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Ultrasonic determination of real contact area of randomly
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Micromechanical characterization of interfacial properties of non-conforming rough surfaces in contact was performed by a method based
on ultrasonic waves. The method to estimate the interfacial properties is based on ultrasonic spectroscopy of signals reflected from the
interface. Ultrasonic results are complemented with probabilistic contact mechanics to model the normal and tangential interfacial stiffness
(KN and KT ) constants for different degrees of closure. The results show that a single set of stiffness constants KN and KT is sufficient
to describe the dynamic response of the interface independently of the incident angle of the ultrasonic waves. Plastic deformation of the
rough interface is studied using the same ultrasonic method. Experimental results indicate that the hysteretic effect observed by repetitive
loading cycles is an indication of plastic deformation at the asperity summits with greater height values. The phenomenon is explained using
micromechanical and probabilistic models. The results show the possibility of using the method to estimate the interfacial stiffness, presence
of plastic deformation, and the real contact area, which in the past have been impossible to measure accurately.

Keywords: Interfacial stiffness; ultrasound; rough surfaces.

Caracterizacíon micromećanica de propiedades interfaciales de superficies rugosos no-conformantes fue realizado mediante un método
basado en ondas ultrasónicas. El ḿetodo para estimar las propiedades interfaciales hace uso de espectroscopia ultrasónica de sẽnales re-
flejadas desde la interfase. Resultados de las pruebas con ultrasonidos se complementan con análisis probabiĺıstico y mećanica del contacto
para modelar las constantes de rigidez normal y tangencial de (KN y KT ) para diferentes grados de acercamiento de las superficies. Los
resultados muestran que un parúnico de constantes de rigidez KN y KT son suficientes para describir la respuesta dinámica de la interfase in-
dependientemente delángulo de incidencia de la onda ultrasónica. Se estudió la deformacíon pĺastica de la interfase rugosa usando el mismo
método ultraśonico. Los resultados experimentales indican que el efecto histerético observado durante la aplicación de cargas repetitivas
es un indicador de la deformación pĺastica en las crestas de las asperezas con valores de alturas mayores. El fenómeno se explica usando
modelos probabilı́sticos y micromećanicos. Los resultados muestran la posibilidad de usar el método para estimar elárea de contacto real, el
cual hasta ahora ha sido imposible de medir.

Descriptores:Rigidez interfacial; ultrasonido superficies rugosas.

PACS: 43.35.+d; 46.55.+d; 81.70.Cv

1. Introduction

The determination of interfacial properties for rough surfaces
in mechanical contact is important in several realms of engi-
neering. Processes such as friction, wear, lubrication, electri-
cal and heat conduction on the micro and nano-scale involve
a certain degree of contact. In all of these processes, it is es-
sential to determine interfacial properties such as interfacial
stiffness and real contact area, which depend on the condi-
tion of deformation at the interface. To understand the con-
tacting problem, elastic, elastoplastic and plastic deformation
processes need to be considered for the correct analysis of in-
terference between rough surfaces.

In the past, ultrasound was used mainly for determination
of defects and process and material characterization. How-
ever, techniques in the study of interface characterization

based on ultrasound propagation analysis have received lim-
ited emphasis, despite the fact that ultrasonic waves are in-
sensitive to surface oxidation as the electrical resistance tech-
nique and it can be applied to non-metallic and opaque ma-
terials to which the electrical and optical techniques are not
applicable.

Works have been reported on the study of ultrasonic wave
interaction with imperfect interfaces formed by two non-
conforming rough surfaces. For example, Kendall and Ta-
bor (1971) experimentally studied the assessment of the real
area of contact between two rough surfaces. Nagy (1992)
and Margetanet al. (1992) describe the nature of interfacial
imperfections in kissing and partial bonds using interfacial
stiffness parameters. Drinkwateret al. (1997) described the
link between the reflection coefficient and surface roughness
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FIGURE 1. Studied systems (a) single interface, (b) double interface; (c) setup of the system and block diagram for signal acquisition and
post processing for ultrasonic measurements of interfacial stiffness.

from an interface formed by rubber and a metal or plastic.
Recently, the application of spectroscopic techniques to the
study of imperfect interfaces was explored by Lavrentyev
and Rokhlin (1998), Baltazaret al. (1999) and Baltazaret
al. (2002). Kim et al. (2004) addressed the difference in
the ultrasonically measured stiffness and static elastoplastic
stiffness.

