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1. Introduction

The asymptotic structure of spacetime and the Newman-
Penrose (NP) formalism [1] are powerful tools for analyz-
ing the behavior of isolated systems and compact sources in
General Relativity (GR). This formalism has found many ap-
plications in the last past years in different areas of the GR,
and also in numerical relativity. From the mathematical point
of view, the NP approach is a special case of the tetrad for-
malism, where a set of four null vectors is chosen to form
a basis at each point of the spacetime. Then, several com-
plex scalars are introduced to describe the dynamic of the
gravitational fields at infinity, and the evolution equations of
these complex scalars,i.e. the Bianchi identities, are written.
Furthermore, these vectors are appropriate for studying the
properties of congruences of null geodesics [2], such congru-
ences naturally arise in the context of the propagation of the
gravitational and the electromagnetic radiation [3].

As has been mentioned before, the NP formalism has
been used in several aspects of analytical and computa-
tional relativity: recently, in collaboration with Kozameh,
this formalism was used to describe the behavior of compact
sources, such as Black Holes collisions and close binary coa-
lescences, linking the dynamics of the system to the gravita-
tional radiation emitted. Moreover, we find some similarities
and several differences with other approaches like the Post-
Newtonian equations [4]. Furthermore, the NP approach is
used for extracting gravitational waves from numerical sim-
ulation via the computation of one of the five Weyl complex
scalars. Although the NP formalism is primarily focused on
studying the properties of radiation of isolated systems, this
formulation is a very useful framework for constructing and
investigating exact solutions of the four-dimensional General
Relativity. Additionally, there are attempts to generalize this
approach to higher dimensions [5]. Particularly, the method
is very powerful when the spacetime is algebraically special
according the Petrov classification [6], since some complex

scalars can be set to zero by choosing an appropriate tetrad
aligned with the outgoing tangent vector fields of null radial
geodesics.

In this article, we propose to make a short review about
the NP approach, giving some applications of this approach
and explaining the physical interpretation of the most impor-
tant scalars introduced by Newman and Penrose. This arti-
cle is organized as follows: In Sec. 2 we give the geomet-
ric notion of an asymptotically flat spacetime, and we intro-
duce a set of null vectors to define the complex Weyl scalars,
the Maxwell scalars, and the twelve spin coefficients used
in the NP formalism. In the Sec. 3, we reduce all the equa-
tions and definitions to a particular set of coordinates, usually
called Bondi coordinates, and we introduce the notion of the
Mass and the Bondi linear momentum. The BMS group and
the transformation between different families of null cuts is
shown in Sec. 4, while the physical meaning of the Weyl
scalars is discussed in Secs. 5. In Sec. 6 , we use the NP
approach to analyze a more general stationary axisymmetric
spacetime, where we compute all the NP quantities, and we
apply the resulting equations to some familiar spacetimes. Fi-
nally, we conclude this work giving some finals remarks and
comments.

2. Asymptotically flat spacetime

The notion of asymptotically flat spacetime is an adequate
tool to analyze the gravitational and electromagnetic radia-
tion coming from an arbitrary compact source. During the
60s, Bondi, Sachs and collaborators [7-9] used a system of
canonical coordinates to define the mass, momentum and
gravitational radiation. Then, Penrose defines the notion of
asymptotically flat spaces (or asymptotically simple), using
the idea of re-scale the metric by an appropriate factor, usu-
ally called conformal factor, which is appropriately chosen to
decay to zero at infinity [10]. The geometric notion of Pen-
rose can be summarized in the following definition
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Definition: A spacetime(M , gab) is called asymptotically
simple, if the curvature tensor goes to zero as we approach
to infinity in the future direction of the null geodesics of the
spacetime. These geodesics end up in what is called the fu-
ture null infinity I +. A future null asymptote is a mani-
fold M̂ with boundaryI + ≡ ∂M̂ together with a smooth
Lorentzian metriĉgab, and a smooth functionΩ onM̂ satis-
fying the following

◦ M̂ = M ∪I +

◦ OnM , ĝab = Ω2gab with Ω > 0

◦ At I +, Ω = 0, na ≡ ∂aΩ 6= 0 andĝabnanb = 0

From this geometric definition, it is possible to show that,

1. If M satisfy the vacuum Einstein equations nearI
thenI it is a null boundary. AlsoI consists of two
disjoint partsI + andI −, each topologicallyS2×R.

