the
right energy-momentum tensors is achieved by taking into
account both the equations of motion and the Bianchi iden-
tities for the system under study. Therefore, the present re-
sults indicate that the action principle hasall the information
required touniquelydetermine the right energy-momentum
tensor and that there isno need to use Belifante’s method
because the expressions obtained in this paper, which are
the right ones, follow only from a careful implementation of
Noether’s theorem. This is an unexpected result which goes
against the already mentioned paradigm (for more details see
Ref. 7).

Before beginning, some comments about our notation.
Let M be the Minkowski spacetime where the Maxwell,
Yang-Mills, and Proca fields exist and let(xµ) = (ct, x, y, z)
be Minkowskian coordinates in it; Greek indicesµ, ν . . . take
the values0, 1, 2, 3. The Minkowski metric is chosen to bedi-
agonal(ηµν) = (−1, +1, +1,+1). The symbold4x means
dx0 ∧ dx ∧ dy ∧ dz and also∂µ = ∂/∂xµ. The detailed im-
plementation of Noether’s theorem is deliberate to stress our
method.

2. Source-free Maxwell theory

The usual action principle for source-free Maxwell theory is

S[Aµ] = α

∫

R

d4x FµνFµν , (6)

whereA=Aµ(x)dxµ, (Aµ)=(φ, ~A), is the potential 1-form
andFµν = ∂µAν − ∂νAµ is the Faraday tensor, andR is an
arbitrary region of the four-dimensional Minkowski space-
timeM.

The first order variation of action (6) under the transfor-
mation of the variables̃δAµ := Ãµ(x)−Aµ(x) yields

δ̃S =
∫

R

d4x

[
δS

δAν
δ̃Aν

]
+

∫

∂R

(
4αFµν δ̃Aν

)
dΣµ , (7)

with

δS

δAν
= −(4α∂µFµν) , (8)

and sõδS = 0 yields the equations of motion

δS

δAν
= −(4α∂µFµν) = 0 , (9)

provided that the boundary term in Eq. (7) vanishes.
The action (6) is fully invariant under the Poincaré group

S′ := α

∫

R′
F ′µνF ′µν

d4x′

= α

∫

R

FµνFµνd4x

= S. (10)

The word “fully” means that the symmetry is exact,i.e., that
the transformed action is equal to the original action without
the presence of boundary terms. In order to apply Noether’s
theorem, the infinitesimal version of the Poincaré transfor-
mation is needed:

x′µ = xµ + δxµ , δxµ = εµ
νxν + εµ , (11)

whereεµν = −ενµ andεµ are the infinitesimal arbitrary con-
stant parameters associated with the infinitesimal transforma-
tions under consideration. In addition, one has the trans-
formation law for the 4-potentialAµ(x) and the 4-gradient
∂/∂xµ to first order in the parameters

A′µ(x′) =
∂xν

∂x′µ
Aν(x) = (δν

µ − ∂µ(δxν))Aν

= Aµ(x)− (∂µδxν)Aν ,

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
= (δν

µ − ∂µ(δxν)) ∂ν

= ∂µ − (∂µδxν)∂ν , (12)

therefore, to first order in the parameters

F ′µν(x′) :=∂′µA′ν − ∂′νA′µ ,

=Fµν(x) + (∂νδxα)Fαµ + (∂µδxα)Fνα. (13)

On the other hand, one hasd4x′ = (1 + ∂µδxµ)d4x. Note,
however, that if one uses the explicit expression forδxµ, then
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∂µδxµ = 0 because of the antisymmetry ofεµν . Neverthe-
less,∂µδxµ = 0 will not be used at this stage but rather at the
end of the computations. Thus, to first order