In this work, we addressed the use of ultrasonic spec-
trum signature in characterizing micromechanical properties,
physical nature, including interfacial stiffness and real area
of contact of two randomly rough metallic surfaces in close
contact. The interfacial stiffness obtained with the ultrasonic
method proposed is related to the micromechanical properties
using developed probabilistic micromechanical models. Mi-
cromechanical models for elastic and elastoplastic regimes

are used in conjunction with the ultrasonically determined
interfacial stiffness to extract the micromechanical proper-
ties of the interface. Finally, the possibility of extracting
the area of contact from the ultrasonic spectrum signature
for randomly rough interfaces with elastic and elastoplastic
deformation is discussed.

2. Experimental determinations of interfacial
stiffness using the ultrasonic method

Quasi-Static Approach (QSA)

Ultrasonic determinations of interfacial stiffness were per-
formed using nonlinear optimization between the experimen-
tal data and the Quasi-Static Approach (QSA) (Baik and
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Thompson, 1984). In the QSA model, the low frequency re-
sponse of two contacting surfaces causes a discontinuity in
the displacement components (ui) that is proportional to the
stress field (σik) at the interface, while for interfaces between
contacting surfaces, the components of the stress fields are
assumed to be continuous everywhere. When the character-
istic length of the imperfectnion is sufficiently smaller than
the wavelength, the stress and the displacement jump are re-
lated by the quasistatic (spring) boundary conditions. Thus,
the spring boundary conditions enforced on the plane of an
imperfect interface, z = 0, are:

σzz

(
z = 0+

)
= σzz

(
z = 0−

)

= KN

[
uz

(
z = 0+

)− uz

(
z = 0−

)]
,

σxz

(
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= σxz
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)− ux

(
z = 0−

)]
, (1)

wherez=0+ andz=0+ indicate above and below of the plane
z=0. The quantitiesKN andKT (N/m3) are the normal and
transverse interfacial stiffness constants of the imperfect in-
terface, respectively.

Experiments on single and double roughed interface with
elastic interference

Experiments on rough interfaces were performed to model
the elastic, elastoplastic and plastic contact of rough inter-
faces under controlled loading levels and correlated with mi-
cromechanical probabilistic models (Baltazaret al. 2002 and
Kim et al. 2004). In the experiments, two different sys-
tems were considered: single interface (system I) and two
rough interfaces (system II) as shown in Figs. 1a and 1b. Sys-
tem I consists of a single interface formed by two aluminum
blocks in contact, and system II is formed by double inter-
faces composed of a thin aluminum plate placed between the
two blocks. What interests us about these two systems is that
both can be found in engineering structures,i.e. single inter-
faces are commonly found in mechanical structures in con-
tact, and double interfaces can be found in joined systems
such as adhesives.

The systems and the apparatus used in the experiments
are described in Fig. 1c. In both cases, the systems were
loaded against each other with different values of contact-
ing surface roughness to control the interfacial stiffness. The
applied pressure was varied from 9 to 80MPa controlled
by a universal testing machine (MTS). The upper block
hosted three longitudinal wave transducers, one for normal
incidence pulse-echo measurements and two for through-
transmission oblique incidence (as shown in Fig. 1c). The
transducers’ signals were recorded using a digital oscillo-
scope and further analyzed in the time and frequency domain
by a personal computer.

The aim in the first set of experiments was to observe if
the set of interfacial stiffness constants are sufficient to char-
acterize the macro-mechanical response of a system formed

by single or double imperfect interfaces independently of the
angle of incidence of the incident ultrasonic beam. The ef-
fect of the applied load on the reflection spectrum was clearly
observed, as shown in Fig. 2. Reconstruction of interfa-
cial stiffness from the ultrasonic reflected spectra can be per-
formed by least squares optimizing fit between the experi-
mental spectrum and that calculated from the model. The
average interfacial stiffness of the area illuminated by the ul-
trasonic beam is reconstructed (Baltazaret al. 2002).

