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The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by mear
translations in spacetime via a systematic implementation of Noether’s theorem. For the source-free neutral Proca field, the same proc
yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum te
is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained wif
using Belinfante’s symmetrization techniques which are usually employed to this end.
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Los tensores de enéegmomento invariantes de norma y &imcos para las te@s de Maxwell y Yang-Mills sin fuentes son obtenidos
mediante traslaciones en el espacio-tiempo mediante una apficsisienatica del teorema de Noether. Para el campo de Proca neutral
y sin fuentes, el mismo procedimiento proporciona ta@mtel tensor de end@momento siratrico. En todos los casos, el punto clave
para obtener las expresiones correctas de los tensores deaemergento es el manejo adecuado de las ecuaciones de movimiento y de la
identidades de Bianchi. Debe ser enfatizado que estos resultados son obtenidos sinacsacéssde simetrizamn de Belinfante las cuales

son usualmente empleadas para este fin.

Descriptores:Tensor de enefg-momento; teorema de Noether; feate campo de norma.

PACS: 03.50.-z; 11.30.-j

1. Introduction instance, when such matter fields are coupled to gravity in the

) _ context of general relativity [4]. For Maxwell theory, taking
One of the most beautiful and remarkable results in theoretiy _ —(1/16m)F* F,,,, Eq. (1) acquires the form

cal physics is that provided by Noether's theorem, which es-

tablishes a relationship between the symmetries of a given

action and the conserved quantities for the dynamical sys-

tem associated with this action principle [1]. However, the . . : B v pa

standard implementation of Noether’s theorem to field theorWhlle for Yang-Mills theory, takingC = —(1/16m) F" Fi,
) . : : g. (1) becomes

leads, in the generic case, to a non-symmetric expression for

1 1
or, = _EFuaauAa + 16771'65FaﬁF<¥57 ®)

the correspondinganonical energy-momentum tenof ,, 1 1
OF, = ——FI0,A% + — 0L FY, 4)
oL 4 167
O, = ——=0,0—-0L, 1) . . . . . .
(0, 9) which are neither symmetric nor gauge-invariant under their

corresponding gauge transformations [3, 5, 6]. On the other

where¢ denotes the collection of independent fields 'nVOIVedhand, for the neutral Proca field, taking

in the Lagrangian densitg and so in the action, and where
all possible internal indices have not been explicitly written. 1 9

_ - 12% _ “w
Next, ©# , is “improved” by Belinfante’s method to obtain L= (F Fuy —2m” 4, A ) ’

167
the symmetric energy-momentum tengof [2
4 I 9y . [2] Eqg. (1) gives also the wrong expression [3]

T = O + 9, KM, 2)

1 1
O, =— —FM9,A, + —LF*PF,4
with K+ = —K#7 and so 4m 167
1
9,T" = 0,0 + 8,0, K" = 9,0 — 5 A AT (5)

(see Ref. 3 for a detailed description of Belinfante’s method)As already mentioned, Egs. (3), (4), and (5) can be “fixed”
A symmetric energy-momentum tens@i, is needed, for by using Belinfante’s ideas [2, 3].
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-,

Let us call the combination of standard Noether's the-where A=A, (x)dz", (A,)=(¢, A), is the potential 1-form
orem and Belinfante’s symmetrization techniques simplyandF),, = 9,4, — 0, A, is the Faraday tensor, aritlis an
Noether-Belinfante’s method. In spite of the success ofarbitrary region of the four-dimensional Minkowski space-
Belifante’'s symmetrization techniques to fix the canoni-time M.
cal energy-momentum tensér” obtained by the standard The first order variation of action (6) under the transfor-
Noether's theorem, it must be emphasized that Belifante’snation of the variable§A,, := A, (z) — A, (z) yields
procedure is aad hocone which also has the ambiguity as-

sociated with the freedom of adding divergence ternt/+o. 58 = /d4x [ 08 SAV} + / (4apngU) as,, (@)
R R