S′ := α

∫

R′
F ′µνF ′µν

d4x′

= α

∫

R

FµνFµν(1 + ∂βδxβ)d4x

+
∫

R

4αFµν(∂νδxβ)Fβµd4x

= S[Aµ] + α

∫

R

FµνFµν(∂βδxβ)d4x

+
∫

R

∂ν

(
4αFµνδxβFβµ

)
d4x

+
∫

R

[−4αδxβ∂ν(FµνFβµ)
]
d4x . (14)

To continue, it will be convenient to take into account the
variation of the action (6) with respect to the 4-potentialAµ

and given in Eq. (8) as well as the following definition:

Bµνβ := ∂νFβµ + ∂βFµν + ∂µFνβ . (15)

It is obvious thatBµνβ = 0 is equivalent to the Bianchi iden-
tities

∂νFβµ + ∂βFµν + ∂µFνβ = 0. (16)

Equations (9) and (16) constitute the full set of Maxwell
equations. However, Eqs. (9) and (16) willnot be used at
this stage but rather at the end of the computations,i.e., we
will be working “off-shell”. LetF be the space formed by all
configurations of the gauge potentialsA = Aµ(x)dxµ, i.e.,
a point inF is a gauge potential which does not necessarily
satisfy Eqs. (9) and (16).

Going back to Eq. (14), the integrand in the last term
on the right-hand side of Eq. (14) can be rewritten by using
Eq. (8) as

−4αδxβ∂ν(FµνFβµ) = −4αδxβ(∂νFµν)Fβµ

− 4αδxβFµν∂νFβµ

= −δxβ δS

δAµ
Fβµ

− 4αδxβFµν∂νFβµ . (17)

Moreover, the last term on the right-hand side of Eq. (17) can
be written by using the antisymmetry ofFµν and Eq. (15) as

−4αδxβFµν∂νFβµ = −2αδxβFµν (∂νFβµ − ∂µFβν)

= −2αδxβFµνBµνβ

+ 2αδxβFµν∂βFµν

= −2αδxβFµνBµνβ

+ αδxβ∂β(FµνFµν)

= −2αδxβFµνBµνβ

+ ∂β(αδxβFµνFµν)

− αFµνFµν(∂βδxβ). (18)

Therefore, inserting the results of Eqs. (17) and (18) back
into Eq. (14)

S′ = S[Aµ] +
∫

R

[
∂βJβ − δxβ δS

δAµ
Fβµ

−2αδxβFµνBµνβ

]
d4x, (19)

where

Jβ :=4αFµβδxγFγµ + αδxβFµνFµν

=T β
γδxγ , (20)

is the Noether4-current and

T γβ := −4α

(
F γµF β

µ − 1
4
ηγβFµνFµν

)
, (21)

is theenergy-momentum tensorfor the electromagnetic field.
Due to the fact that the action (6) is invariant under arbi-

trary transformations of the Poincaré group then it is, in par-
ticular, invariant under an infinitesimal transformation and so
from Eq. (19)

∫

R

[
∂βJβ−δxβ δS

δAµ
Fβµ−2αδxβFµνBµνβ

]
d4x=0 (22)

for arbitrary spacetime regionsR. Therefore, the integrand
in the last equation must identically vanish:

∂βJβ = δxβ δS

δAµ
Fβµ + 2αδxβFµνBµνβ . (23)

Equation (23) is the cornerstone of the formalism of this pa-
per. Note that Eq. (23) isnot the so-called Noether’s condi-
tion that is usually obtained in the standard implementation
of Noether’s theorem.

Now, letF be the phase space formed by all those points
of F which satisfy Eqs. (9) and (16). Therefore, for points of
F , the right-hand side of Eq. (23) vanishes and the Noether
4-currentJβ is conserved,

∂βJβ = 0. (24)
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Using the explicit form forδxα, the Noether 4-current ac-
quires the form

Jβ = −1
2
εγφMβγφ + εγT βγ , (25)

with

Mβγφ := xγTφβ − xφT γβ , (26)

the angular momentum tensorfor the electromagnetic
field [4]. Furthermore, from the continuity equation
∂βJβ = 0,