Figure 2 shows typical results for an interface formed by
two contacting rough surfaces (single interface), with 0.68
µm rms roughness at each surfaces. The symbols represent
the experimental values obtained at different values of the ap-
plied pressure, while the solid lines illustrate the predictions
of the QSA model. For pressure values lower than 9MPa
applied to the system,the reflected ultrasonic amplitude does

FIGURE 2. Experimental and theoretical spectra of a longitudinal
wave at 9MPa, 34 MPa and 79MPa, for incidence at (a) normal
and (b) 40 degrees of incidence from a double imperfect interface.
The stiffness constants used in the model to calculate solid lines are
those obtained at normal incidence.
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FIGURE 3. Experimental and theoretical spectra of a longitudinal
wave at 9MPa, 34 MPa and 79MPa for incidence at (a) normal and
(b) 40 degrees of incidence from a double imperfect interface. The
stiffness constants used in the model to calculate solid lines are
those obtained at normal incidence.

not vary with frequency, the interface behaves nearly as a per-
fectly reflecting surface, and the reflected ultrasonic ampli-
tude does not vary with frequency. This pressure threshold
varies with the roughness, being less for lower roughness.
For values of the applied pressure higher than 80MPa, the
effect of the contacts on the reflected spectra show signs of
saturation,i.e. the reflection amplitude becomes independent
of further load increase. Experiments were performed simul-
taneously using, the shear wave to deduce the transverse stiff-
ness constant.

To support our assertion that the stiffness constants ob-
tained from single or double interfaces are the same, sys-
tem II was investigated extending the work of Lavrentyev
and Rokhlin (1998) on interfaces with imperfect boundary
conditions to include oblique incidence, as in Baltazaret al.
(2003). The interfacial stiffness of a double imperfect inter-
face was evaluated from the normally reflected power spectra
of both longitudinal and shear waves. The roughness of the

four surfaces used in these measurements was estimated to be
about 0.23µm. The values ofKN andKT obtained at nor-
mal incidence from a single interface (system I) were used to
predict the spectral response of the double imperfect interface
at oblique incidence.

Figures 3a,b shows an example of the measured and pre-
dicted spectra of a longitudinal wave reflected at 0 (normal
incidence) and 40 degrees, respectively, from the double in-
terface. The theoretical results reproduce the main features of
the experimental spectrum and, in particular, correctly predict
the position of the minima of the spectrum. Similar results
were obtained for other values of the angle of incidence. The
data provide evidence that for the given surfaces in contact
there exists a unique set of transverse and longitudinal stiff-
ness constants which describe sound wave interaction at an
arbitrary incident angle.

The ratio between the transverse and the normal interfa-
cial stiffness constants,KT /KN , increases from 0.4 at 9MPa
to 0.51 at 80MPa, as shown in Fig. 4a. The data for longitu-
dinal and shear stiffness for roughnessσ = 0.25µmare shown
in Fig. 4b, together with the data for double interface. The
small differences betweenKN for a single and double inter-
face are explained by the slightly different rms roughness val-
ues of the two surfaces and the different grade of aluminum
for the thin foil used to form the double interface.

2.1. Hysteresis as an indicator of plastic deformation

In Figs. 5 and 6, repetitive loading cycling was investigated;
this was done in a new set of experiments using ultrasonically
measured normal interfacial stiffness versus applied nominal
pressure. Experimental apparatus similar to that described
in Fig. 1c was used; however, only normal incidence and
single interface were considered. Ultrasonic measurements
were performed on the rough surface contact interface; two

FIGURE 4. Ratio of experimental interfacial stiffness constants as
function of nominal pressure. a) Single interface for surface rough-
ness 0.68µm; b) Comparative results for double interface (crosses)
with rms roughness 0.23µm and results for single interface with
roughness 0.25µm (solid points).
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surface combinations for the upper and lower were used: 1)
smooth/smooth surfaces, both surfaces having rms rough-
ness of 0.23µm, obtained by sandpaper grinding (Fig. 5); 2)
smooth/rough surfaces, the upper surface sandpaper-ground
(0.23 µm) and the bottom sandblasted (2.4µm) (Fig. 6).
Measurements are shown by points for repeatable loading
cycles. The stiffness data for the smooth/smooth interface
(Fig. 5)) exhibit very small hysteresis for the repeated cycles,
indicating that the process is nearly elastic. Results for the
smooth/rough interface are shown in Fig. 6, where a strong
hysteretic behavior is clearly observed during the first cycle,
which manifests the plastic deformation of the contacting as-
perities. The interfacial stiffness exhibits the same value at
the maximum applied load of 85 MPa for all cycles, indicat-
ing that no further plastic deformation occurs at the asperities
in subsequent loading cycles.

FIGURE 5. Interfacial stiffness versus nominal pressure. Points
are experimental results. The solid lines correspond to the simu-
lated hysteresis cycle. pY is determined from the model. Interface
formed by two smooth surfaces with rms roughness 0.25µm.

FIGURE 6. Interface formed by a rough (rms roughness 2.4µm)
and a smooth (rms roughness 0.25µm) surface.