In spite of these properties, Belinfante’s method has become 0Ay
to be very popular. Moreover, its permanent implementation

in gauge theories to “fix” the energy-momentum tenSs¥ with

has created a paradigm consisting in the claim that Noether’s )

theorem isnotenough to determine the right form (via space- oA, —(4ad, F), (8)
time translations) for the energy-momentum tensor in gauge .
theories. and sadS = 0 yields the equations of motion
In this paper the issue of the incompleteness or correct- 88 »
ness of Noether’s theorem for gauge theories is analyzed, GA, —(4ad, F*") =0, 9)

and our conclusion is that the paradigm is not correct. Our ) )
analysis includes Maxwell, Yang-Mills, and Proca fielgs, ~ Provided that the boundary term in Eq. (7) vanishes.
Abelian, non-Abelian, and massive gauge fields are analyzed. 1€ action (6) is fully invariant under the Poinéagroup

More precisely, using spacetime translations, it is shown that , P

the systematic implementation of Noether’s theorem to the Shi= O‘/F e

source-free Maxwell and Yang-Mills theories leads to sym- R/

metric and gauge-invariant expressions for their correspond- :

ing energy-momentum tensors, while for the Proca field = a/ EWF“”d“x

the procedure yields also the symmetric and right energy- R

momentum tensor. In all three cases, the obtention of the —g (10)

right energy-momentum tensors is achieved by taking into

account both the equations of motion and the Bianchi idenThe word “fully” means that the symmetry is exaicg,, that
tities for the system under study. Therefore, the present rethe transformed action is equal to the original action without
sults indicate that the action principle helbthe information  the presence of boundary terms. In order to apply Noether's
required touniquelydetermine the right energy-momentum theorem, the infinitesimal version of the Poiridransfor-
tensor and that there is0 need to use Belifante’s method mation is needed:

because the expressions obtained in this paper, which are

the right ones, follow only from a careful implementation of M =t 4, dat =gt at et (11)
Noether’s theorem. This is an unexpected result which goes C o .

. . . .2~ “Wheree,, = —¢,,, ande* are the infinitesimal arbitrary con-
against the already mentioned paradigm (for more details se K F

Sant parameters associated with the infinitesimal transforma-
Ref. 7). : . : e
tions under consideration. In addition, one has the trans-

Before beginning, some comments about our notationg, mation law for the 4-potentiall,(z) and the 4-gradient
Let M be the Minkowski spacetime where the Maxwell, 8/0z* to first order in the parameters

Yang-Mills, and Proca fields exist and let*) = (ct, x, y, z)

be Minkowskian coordinates in it; Greek indiges- . . . take A (2 = dx” — (Y. — . (52'NA
the value$), 1,2, 3. The Minkowski metric is chosen to fok- w() oz v(@) = (07 = 9u(02%)) Ay
agonal (n,,) = (—1,+1,+1,+1). The symbold*z means = A, (x) — (0,62") A, ,
dz® A dz A dy A dz and als®, = §/0z*. The detailed im- ,
plementation of Noether’s theorem is deliberate to stress our 9 _ Oz i _(sV _ v

(0" = 0u(2")) 0,
method. ox'*  Ox'* Oxv

=0, — (0,02")0,, (12)

2. Source-free Maxwell theory therefore, to first order in the parameters

Fl' (@) =o' ,AY -9 A,
The usual action principle for source-free Maxwell theory is
=F,,(x) + (0,0x%)Fou + (0,02%)FLo. (13)

S[A,] = a/d‘lx F,, F*, (6)  On the other hand, one hd$z’ = (1 + 9,,6z*)d*z. Note,

% however, that if one uses the explicit expressionfat, then
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dudz* = 0 because of the antisymmetry of,. Neverthe- Moreover, the last term on the right-hand side of Eq. (17) can
less,0,,0x* = 0 will not be used at this stage but rather at thebe written by using the antisymmetry 6f,,, and Eq. (15) as

end of the computations. Thus, to first order
—4abzP F'v 9, Fy, = —2a0xP F* (8, Fp, — 0, Fp,)

S/ = a/F/;,wF”“)dzlxl = _2a5'rﬁFHUBUVﬁ
R/ + 2282 F* 95 F,,
= a/FM,,F“”(l + 8g5:1:5)d4x = —2a5xﬁF’“’BWﬁ
+ adzPd3(FHF,,)
+ / 4aFM (9,62P)Fg,d x = 2002 F" B3
= . + d5(ada’ F*E,,)
= S[A,] + o / Fu F* (9627 )d*x — aF" F,,(85027). (18)
Therefore, inserting the results of Eqs. (17) and (18) back
+ / 9y (4aF" 5P Fg,,) d*x into Eq. (14)
R
S = S[A,] + / [aﬁﬂ — 02" (;if
+ / [—4a62?0, (F* Fg,)] d*x (14) s g
R —2a82P F* B,,, 5] d'z, (19)