1
2
εγφ

(
∂βMβγφ

)
+ εγ

(
∂βT γβ

)
= 0 , (27)

and from the fact thatεγφ andεγ are independent parameters
it follows that each tensor is independently conserved

∂βMβγφ = 0 , (28)

and

∂βT γβ = 0 . (29)

Moreover, the energy-momentum tensorT γβ is symmetric.
This can be seen from its definition in Eq. (21) or from
the conservation of the energy-momentum and angular mo-
mentum tensors,i.e., from Eqs. (28) and (29) it follows
that T γφ = Tφγ . Therefore,T γβ is conserved, symmet-
ric, gauge-invariantunder gauge transformations because it
depends only onFµν , and tracelessbecause ofTµ

µ = 0.
The Misner-Thorne-Wheeler’s convention for the energy-
momentum tensor is [4]

Tµν =
1
4π

(
FµαF ν

α − 1
4
ηµνFαβFαβ

)
, (30)

which corresponds to setα = −1/16π andc = 1 into the
action (6). In an explicit form, the components ofTµν read

T 00 =
~E2 + ~B2

8π
,

T 0i =
( ~E × ~B)i

4π
,

T jk =
1
4π

[
−(EjEk + BjBk) +

1
2
( ~E2 + ~B2)δjk

]
. (31)

3. Yang-Mills theory

The reader might wonder if the procedure applied to Abelian
gauge fields holds also for non-Abelian gauge fields. The an-
swer is in the affirmative. To see this, the Lagrangian action
for the Yang-Mills fields is considered [8]:

S[Aa
µ] = α

∫

R

d4x F a
µνFµν

a , (32)

with

F a
µν = ∂µAa

ν − ∂νAa
µ − Ca

bc Ab
µAc

ν , (33)

the strength of the Yang-Mills fieldA = Aa
µdxµ ⊗ Ta with

Ta the generators of the Lie algebra of the gauge group.
Again, the first order change in the action (32) under the

transformatioñδAa
µ = Ãa

µ(x)−Aa
µ(x) is:

δ̃S =
∫

R

d4x

[
δS

δAa
ν

δ̃Aa
ν

]
+

∫

∂R

(
4αFµν

a δ̃Aa
ν

)
dΣµ , (34)

withi

δS

δAa
ν

= −(4αDµFµν
a ), (35)

and sõδS = 0 gives the equations of motion

DµFµν
a = 0, (36)

if the boundary term in Eq. (36) vanishes.
Again, the action (6) is fully invariant under the Poincaré

group. In order to apply Noether’s theorem, the infinitesimal
version of the Poincaré transformation is needed and given by
Eq. (11) together with the transformation for the Yang-Mills
fields

A′aµ(x′) =
∂xν

∂x′µ
Aa

ν(x) = (δν
µ − ∂µ(δxν))Aa

ν

= Aa
µ(x)− (∂µδxν)Aa

ν . (37)

Therefore, to first order inδxβ

F ′aµν(x′) = ∂′µA′aν − ∂′νA′aµ − Ca
bc A′bµA′cν

= F a
µν(x) + (∂νδxα)F a

αµ + (∂µδxα)F a
να, (38)

and thus to first order

S′ := α

∫

R′
F ′aµνF ′µν

a d4x′

= α

∫

R
F a

µνFµν
a (1 + ∂βδxβ)d4x

+
∫

R
4αFµν

a (∂νδxβ)F a
βµd4x

= S[Aa
µ] + α

∫

R
F a

µνFµν
a (∂βδxβ)d4x

+
∫

R
∂ν

(
4αFµν

a δxβF a
βµ

)
d4x

+
∫

R

[−4αδxβ∂ν(Fµν
a F a

βµ)
]
d4x. (39)

As in the Abelian case, the object

Ba
µνβ = DνF a

βµ + DβF a
µν + DµF a

νβ , (40)
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will be needed. The equationBa
µνβ = 0 is equivalent to the

Bianchi identities

DνF a
βµ + DβF a

µν + DµF a
νβ = 0. (41)

Equations (36) and (41) are the full set of Yang-Mills equa-
tions. As in the Abelian case, we will be working ‘off-shell’,
i.e., without using such equations at this stage but rather at
the end of the computations.