It should be noted that in the elasto-plastic regime, one
must to distinguish between the ultrasonically determined in-
terfacial stiffness and static interfacial stiffness. As shown in
Fig. 7, when an ultrasonic wave interacts with an interface,
a small-scale loading-unloading cycle, centered on the static
load, occurs (vibration displacement in an ultrasonic wave is
of Åscale). In the elastic static contact regime, the ultrasonic
loading-unloading occurs on the same static load-approach
curve, and thus the ultrasonically determined interfacial stiff-
ness corresponds to the static one as the slope of the load-
displacement curve. When the contacting asperities are plas-
tically deformed, the local unloading occurs along a curve
different from the loading curve due to the hysteresis. The
ultrasonic vibrations induce loading-unloading cycles along
the local static unloading curve. Thus, the ultrasonically de-
termined interfacial stiffness, which we call “ultrasonic inter-
facial stiffness,” is the local unloading stiffness.

In the elastoplastic and plastic contact regime, the ultra-
sonically determined interfacial stiffness is much higher than
the static loading interfacial stiffness. This is because in the
elastoplastic regime, the asperities have reduced their static
stiffness with load due to progressive plastic deformation.
Therefore, after an increase of load, the rate of static stiff-
ness increase is less than that of the contact area. However,
the ultrasonic stiffness corresponding to the local unloading
slope is insensitive to the plastic softening effect of the as-
perities, and its increase is related solely to the contact radius
growth as described in Fig. 6. This phenomenon is anal-
ogous to the recently described dynamic spring (stiffness)
measurement in instrumented nano-indentation tests (Oliver
and Pharr, 1992; Johnson, 1996; Cheng and Cheng, 1997;
Fisher-Cripps, 2002). When a small oscillating load is ap-
plied during the indentation into the material, and calculating
the unloading slope, Young’s modulus at the excitation fre-
quency can be measured continuously during indentation.

FIGURE 7. Diagram of pressure-approach loading-unloading cycle
for a single asperity in elastoplastic contact. The relation between
static and ultrasonic contact stiffness to the slope of the pressure-
approach curve is shown.
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While the question of the quantitative physical interpreta-
tion of this hysteresis continues to be under study, the above
results indicate that the ultrasonically measured interfacial
stiffness monitored during loading/unloading cycles is sen-
sitive to the presence of plastic deformation. It also shows
that an estimate of the contact area can be obtained from the
estimated interfacial stiffness when data are used in conjunc-
tion with micromechanics models.

3. Micromechanical elastoplastic model

Ultrasonic contact spring

The problem of contact between rough interfaces is amenable
to study using a single asperity model if non-interaction
between neighboring asperities is assumed. The contact
stiffness coefficient for a single asperity is defined from
a force/displacement relation and has units N/m (Johnson,
1985), hereafter referred to as “contact spring coefficient” or
“contact spring”. At any point of the loading curve (inde-
pendently of the deformation extension), the contact spring
(κl) resulting from the ultrasonic vibrations is given by the
slope of the initial unloading curve(dPunload/dδ), which is
calculated (Johnson, 1996) as:

κl =
dPunload

dδ
= 2aE∗, (2)

wherea is the elastoplastic radius of the contact area,δghe
relative approach, E*= E/(1-ν).

Based on the FEM results of Kogut and Etsion (2002), a
simple equation of the contact spring to describe the elasto-
plastic deformation for a single asperity can be determined.
Therefore, the contact springκl during loading is described in
terms of the approach as (Kimet al., 2004):

κl = 2CE∗ac

(
δ

δc

)λ

, (3)

whereC andλ are coefficients obtained for different ranges
of the normalized approach(δ/δc), andac andδc are the radii
of contact area and critical approach, respectively, at the yield
inception as given by the Hertz theory (see Johnson, 1996).

The Hertz equations for the two spheres in elastic contact
are recovered by settingC = 1 andλ = 0.5 for δ/δc ≤ 1. In
the range1 ≤ δ/δc ≤ 6 (Kogut and Etsion (2002) found that
the onset of plastic deformation is atδ/δc = 6), the coeffi-
cients areC = 0.96, λ = 0.568. In the elastoplastic range
6 ≤ δ/δc ≤ 110, they areC = 0.97 andλ = 0.573.