To continue, it will be convenient to take into account thewhere
variation of the action (6) with respect to the 4-potentla|

and given in Eq. (8) as well as the following definition: J? =4aF1P 60T F,,, + bz FIV F,,
=T" 527, (20)
Byuyg = 0,F3, + 03F,, + 0,F,3. (15)
wo oI nvs is the Noethen-current and
Ett:zs(;)bwous thatB,,, s = 0 is equivalent to the Bianchi iden- T8 .— _ 40 (FwFﬁ s 477”[5F“”F;w> 7 (1)

is theenergy-momentum tensfar the electromagnetic field.
0, Fpu + 0gF,, +0,F,3=0. (16) Due to the fact that the action (6) is invariant under arbi-
trary transformations of the Poinégroup then it is, in par-

Equations (9) and (16) constitute the full set of Maxwell ticular, invariant under an infinitesimal transformation and so

equations. However, Egs. (9) and (16) wilht be used at from Eq. (19)

this stage but rather at the end of the computatiogs,we
y P / {aﬂJﬁ 52905 Fs,—2a62° F* B, 5| d*z=0 (22)

will be working “off-shell”. Let F be the space formed by all m
configurations of the gauge potentials= A, (x)dz*, i R
a point inF is a gauge potential which does not necessarllyfOr arbitrary spacetime regior®. Therefore, the integrand
satisfy Egs. (9) and (16). in the last equation must identically vanish:
Going back to Eq. (14), the integrand in the last term 5S
on the right-hand side of Eq. (14) can be rewritten by using aﬁjﬁ = 59557FBM + 2a5x5F“”BW5. (23)
Eqg. (8) as oA,
Equation (23) is the cornerstone of the formalism of this pa-
—4062%0,(F" Fg,) = —4adz? (8, F*)Fg,, per. Note that Eq. (23) _iBotthe so-called Nogther’s condi_—
tion that is usually obtained in the standard implementation
— 4ad2PF' 9, Fp, of Noether’s theorem.
5S Now, let F be the phase space formed by all those points
= —0af —— oA, Fsp of F which satisfy Egs. (9) and (16). Therefore, for points of
F, the right-hand side of Eq. (23) vanishes and the Noether
— 4ad2P F' 9, F,, . (17)  4-currentJ? is conserved,
dpJ% = 0. (24)
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Using the explicit form for§z“, the Noether 4-current ac- with
quires the form

. Fi, = 0,A, —0,A; — C% e AﬁAﬁ, (33)
JP=_Z MPe achl , 25
91 T (5 the strength of the Yang-Mills fieldl — Asdar @ T, with
with T, the generators of the Lie algebra of the gauge group.
Again, the first order change in the action (32) under the
MP® = T8 _ 20TB (26)  transformatio A = Aj(z) — Aj(z) is:
t_he angular momentum tensofor the el_ect_romagnet_ic 5g — /d4$ { 05 SAZ%} + / (4aF¢;‘”SA3) ds,, (34)
field [4].  Furthermore, from the continuity equation dAL
057 = 0, R R
1 with?
&0 (0MD?) + 2y (95T77) =0, 27) 55
SAa = —(4aD,F!), (35)

and from the fact that,, ande,, are independent parameters

it follows that each tensor is independently conserved and so§$ = 0 gives the equations of motion

Byéd —
OoM 0 (28) D, FI =0, (36)

and if the boundary term in Eq. (36) vanishes.
65T7ﬁ —0. (29) Again, the action (6) is fully invariant under the Poinear
group. In order to apply Noether’s theorem, the infinitesimal
Moreover, the energy-momentum tengot® is symmetric. ~ version of the Poincartransformation is needed and given by
This can be seen from its definition in Eq. (21) or from EQ. (11) together with the transformation for the Yang-Mills
the conservation of the energy-momentum and angular mdields

mentum tensorsi.e,, from Egs. (28) and (29) it follows oz’

that 77¢ = T*7. Therefore, 77" is conserved symmet- A () = i Au (@) = (87 — 8, (0a")) A}

ric, gauge-invariantunder gauge transformations because it v

depends only orf,,, andtracelessbecause off*,, = 0. = Aj(x) = (9,62") Ay @37

The Misner-Thorne-Wheeler's convention for the energy- ] g
momentum tensor is [4] Therefore, to first order inx