We have in hand all the elements to continue. The inte-
grand in the last term on the right-hand side of Eq. (39) can
be rewritten using Eq. (35) as

−4αδxβ∂ν(Fµν
a F a

βµ) = −4αδxβ(DνFµν
a )F a

βµ

− 4αδxβFµν
a DνF a

βµ

= −δxβ δS

δAa
µ

F a
βµ

− 4αδxβFµν
a DνF a

βµ. (42)

Rewriting the last term on the right-hand side of Eq. (42),
following the procedure used for the Abelian case,

−4αδxβFµν
a DνF a

βµ = −2αδxβFµν
a Ba

µνβ

+ ∂β(αδxβFµν
a F a

µν)

− αFµν
a F a

µν(∂βδxβ). (43)

Therefore, inserting the results of Eqs. (42) and (43) back
into Eq. (39)

S′ = S[Aa
µ] +

∫

R

[
∂βJβ − δxβ δS

δAa
µ

F a
βµ

−2αδxβFµν
a Ba

µνβ

]
d4x, (44)

with

Jβ := 4αFµβ
a δxγF a

γµ + αδxβFµν
a F a

µν

= T β
γδxγ , (45)

the Noether4-current and

T γβ := −4α

(
F γµ

a F aβ
µ − 1

4
ηγβFµν

a F a
µν

)
, (46)

is theenergy-momentum tensorfor the Yang-Mills fields.
Applying the same reasoning used in the Maxwell case,

the relationship

∂βJβ = δxβ δS

δAa
µ

F a
βµ + 2αδxβFµν

a Ba
µνβ , (47)

is obtained. As in the Maxwell case, Eq. (47) isnot the
usual Noether’s condition obtained by the standard Noether’s
theorem. As before, Eq. (47) plays a very important role
here also. As before, if the equations of motion (36) and the

Bianchi identities (41) hold, then the right hand side of last
equation vanishes and the Noether4-currentJβ is conserved:

∂βJβ = 0. (48)

Using the explicit form forδxα, the Noether 4-current ac-
quires the form

Jβ = −1
2
εγφMβγφ + εγT βγ , (49)

with

Mβγφ := xγTφβ − xφT γβ , (50)

theangular momentum tensorfor the Yang-Mills fields.
Again, the same reasoning that follows Eq. (26) can be

applied to conclude thatMβγφ andT γβ are independently
conserved and thatT γβ is symmetric and gauge-invariant.

4. Source-free Proca theory

Now, the case of a non gauge-invariant theory will be dis-
cussed: the source-free Proca field [9]. It is interesting to
know if the procedure of the present paper works also for this
dynamical system.

The action principle for the source-free neutral Proca field
is

S[Aµ] = α

∫

R

d4x
[
FµνFµν − 2m2AµAµ

]
, (51)

whereA = Aµ(x)dxµ is the potential 1-form and

Fµν = ∂µAν − ∂νAµ

its strength.
The first order variation of the action (51) under the trans-

formationδ̃Aµ = Ãµ(x)−Aµ(x) is

δ̃S =
∫

R

d4x

[
δS

δAν

]
δ̃Aν +

∫

∂R

(
4αFµν δ̃Aν

)
dΣµ, (52)

with

δS

δAν
= −4α∂µFµν − 4αm2Aν , (53)

and sõδS = 0 yields the equations of motion

δS

δAν
= −4α∂µFµν − 4αm2Aν = 0, (54)

provided that the boundary term in Eq. (52) vanishes.
From Eq. (53) it follows that