During unloading it can be assumed that Eq. 2 is still
valid. However, the relationship between the displacement
(δ) and the radius of contact area (a) is generally unknown
during the recovery from an arbitrary plastic state. In this
work, we use the model proposed by Liet al. (2002)
and early modified by Thornton (1997), where a truncated
Hertzian contact pressure distribution is assumed over the
contact area (assumption is supported by the recent analy-
sis of Mesarovic and Johnson (2000)). An increase in the

radius of curvature is considered related to the radius of con-
tact area using the parabolic law of the elastic contact prob-
lem, R = a2/δ. Therefore, the contact spring for the single
asperity during unloading is given as:

κu = 2E∗(Rmaxδ)
1
2 , (4)

for δr ≤ δ ≤ δmax. It is noted that at the initial point of
unloading, the unloading contact spring coincides with the
ultrasonic contact spring Eq. (3) at this point on the loading
curve. The radius of contact areaaduring unloading is calcu-
lated by using the parabolic lawa =

√
Rmaxδ, and thus the

area of contact isA = πRmaxδ.
Figure 8 compares the static and ultrasonic interfacial

springs during loading and unloading. The ultrasonic contact
spring during loading was calculated with Eq. (3), and the
unloading contact spring with Eq. (4). The ultrasonic con-
tact spring is continuous at the maximum load. The static
loading contact spring was calculated as the slope of the
load-displacement curve. Since the unloading is elastic, the
static unloading spring is identical to the ultrasonic unloading
spring. The ultrasonic unloading spring remains finite at load
removal, which corresponds to the infinitely small load at the
residual displacement. One can see that the ultrasonic stiff-
ness at a given load depends only on the contact area, which
remains unchanged at the initial unloading point.

Interfacial stiffness

The single asperity model discussed in the previous section is
now extended to cover the problem of estimating the interfa-
cial stiffness of a rough interface in mechanical contact with
elastic-plastic deformation.

FIGURE 8. Ultrasonic contact spring during loading and unload-
ing of two identical spheres in contact. The static contact spring
(dPload/dδpgs also shown (dash-dotted line); the locus for the
static unloading contact spring coincides with that for the ultrasonic
unloading springu
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Most of the micromechanical non-interacting models in
the past assume that deformation occurs at the surface as-
perities, and their interaction is to be purely elastic (Kendall
and Tabor (1971), Brown and Scholz (1985), Boitnottet al.
(1992), Yoshioka and Scholz (1989)). Significant efforts have
been put forth by many authors to model elastoplastic behav-
iors of rough surfaces,e.g. Haines (1980), Nayak (1973),
Webster and Sayles (1986), and Yoshioka (1994). Mod-
els for contacting rough surfaces based on improved elasto-
plastic descriptions of the two-spheres contact problem have
been proposed (Changet al., 1987; Zhaoet al., 2000). Re-
cently, theoretical and finite element analyses (FEA) of the
elastoplastic contact behavior of two spheres during loading
cycles have been reported by Vu-Quoc and Zhang (1999),
Mesarovic and Johnson (2000), Mesarovic and Fleck (2000)
and Li et al. (2002). Kogut and Etsion (2002) performed
detailed FEA elastoplastic analysis of spheres in contact and
based on the FEA results, provided empirical coefficients of
dimensionless relations for load, real area of contact, and
contact pressure versus relative approach.

The topography of two contacting rough surfaces plays
a significant role in the ultrasonic interaction model. In the
past, several stochastic models have been used to describe
rough surfaces.

To simplify the problem of two rough surfaces in contact,
Greenwood and Williamson (1966) described the statistical
asperity micromechanical model where the properties of the
two rough surfaces are accounted for through the statistical
properties of the fictitious composite surface. Therefore the
new surface is defined by means of an appropriate algebraic
sum of the profiles of the two contacting surfaces. In this way,
the contact of the real rough surfaces is transformed into that
of the composite surface in contact with a rigid flat surface.

The distribution of the peaks of the asperity heights of the
composite surfaces can be described statistically by a proba-
bility density functionϕ(z). This function defines the prob-
ability of finding peaks of asperity heights in the intervaldz
aroundz. The probability density function is therefore a key
element to describing the contacting problem. Two major
difficulties arise in correctly defining this function: the first
is related to the nature of the roughness preparation, and the
second related to the method used to estimate the surface to-
pography. In nature, most surface topography is formed by
a random distribution of surface height which can be clas-
sified as either Gaussian (i.e. Greenwood and Williamson,
1966) or non-Gaussian (Goodman (1976), Adler and Fir-
man (1981), Aroniwich and Adler (1995), Chilamakuri and
Bhushan, 1998) depending on the surface preparation method
used. For example, surfaces produced by common machine
methods are expected to have a non-Gaussian height distri-
bution. Skewness in the distribution is common in surfaces
obtained by processes such as grinding, honing, milling and
abrasion (Bhushan, 2001). Typically, the surface statistics
are estimated using a profile measuring instrument. These
measurements are limited by the inability of the device to
move along the summit of the asperities; instead, the device