2. The Weyl tensorCabc
d vanishes atI and the peel-

ing assumption [8] establishes the way it approaches
to zero. Furthermore, the Weyl tensor is conformally
invariant, i.e. the tensorĈ d

abc constructed using the
re-scaled metriĉgab andCabc

d are the same at null in-
finity [11].

We begin the study of the null infinity properties, introduc-
ing a coordinate system in the neighborhood ofI +, which
we will label as(u, r, ζ, ζ̄) [12]. In this system, the timeu
represents a family of null surfaces,r is the affine parame-
ter along the null geodesics of the constantu surfaces, and
ζ = eiφ cot(θ/2), the complex stereographic angle labeling
the null geodesics ofI +. We reachI + taking r → ∞,
thus the null infinity is described by the remaining coordi-
nates(u, ζ, ζ̄). Now, the two-surface metric becomes,

ds2 = −4r2dζdζ̄

P 2
, (1)

making the usual choice ofΩ = r−1 as the conformal factor,
Eq. (1) gives the induced metric onI +,

dŝ2 = −4dζdζ̄

P 2
. (2)

HereP (u, ζ, ζ̄) is a strictly positive function which depends
on the framework choice.

2.1. The Newman-Penrose formalism

The Newman-Penrose (NP) formalism [1-10] is a tetrad for-
malism based on a set of four null vectors. Associated with
the coordinates(u, r, ζ, ζ̄) one can introduce a tetrad of two
real vectors denoted byla andna, and two complex conju-
gate vectorsma andm̄a, where the first co-vector is defined
by [13]

la = ∇au, (3)

so la = gab∇au is a null vector tangent to the generators of
u = const. The remaining vectors are required to satisfy the
following orthogonality conditions

lana = −mam̄a = 1, (4)

lama = lam̄a = nama = nam̄a = 0, (5)

lala = nana = mama = m̄am̄a = 0. (6)

The indices can be raised and lowered using the global metric
gab which, in terms of null vectors, can be written as

gab = lanb + nalb −mam̄b − m̄amb. (7)

Also, the metric (7) can be expressed in condensed notation
as

gab = ηµνλa
µλb

ν , (8)

whereµ is the tetrad index, which are raised and lowered us-
ing the flat metricηµν andηµν , and whereλa

µ is given by

λa
µ = (la, na,ma, m̄a), µ = 1, 2, 3, 4 (9)

and

ηµν =




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 , (10)

It is important to note that the tetrad has certain freedoms
such as

(a) To perform null rotations aboutla:

la → la, (11)

ma → ma + Bla, (12)

na → na + B̄ma + Bm̄a + BB̄la. (13)

(b) A null rotations aboutna:

la → la + B̄ma + Bm̄a + BB̄na, (14)

ma → ma + Bna, (15)

na → na. (16)

(c) To rotatema while keepingla andna fixed:

ma → eiλma for a realλ. (17)

This freedom introduces the notion of spin weight, a quantity
η that under (17) transforms as,

η → eisλη, (18)

is said to have spin weights [13]. One can also define the
spin weighted differential operatorsð andð̄ as follows,

ðf = P 1−s ∂(P sf)
∂ζ

, (19)

ð̄f = P 1+s ∂(P−sf)
∂ζ̄

, (20)

whereP is the factor that involves the metric of spacetime
(2). The operatorsð andð̄ raise and lower the spin weight by
one respectively.
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(d) Finally, since the choice of the coordinate system is
not unique, so we can make a different choice from the
originalu = const. cut, i.e.,

u → û = T (u, ζ, ζ̄). (21)

Under this choice, the tetrad system transforms as

la → Ṫ

(
la +

ðT
Ṫ r

m̄a +
ð̄T
Ṫ r

ma +
ðT ð̄T
Ṫ 2r2

na

)
, (22)

ma → ma +
ðT
Ṫ r

na, (23)

na → Ṫ−1na. (24)

These equations give the expansion between two tetrads, and
will be of great importance in the following sections.