1 1 F/ay ) = & LA/Z _9 A — e cA/b A/f;
THY — Z (F/LQFV o — 4,'Tu.l/FOLBFaB> ; (30) w ( ) / o b I
i = Fﬁu(l‘) + (al/(sxa)F((j,u + (aﬂéza)F:}av (38)
which corresponds to set = —1/167 andc = 1 into the d thus to first ord
action (6). In an explicit form, the componentsiof” read andthus fo first order
poo_ B2+ B S i=a / FF
N 8t
o (E x B)i = a/R Fi B (14 dpox?)d
B 4 ’
. 1 . . 1 mn m + / 4aF™ (8,02°)Fg d*x
Tt = — | (B E* + BIBY) + S(E? + BT (3D) R o
m

= S[AY] + o / FS, Fl (05627 d"x
3. Yang-Mills theory R
The reader might wonder if the procedure applied to Abelian + /R Oy (4aF(§““§x5F§M) d'z
gauge fields holds also for non-Abelian gauge fields. The an-
swer is in the affirmative. To see this, the Lagrangian action + / [—40d2°0, (FI* Fg,)] d*. (39)
for the Yang-Mills fields is considered [8]: R
As in the Abelian case, the object
S[A%] =« / d*z Fl, FI™, (32)

e = DuFg, + Dby, + D, Fg, (40)

R pv
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will be needed. The equatiali}, ; = 0 is equivalent to the  Bianchi identities (41) hold, then the right hand side of last
Bianchi identities equation vanishes and the NoethesurrentJ? is conserved:

D,F§, + DgFf, + D, Fis = 0. (41) dpJ? = 0. (48)

Equations (36) and (41) are the full set of Yang-Mills equa-Using the explicit form forsz*, the Noether 4-current ac-

tions. As in the Abelian case, we will be working ‘off-shell’, quires the form

i.e, without using such equations at this stage but rather at 1

the end of the computations. JP = fiawMBW’ +e,TP7, (49)
We have in hand all the elements to continue. The inte-

grand in the last term on the right-hand side of Eq. (39) carwith

be rewritten using Eq. (35) as MO = T8 _ g8, (50)

4062”0, (FI' FS ) = —4ad2® (D, FI'")F3 I
a0z 0, (Fa" F,) a0z (D ") F, theangular momentum tenséor the Yang-Mills fields.

— 40463:5F“”D,,Fg Again, the same reasoning that follows Eqg. (26) can be
a K . .
59 applied to conclude that/#7¢ and7"” are independently
= —§zP A Fg, conserved and thgt”? is symmetric and gauge-invariant.
i
— 4aba” F}V D, Fg,,. (42) 4. Source-free Proca theory
Rewriting the last term on the right-hand side of Eg. (42),Now, the case of a non gauge-invariant theory will be dis-
following the procedure used for the Abelian case, cussed: the source-free Proca field [9]. It is interesting to
know if the procedure of the present paper works also for this
—4as2’ FI'" D, F§, = —2062° F* BS, 5 dynamical system.
+ 85(a6xﬁF5”Fl‘jy) . The action principle for the source-free neutral Proca field
— aF}FS,(05027).  (43)
S[A,] =« / d*z [F, F*" —2m?A,A"] (51)
Therefore, inserting the results of Eqs. (42) and (43) back 2
into Eq. (39) . .
whereA = A, (z)dz" is the potential 1-form and
a 65 a
S/:S[AH}—&-/ |:3ﬁJ5_63355A7F5H F, = 0,A, —0,A,
R
8 v pa 4 its strength.
—2002"F}" B}, 5] d'z, (44) The first order variation of the action (51) under the trans-
with formationd A, = A, (xz) — Au(x)is
T8 — 4 FrB T FO SaB v pa 68 = [ d*z 05 6A, + (4aFWSA ) dy,, (52)
=aol €T ’Yu+a$ a uv - 5Ay v v 73]
=77 627, (45) ® oR
with
the Noethe#r-current and 59
1 A= —4ad, F" — 4am?AY, (53)
77 = —4a (FgﬂF@ﬁ p— 47773F5”F3V> , (46) v
and saS = 0 yields the equations of motion
is theenergy-momentum tensfar the Yang-Mills fields. 59
Applying the same reasoning used in the Maxwell case, = —4ad, F" — dam?AY =0, (54)
the relationship oA,
5 provided that the boundary term in Eq. (52) vanishes.
0pJP = 5955@1% +2a62° FI' B, 5., (47) From Eq. (53) it follows that
17
08
is obtained. As in the Maxwell case, Eq. (47)riet the oy (6A ) = —4am?9, A", (55)