is expected to travel along the shoulder of the asperity. Stud-
ies based on random process theory showed that the statistics
profiles are close to the actual summit distribution when this
resembles wide-band random noise, rich in frequency com-
ponents. To account for this, Nayak (1971) defined a band-
width parameterα. Analysis of Gaussian (Nayak, 1971) and
non-Gaussian (Aroniwich and Adler, 1985) height distribu-
tions showed similar shifting of the summit distribution to the
greaterheight values as the bandwidth parameterαgecreases.
Bush et al. (1976) described the following approximation for
the rms of the summit or peaks as function ofαgnd the rms
of the profileσ′:

σ =
(

1− 0.8968
α

)1/2

σ′. (5)

To account for the skewness and kurtosis of the probabil-
ity density function, Chilamakuri and Bhushan (1998) gener-
ated non-Gaussian probability density distributions for differ-
ent values of skewness and kurtosis values. Adler and Firman
(1981) proposed using an inverted chi-squared distribution;
this approach was later corrected by Aronowich and Adler
(1985). In this present work, we have proposed the use of
the following simpler distribution function which is a limiting
case of that derived by Aronowich and Adler (1985) when the
values of the parameterα →infinity (Baltazaret al., 2002):

ϕ (β; z) =

√
β

2
1
σ

(√
β
2

z
σ

) (β−2)
2

Γ
(

β
2

) exp

(
−

√
β

2
z

σ

)
, (6)

whereσ is the rms roughness value of the composite sur-
face profile defined asσ =

[
σ2

1 + σ2
2

]1/2
, σ1,2 are the rms

roughness values of the two surfaces, and z is the coordi-
nate attached at the top of the highest asperity with its posi-
tive direction coincident with the depth direction as shown in
Fig. 9a. Since the distribution of heights of asperity peaks is
unknown and to be determined from the ultrasonically mea-
sured elastoplastic response of the interface, the use of the
χ2-distribution function is advantageous due to its general-
ity. In limiting cases it becomes the exponential distribution
atβ ≤ 2 and the Gaussian distribution atβ →∞.

Using the composite surface and the probability density
function for peaks of asperity heights, the total ultrasonic
contact springκ can be expressed as a function of the ap-
proach as

κ(δ) = ηAn

δ∫

0

κ(δ − z)ϕ(z)dz, (7)

whereη is the number of asperities per unit area; the overbar
denotes the statistical average of a random physical quantity,
An is the nominal contact area,(δ − z) is the deformation of
a given asperity at approachδ, andκ(δ − z) is the contact
spring of a single spherical asperity.

Rev. Mex. F́ıs. 52 (1) (2006) 37–47



44 A. BALTAZAR, J-Y. KIM, AND S.I. ROKHLIN

FIGURE 9. (a) Diagram showing coordinate system; (b) Asperity
height distribution function. The ranges of approach in which as-
perities are deformed plastically and remain elastic are shown. All
asperities with height belowδmax−δc (z¿δmax−δc) are deformed
elastically while asperities with height above this line are deformed
elastoplastically.

The total real contact area can then be found as

Ā(δ) = ηAn

δ∫

0

A(δ − z)ϕ(z)dz, (8)

whereA(δ − z)are the corresponding functions for the con-
tact of a single spherical asperity.

After substituting Eqs. (3) and (6) into Eqs. (7) and (8)
and normalizing them appropriately, the ultrasonic stiffness
of the interface during loading and unloading can be obtained
as

K̄l(δ′)
E ∗ /σ

=2CγR′−1
o a′cδ

′−λ
c

δ′∫

0

(δ′ − z′)λϕ ∗ (β; z′)dz′, (9)

and from Eqs. (3) and (8) the actual area of contact is:

Ā(δ′)
An

=πC2γR′−1
o a′2c δ′−2λ

c

δ′∫

0

(δ′−z′)2λϕ ∗(β; z′)dz′, (10)

whereγ = R′oησ2 is the nondimensional parameter depend-
ing only on the rough surface properties; the prime denotes
normalization of the length scale by theσg rms roughness
of the composite surface,e.g. R′o = Ro/σ andz′ = z/σ.
The three independent parameters (σ/Ro, γ, βg) can be esti-
mated from the ultrasonic stiffness measurements during the

loading-unloading cycle. These parameters are necessary to
compute the actual area of contact as functions of the ap-
proach from Eqs. (10).