2.2. Spin coefficient formalism

In the Newman-Penrose formalism [1], one introduces twelve
complex spin coefficients (SC), five complex functions en-
coding the Weyl tensor, three complex Maxwell scalars, and
ten functions encoding the Ricci tensor in the tetrad basis.
These complex functions are the primary quantities used in
this asymptotic formulation of the General Relativity. It is
well known that this formulation is suitable to describe iso-
lated systems and analyze the gravitational radiation emit-
ted by compact sources [4]. In this article, we will focus on
the general form of the asymptotically flat solutions of the
Einstein-Maxwell equations. Particularly, in this section, we
will introduce all these quantities, starting with the Ricci ro-
tation coefficientsγµνρ defined by,

γµνρ = λa
ρλ

b
ν∇aλbµ, (25)

whereµ, ν, ρ = 1, 2, 3, 4 are tetrad indexes, and where the
Ricci rotation coefficients satisfy,

γµνρ = −γνµρ. (26)

Then, the spin coefficients (SC) are defined as combinations
of theγµνρ by the following equations,

α =
1
2
(γ124 − γ344), λ = −γ244, κ = γ131,

β =
1
2
(γ123 − γ343), µ = −γ243, ρ = γ134, (27)

γ =
1
2
(γ122 − γ342), ν = −γ242, σ = γ133,

ε =
1
2
(γ121 − γ341), π = −γ241, τ = γ132.

Since the spacetime is assumed to be empty in a neighbor-
hood of the null infinity, the gravitational field is given by
the Weyl tensor. Using the available tetrad, one defines five
complex scalars in the following way

ψ0 = −Cabcdl
amblcmd; ψ1 = −Cabcdl

anblcmd,

ψ2 = −1
2
(Cabcdl

anblcnd − Cabcdl
anbmcm̄d), (28)

ψ3 = Cabcdl
anbncm̄d; ψ4 = −Cabcdn

am̄bncm̄d.

When an electromagnetic field is present we can introduce
the Maxwell tensorFab = ∂aAb − ∂bAa, from where we
compute three complex Maxwell scalars given by

φ0 = Fabl
amb, φ1 =

1
2
Fab(lanb + mam̄b),

φ2 = Fabn
am̄b. (29)

From the “peeling” assumption introduced by Sachs [8], one
can obtain the asymptotic behavior of the Weyl and Maxwell
scalars, and the spin coefficients for any asymptotically flat
spacetime. These scalars fall to zero as inverse powers ofr
in the following way [13]

ψ0 = ψ0
0r−5 + O(r−6), ψ1 = ψ0

1r−4 + O(r−5),

ψ2 = ψ0
2r−3 + O(r−4), ψ3 = ψ0

3r−2 + O(r−3),

ψ4 = ψ0
4r−1 + O(r−2), φ0 = φ0

0r
−3 + O(r−4), (30)

φ1 = φ0
1r
−2 + O(r−3), φ2 = φ0

2r
−1 + O(r−2).

Also, the null vectors in the NP formalism can be written as

l = la
∂

∂xa
=

∂

∂r
,

n = na ∂

∂xa
=

∂

∂u
+ U

∂

∂r
+ Xζ ∂

∂ζ
+ X ζ̄ ∂

∂ζ̄
,

m = ma ∂

∂xa
= ω

∂

∂r
+ ξζ ∂

∂ζ
+ ξζ̄ ∂

∂ζ̄
, (31)

m̄ = m̄a ∂

∂xa
= ω̄

∂

∂r
+ ξ̄ζ ∂

∂ζ
+ ξ̄ζ̄ ∂

∂ζ̄
,

where

ξk = ξ0kr−1 − σ0ξ̄0kr−2 + O(r−3) with k = ζ, ζ̄

ω = ω0r−1 −
(

σ0ω̄0 +
ψ0

1

2

)
r−2 + O(r−3),

Xk = (ψ0
1 ξ̄0k + ψ̄0

1ξ0k)(6r3)−1 + O(r−4),

U = U0 − (γ0 + γ̄0)r − (ψ0
2 + ψ̄0

2)(2r)−1 + O(r−2).
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Now, the spin coefficients are given by [12],