∂ν

(
δS

δAν

)
= −4αm2∂νAν , (55)

because of the antisymmetry ofFµν . Eq. (55) will be used in
the application of Noether’s theorem.
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Once again, applying an infinitesimal Poincaré transfor-
mation,

S′ :=α

∫

R′
d4x′

[
F ′µνF ′µν − 2m2A′µA′µ

]

=α

∫

R

d4x
[
FµνFµν − 2m2AµAµ

]
(1 + ∂βδxβ)

+
∫

R

4αFµν(∂νδxβ)Fβµd4x

+
∫

R

4αm2AµAν (∂µδxν) d4x

=S[Aµ]

+ α

∫

R

d4x
[
FµνFµν − 2m2AµAµ

]
(∂βδxβ)

+
∫

R

∂ν

[
4αFµνδxβFβµ

+ 4αm2AνAµδxµ
]
d4x

+
∫

R

[−4αδxβ∂ν(FµνFβµ)
]
d4x

−
∫

R

4αm2δxν∂µ (AµAν) d4x. (56)

By using Eq. (53), the next to last term on the right-hand side
of Eq. (56) acquires the form

−4αδxβ∂ν(FµνFβµ) =− 4αδxβ(∂νFµν)Fβµ

− 4αδxβFµν∂νFβµ

=− δxβ δS

δAµ
Fβµ

− 4αm2δxβAµFβµ

− 4αδxβFµν∂νFβµ. (57)

The last term in Eq. (57) has been already rewritten and it
is given in Eq. (18). Therefore, using Eq. (18), Eq. (57)
becomes

−4αδxβ∂ν(FµνFβµ) =− δxβ δS

δAµ
Fβµ

− 4αm2δxβAµFβµ

− 2αδxβFµνBµνβ

+ ∂β(αδxβFµνFµν)

− αFµνFµν(∂βδxβ). (58)

In a similar way, the last line in Eq. (56) can be rewritten as

−4αm2δxν∂µ (AµAν) =− 4αm2δxν (∂µAµ) Aν

− 4αm2δxνAµ∂µAν

=− 4αm2δxν (∂µAµ) Aν

− 4αm2δxνAµ [Fµν + ∂νAµ]

=δxνAν∂µ

(
δS

δAµ

)

− 4αm2δxνAµFµν

− 2αm2δxν∂ν (AµAµ)

=δxνAν∂µ

(
δS

δAµ

)

+ 4αm2δxνAµFνµ

+ ∂ν

(−2αm2δxνAµAµ
)

+ 2αm2AµAµ (∂νδxν) . (59)

On the right-hand side of the second equality in Eq. (59),
the definition ofFµν was used while in the third equality,
Eq. (55) was used.

Inserting Eqs. (58) and (59) into Eq. (56),

S′ = S[Aµ] +
∫

R

[
∂βJβ − δxβ δS

δAµ
Fβµ

−2αδxβFµνBµνβ + δxνAν∂µ

(
δS

δAµ

)]
d4x, (60)

where

Jβ :=4αFµβδxγFγµ + αδxβFµνFµν

− 2αm2AµAµδxβ + 4αm2AβAµδxµ

=T β
γδxγ (61)

is the Noether4-current and

T γβ =− 4α

(
F γµF β

µ − 1
4
ηγβFµνFµν

+
1
2
m2ηγβAµAµ −m2AγAβ

)
, (62)

is theenergy-momentum tensorfor the Proca field.
Once again, due to the fact that the action principle is in-

variant under the Poincaré group, it follows that

∫

R

[
∂βJβ − δxβ δS

δAµ
Fβµ

−2αδxβFµνBµνβ + δxνAν∂µ

(
δS

δAµ

)]
d4x = 0, (63)
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for arbitrary spacetime regionsR. Therefore, the integrand
must identically vanish:

∂βJβ = δxβ δS

δAµ
Fβµ + 2αδxβFµνBµνβ

− δxνAν∂µ

(
δS

δAµ

)
, (64)

which is the right Noether’s condition.
Therefore, if the equations of motion (54) and the Bianchi

identities hold, then the Noether 4-currentJβ is identically
conserved:

∂βJβ = 0. (65)

Using the explicit expression forδxµ, the 4-current ac-
quires the form

Jβ = −1
2
εγφMβγφ + εγT βγ , (66)

with

Mβγφ := xγTφβ − xφT γβ , (67)

theangular momentum tensor.