The interfacial stiffness during unloading is calculated
using Eq. (4) for a single asperity. The final curvature
radiusRmax of asperities with different heightszis calculated
using Eq. (3) withRmax = R(zmax). The residual deforma-
tion δr(z) is calculated also as a function of z using Eq. (10)
for a given maximum approachδmax. Therefore, at the end
of the loading, all parameters of plastically deformed asper-
ities are known as a function of their initial heights z in the
distribution (10).

Since the unloading is elastic, the interfacial stiffness and
the area of contact are calculated as

K̄u(δ′)
E ∗ /σ

= 2γR′−1
o

×
δ′∫

δ′o

R′1/2
max(z

′) (δ′ − z′)1/2
ϕ ∗ (β; z′)dz′, (11)

Āu(δ′)
An

= πγR′−1
o

×
δ′∫

δ′o

R′max(z
′) (δ′ − z′)ϕ ∗ (β; z′)dz′. (12)

In integrals (11) and (12),δ′ is between andδ′max. The in-
tegration considers all load bearing asperities during unload-
ing. As shown in Fig. 8b, those asperities are elastically or
plastically deformed ifδ′max−δ′c < δ′ < δ′max, they are all
plastically deformed whenδ′max − δ′c > δ′. At a givenδ′,
we include in the calculations only those plastically deformed
asperities with original summit heights in the range whose
heights remain in that range after the load is relieved; oth-
erwise they are not load-bearing asperities (the undeformed
height of the asperityz from distribution in Eq. (10) may be
in the range; however, after deformation it is residually de-
formed and itsz’ may be larger than (height is reduced) and
be outside this range, Fig. 9b).

Figure 10 shows calculated loading-unloading cycles de-
scribing the detailed history of elastoplastic deformation at
the interface under consideration. Upon load removal, the ul-
trasonic stiffness values of the rough interfaces are reduced
to zero. When the many asperities of the rough surface are
in contact, the unloading process occurs gradually due to dis-
tribution of the asperity heights. With load removal, fewer
and fewer asperities are in contact and load-bearing. At a
negligibly small load, only a few (the number depends on the
height distribution) of the numerous asperities remain in con-
tact, resulting in remote contact stiffness. In fact, this process
is described in our model excluding the asperities that are not
in contact.
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TABLE I. Mechanical properties of the aluminum 6061-T6 alloy
samples.

Property Value

Young’s modulus, E 71.0 Gpa

Hardness, HB 94

Yield stress,sigmaY 235 MPa

Poisson’s ratio,ν 0.33

rms surface roughness,σ 0.23 and 2.4mum

Nominal contact area, An 5.06cm2

FIGURE 10. Ultrasonic interfacial stiffness versus nominal pres-
sure during loading and unloading cycles with increasing maxi-
mum cycle load . The parameters in the calculation areσ/R =
1.92 × 10−3, n=2 andσ = 3.5 µm, Young’s modulusE=69
GPa, Poisson’s ratioν=0.33, yield stressσY = 235 MPa and plas-
ticity indexψ=5.1.

Increased hysteresis is observed for cycles at higher loads
due to an increasing plastic flow. The loading-unloading path
for the third cycle is labeled in Fig. 10. Since the unloading
is assumed to be elastic, the reloading curve (C) coincides
with the unloading curve (B) in the second cycle. The path
for loading (D) beyond the previous maximum load follows
the original loading curve path. It is also observed that the
slope of the interfacial ultrasonic stiffness at the initial stage
of unloading (marked in Fig. 10 by arrows) decreases with
increasing maximum load in the cycle (from the first to the
fourth hysteresis loop). This indicates an increasing confor-
mity between the two surfaces with the increase of maximum
load due to the significant plastic flow accumulated during
loading so that the area of contact (and the unloading curve
slope) changes very little during the initial stage of unloading.
Similar hysteretic behavior has been observed experimentally
by Dwyer-Joyceet al. (2001).

In Fig. 3, the calculated ultrasonic dynamic interfacial
stiffness for loading-unloading cycles is shown by solid
lines, along with those measured for three different surface
combinations: smooth-smooth (Fig. 3a) and rough-smooth
(Fig. 3b). The pressures at the onset of plastic deformation
(pY ) for the tallest asperities atz=0 are indicated. The the-
oretical curves were obtained using the material and surface
properties listed in Table I. The nondimensional parameters

TABLE II. Model parameters.