usual Noether’s condition obtained by the standard Noether's
theorem. As before, Eq. (47) plays a very important rolebecause of the antisymmetry Bf,.. Eq. (55) will be used in
here also. As before, if the equations of motion (36) and thehe application of Noether’s theorem.
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Once again, applying an infinitesimal Poingdransfor-  In a similar way, the last line in Eq. (56) can be rewritten as
mation,
—4am?62”0,, (A*A,) = — dam?®sz” (9, A") A,

S =a / d*a’ [F',, F™" —2m* A’ AT — dam?sz” A*9, A,
~ = — dam252” (9,A") A,
:a/d4aj [F,WFF“’ _ 2m2AMA“] (1+ 8ﬁ5xﬁ) — dam28zY AP [F,uu + aVAIJ
R
6S
=0x"A,0, | —
+ / 4aF" (0,62")Fg,d*x v ! <5Au>
R — 4am2(5m”A“FW
+ /4am2A“A,, (0,02") d*z — 2am?5z" 0, (A, A")
R 6S
=S[A,] ox" 4,0, (514#)
2 VAR
+a / d'a [F, P — 2m? A, A"] (9562°) +damor" ANy,
R + 0, (—2am26x”AﬂA“)
+ /81, [40[F‘U’V§SC’BF@L + 2am?A, A" (8,02").  (59)
R On the right-hand side of the second equality in Eq. (59),
+ dam?AY A, 02" d'x the definition of £, was used while in the third equality,
Eq. (55) was used.
+ [ [~4adzP0,(F" Fp,)] d*z Inserting Egs. (58) and (59) into Eq. (56),

4]
S = S[A,] +/ {3@]5 - MB(STSFW
R K

4am?®sz"0,, (A*A,) d*z. (56)

A A

0S
_ B puv v I0 4
By using Eq. (53), the next to last term on the right-hand side 20007 F" B + 02 A0, <6AM)] d'. (60)
of Eq. (56) acquires the form
where

—40a62”9,(F* Fg,) = — 4a62” (9, F") Fg,, J? :=4aF"P 8§20 F,, + ada’ F'F,
= T nv

— 4adz’ F" 9, F,
o o — 2am2AﬂA”6x5 + 4am2AﬁA“(5m“
6S
=— &cﬁmFﬁu =77 5" (61)
— dam?§x” AF F,, is the Noethed-current and

_ B puv 1
dabx” F' 0, Fg,,. (57) T8 — _ 40, (F’Y#Fﬁ P Zn'yﬁF‘“’FMV

The last term in Eq. (57) has been already rewritten and it

is given in Eq. (18). Therefore, using Eq. (18), Eq. (57) +%m27ﬂﬁA#A“ - m2A7A5) , (62)
becomes
5 is theenergy-momentum tensfar the Proca field.
—4ad2P9, (F' Fg,) = — MﬂﬁFB“ Once again, due to the fact that the action principle is in-
" variant under the Poincauigroup, it follows that
— 4am25zﬁAﬂFgu 55
B B
—204(5.’11‘6FIWBMVB / |:818J — o (SAMF[.}H
R
+ d(adx’ FFF,,) 59
o B v v e 4 _
7 ozF‘“’FW([)géxﬁ). (58) 206" F*" B8 4+ 0x” A0, (5Au)] d*x =0, (63)