5. Concluding Remarks

It has been shown that the symmetric and gauge-invariant ex-
pressions for the energy-momentum tensors of Maxwell and
Yang-Mills fields can be obtained from a direct implemen-
tation of Noether’s theorem under a correct handling of the
terms involving the equations of motion and the Bianchi iden-
tities. The procedure also works for the Proca fields. The
reader might then wonder about the cause of the failure of
the standard Noether’s approach, which leads to Eqs. (3), (4),
and (5) instead of Eqs. (21), (46), and (62); respectively, or,
equivalently, what is then the difference between the stan-
dard Noether’s approach found in literature and the one of the
present paper if after all both approaches deal with Noether’s
teorem? The answer is as follows. In the standard implemen-
tation of Noether’s theorem to gauge theories only half of the
full set of equations of motion are used, the Euler-Lagrange
equations. However, when dealing with gauge theories, one
has to keep in mind also the Bianchi identities which are
not taken into account in the standard approach [3,5,6].
Nevertheless, as shown here, if they are both taken into ac-
count, Noether’s theorem yields the right expressions for the
energy-momentum tensors. Therefore, there is nothing mys-
terious or wrong in the implementation of Noether’s theo-
rem to gauge theories; what happens is just that the stan-
dard implementation of Noether’s theorem is incomplete in

the sense already explained, and this is why the canonical
energy-momentum tensors so obtained need an “improve-
ment” via, for instance, Belinfante’s method. One could say
that Noether-Belinfante’s method is equivalent to the analy-
sis performed here in the sense that both approaches agree
in the final form for the energy-momentum tensor. This is
so from an operational (and pragmatic) viewpoint. Neverthe-
less, there is a key conceptual difference between Noether-
Belinfante’s procedure and the one followed here. From the
viewpoint of the present paper, Belinfante’s method isnot
needed because the action hasall the information required
to uniquelydetermine the right expressions for the energy-
momentum tensorTµν via translations in spacetime by us-
ing only Noether’s theorem. Moreover, the formalism of
the present paper, in contrast to Belinfante’s method, has
no ambiguities once the Lagrangian density has been cho-
sen. In spite of these conceptual differences, our method
agrees with Noether-Belinfante’s in the computation of the
correct form for the energy-momentum tensor. So, let us
briefly say some words about the relationship between our
method and Belinfante’s. As we mentioned, a key element in
our approach is the explicit incorporation and handling of the
Bianchi identities. In our opinion, the Bianchi identities (or
something equivalent to them) are “hidden” in Belinfante’s
method, which allows us to fix somehow the wrong canoni-
cal energy-momentum tensor. Of course that the precise re-
lationship between the current formalism and the Noether-
Belinfante’s method must be explained, but that is beyond
the scope of this paper.

Finally, it would be interesting to generalize the results of
Refs. 10 and 11 to the case of gauge theories where the La-
grangian is singular [12],i.e., det

(
∂2L/∂q̇i∂q̇j

)
= 0. Such

a generalization would involve building an action principle
which would yield the original equations of motion for the
gauge system simultaneously with its Jacobi variational equa-
tions. It is clear that the dynamical systems analyzed in this
paper could be handled in the framework of such a general-
ization.

Acknowledgments

Warm thanks to G.F. Torres del Castillo, José David Vergara,
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i. The covariant derivatives are defined as follows:

Dµηa :=∂µηa + Ca
bcη

bAc
µ

and

Dµλa :=∂µλa − Cb
acλbA

c
µ.
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