Surface Given Reconstructed Calculated using

reconstructed

parameters

σ1 (µm) µ/R γ β ψ pY (MPa)

Smooth-smooth 0.325 2.01× 10−4 2.4 3.0 1.63 84.6

Rough-smooth 2.4 1.20× 10−3 2.62 1.5 4.01 18.4

FIGURE 11. Normalized real area of contact versus normal-
ized nominal pressure for smooth-smooth (ψ=1.63;σ=0.325µm),
rough-smooth(ψ=4.01;σ=2.4µm),rough-rough(ψ=5.12;σ=3.4µm)
surfaces; calculated using the surface parameters reconstructed
from experimental data (Table II).

γ, R′o andβ were found by the nonlinear least square opti-
mization (Baltazaret al., 2002) between experimental data
KExp

i and model computationsKTheory
i .

The interface between two smooth surfaces exhibits a
nearly elastic behavior with very small hysteresis, as shown
in Fig. 3. The onset of plastic deformation occurs at almost
the maximum applied pressure,pY =84.6 MPa. The other in-
terface (Fig. 6) exhibits elastoplastic behaviors with higher
levels of hysteresis. The reconstructed parameters show in-
creasing levels of plasticity with the increase of rms rough-
ness. For example, the plasticity index for the rough-rough
interface is highest, and that for the smooth-smooth interface
is lowest. For rough aluminum surfaces, the elastoplastic be-
havior occurs whenψ > 1 (Huchings, 1992). Our results
agree with this observation. The parameterβ for the smooth-
smooth interface (β =3) is close to those obtained in our pre-
vious work for the elastic contact of smooth interfaces (Bal-
tazar, 2002). In contrast, those for the rough-smooth interface
are relatively small (β ≤ 2), leading to nearly exponential
type distribution functions, which implies that the asperity
summits are densely populated near the sample surface (z=0).
Since the ultrasonic measurements of interfacial stiffness for
these interfaces are taken mostly in the elastoplastic region
(at loads higher thanpY of the interface), the ultrasonic wave
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first probes the interfaces after the highest summits are al-
ready plastically deformed so that the surface is effectively
flatter than the initial surface. Moreover, the unloading starts
with the interface asperities further flattened due to loading,
thus producing even smaller values ofβ. The smallest value
of β for the smooth-rough case reflects the appearance of the
observed results on the smooth surface indentations of the
rough surface asperities. This improves the “fit” between the
surfaces, which corresponds to the equivalent flattening of
composite surface asperities and therefore decreasesβ.

The real area of contact is therefore estimated by applying
the statistical elastoplastic contact model to the ultrasonically
measured interfacial stiffness, and determining the necessary
unknown parameters: the asperity number density and the
vertical distribution of the asperities related to the parame-
terβ. This produces the minimal sufficient set of parameters
needed to compute the real area of contact.

Figure 11 shows the real area of contact normalized with
the apparent contact area versus the normalized pressure for
the two interfaces considered in our experiments (Figs. 5
and 6). It is noted that the real area of contact increases
nearly linearly with the load, especially in the region of the
elastoplastic deformation (this was experimentally observed
by Greenwood and Williamson, 1966), whereas unloading
behavior is nonlinear with very sharp decreases to zero of the
contact area with the load removal.

4. Summary

An ultrasonic spectroscopy method combined with an elasto-
plastic contact model for determining of interface properties
that can be related to the real area of contact was discussed.
In the present work, we have demonstrated the feasibility of
predicting the real area of contact. This is done by applying
the statistical elastoplastic contact model to the ultrasonically
measured interfacial stiffness and determining the unknown
necessary parameters: the asperity number density and the
vertical distribution of the asperities related to the parame-
terβ. This produces the minimal sufficient set of parameters
needed to compute the real area of contact. Data from ultra-
sonic measurements were reported during loading-unloading
static cycles on different interface conditions formed by alu-
minum surfaces with different levels of roughness. From the
ultrasonic reflection spectra measured, the interfacial stiff-
ness constants were calculated. The experimentally mea-
sured hysterisis observed during loading-unloading cycles is
attributed to plastic deformation at the tips of the asperities.
To explain the ultrasonically-measured stiffness of rough sur-
faces in elastoplastic contact, the dynamic stiffness, which
should be distinguished from static loading stiffness, is in-
troduced. An elastoplastic micromechanical asperity contact
model is proposed to describe the mechanical hysteresis dur-
ing the loading and unloading cycles. The micromechani-
cal model allows us to demonstrate the elastoplastic histories
during the loading-unloading cycles.
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