Rev. Mex. 5. 52 (1) (2006) 29-36



SYMMETRIC ENERGY-MOMENTUM TENSOR IN MAXWELL, YANG-MILLS, AND PROCA THEORIES ... 35

for arbitrary spacetime regiorf8. Therefore, the integrand the sense already explained, and this is why the canonical

must identically vanish: energy-momentum tensors so obtained need an “improve-
59 ment” via, for instance, Belinfante’s method. One could say
95" = 55106@1%“ + 2002° F* B that Noether-Belinfante’s method is equivalent to the analy-
" sis performed here in the sense that both approaches agree
S5 AD <55> (64) in the final form for the energy-momentum tensor. This is
v 6A, )"’ so from an operational (and pragmatic) viewpoint. Neverthe-

less, there is a key conceptual difference between Noether-
:Belinfante’s procedure and the one followed here. From the
viewpoint of the present paper, Belinfante’'s methodad

needed because the action laisthe information required

to uniquelydetermine the right expressions for the energy-
8gJﬁ =0. (65)  momentum tensol* via translations in spacetime by us-
ing only Noether’s theorem. Moreover, the formalism of
the present paper, in contrast to Belinfante’s method, has
no ambiguities once the Lagrangian density has been cho-

which is the right Noether’s condition.

Therefore, if the equations of motion (54) and the Bianch
identities hold, then the Noether 4-currefit is identically
conserved:

Using the explicit expression farz*, the 4-current ac-
quires the form

JB = _lgwMﬁwﬁ + EVT@W’ (66)  Sen. In s_pite of these c_onceptue_ll differences, our method

2 agrees with Noether-Belinfante’s in the computation of the

with correct form for the energy-momentum tensor. So, let us
MPVE VOB _ b8 (67) briefly say some words about the relationship between our

method and Belinfante’s. As we mentioned, a key element in
theangular momentum tensor our approach is the explicit incorporation and handling of the
Bianchi identities. In our opinion, the Bianchi identities (or

something equivalent to them) are “hidden” in Belinfante’s
method, which allows us to fix somehow the wrong canoni-

It has been shown that the symmetric and gauge-invariant e%al energy-momentum tensor. Of course that the precise re-
pressions for the energy-momentum tensors of Maxwell anéftionship between the current formalism and the Noether-
Yang-Mills fields can be obtained from a direct implemen-Belinfante’s method must be explained, but that is beyond
tation of Noether's theorem under a correct handling of the&he scope of this paper.

terms involving the equations of motion and the Bianchiiden-  Finally, it would be interesting to generalize the results of
tities. The procedure also works for the Proca fields. Therefs. 10 and 11 to the case of gauge theories where the La-
reader might then wonder about the cause of the failure ofjrangian is singular [12],e., det (a%/aqiaqi) — 0. Such

the standard Noether’s approach, which leads to Egs. (3), (4% generalization would involve building an action principle
and (5) instead of Egs. (21), (46), and (62); respectively, orwhich would yield the original equations of motion for the
equivalently, what is then the difference between the stangauge system simultaneously with its Jacobi variational equa-
dard Noether’s approach found in literature and the one of th@ions. It is clear that the dynamical systems analyzed in this

present paper if after all both approaches deal with Noether'paper could be handled in the framework of such a general-
teorem? The answer is as follows. In the standard implemenzation.

tation of Noether's theorem to gauge theories only half of the

full set of equations of motion are used, the Euler-Lagrange

equations. However, when dealing with gauge theories, one

has to keep in mind also the Bianchi identities which are
not taken into account in the standard approach [3,5,G]AC:knm’v'(:"dgrnents

Nevertheless, as shown here, if they are both taken into ac-

count, Noether’s theorem yields the right expressions for th&Varm thanks to G.F. Torres del Castillo, 8d3avid Vergara,
energy-momentum tensors. Therefore, there is nothing mysnd Abdel Rrez-Lorenzana for their detailed reading and
terious or wrong in the implementation of Noether’s theo-criticisms to the first version of this paper. We also thank the
rem to gauge theories; what happens is just that the stameferee for pointing out Refs. 10 and 11. This work was sup-
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The covariant derivatives are defined as follows:

Duna = u77a +C bcnbAZ
and

Dya :=0uXa — C” ac Xy Af,.
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