κ = π = ε = 0, ρ = ρ̄, τ = ᾱ + β,

ρ = −r−1 − σ0σ̄0r−3 + O(r−5),

σ = σ0r−2 + [(σ0)2σ̄0 − ψ0
0/2]r−4 + O(r−5),

α = α0r−1 + O(r−2),

β = β0r−1 + O(r−2),

γ = γ0 − ψ0
2(2r2)−1 + O(r−3),

µ = µ0r −1 + O(r−2),

λ = λ0r−1 + O(r−2),

ν = ν0 + O(r−1), (32)

where,

ξ0ζ = −P, ξ̄0ζ = 0,

ξ0ζ̄ = 0, ξ̄0ζ̄ = −P,

α0 = −β̄0 = −1
2
ð̄ ln P,

γ0 = − Ṗ

2P
, ν0 = −2ð̄γ0,

ω0 = −ð̄σ0, λ0 = ˙̄σ0 − σ̄0 Ṗ

P
, (33)

µ0 = U0 = −ðð̄ ln P,

ψ0
2 − ψ̄0

2 = ð̄2σ0 − ð2σ̄0 + σ̄0λ0 − σ0λ̄0,

ψ0
3 = ð̄ðð̄ ln P + ðλ0,

ψ0
4 = −ð̄2

(
Ṗ

P

)
− λ̇0 + λ0 Ṗ

P
.

Finally, in the NP formalism the Bianchi identities tell us
about the time evolution of the asymptotic fields,

ψ̇0
2 − 3ψ0

2

Ṗ

P
=− ðψ0

3 + σ0ψ0
4 + 2φ0

2φ̄
0
2,

ψ̇0
1 − 3ψ0

1

Ṗ

P
=− ðψ0

2 + 2σ0ψ0
3 + 4φ0

1φ̄
0
2

ψ̇0
0 − 3ψ0

0

Ṗ

P
=− ðψ0

1 + 3σ0ψ0
2 + 6φ0

2φ̄
0
2, (34)

φ̇0
1 − 2φ0

1

Ṗ

P
=− ðφ0

2,

φ̇0
0 − 2φ0

0

Ṗ

P
=− ðφ0

1 + σ0φ0
2,

here the dots represent∂u, andð, ð̄ are the differential oper-
ators defined by Eqs. (37) and (38).

3. Bondi coordinates

As mentioned in Sec. 2.1, it is possible to introduce a general
set of coordinates in the neighborhood ofI + since the con-
formal factorP , in Eq. (7), provides a great freedom when
they are chosen. However, in many practical applications, it
is useful to restrict the transformation imposing the condition

P = P0 = 1 + ζζ̄. (35)

With this choice, the two-surface metric (7) becomes a
sphere. These coordinates are then called Bondi coordinates.
In this section, we will give the main equations of the NP
formalism written in the Bondi system. These particular sys-
tems will correspond to inertial frames in General Relativity.
However, the choice of the Bondi coordinate system is not
unique, the coordinate transformations between two Bondi
systems is called the Bondi-Metzner-Sachs (BMS) transfor-
mations [14]. Now, making the choice of theP factor by
imposing Eq. (35), and sincėP = 0, one can reduce the
equations introduced in Sec. 2.2 as follows

ψ0
2 − ψ̄0

2 = ð̄2σ0 − ð2σ̄0 + σ̄0σ̇0 − σ0 ˙̄σ0,

ψ0
3 = ð ˙̄σ0, (36)

ψ0
4 = −¨̄σ0.

Also the “eth” operatorsð, ð̄ can be written as

ðf = P 1−s
0

∂(P s
0 f)

∂ζ
, (37)

ð̄f = P 1+s
0

∂(P−s
0 f)
∂ζ̄

. (38)

In many applications, it is quite convenient to define the so
called Mass AspectΨ from the Weyl scalarψ0

2 [7],

Ψ = ψ0
2 + ð2σ̄0 + σ0 ˙̄σ0, (39)

which satisfies the reality conditionΨ = Ψ̄. Finally the
Bianchi identities in the Bondi system take the form,

ψ̇0
2 = −ðψ0

3 + σ0ψ0
4 + 2φ0

2φ̄
0
2, (40)

ψ̇0
1 = −ðψ0

2 + 2σ0ψ0
3 + 4φ0

1φ̄
0
2, (41)

ψ̇0
0 = −ðψ0

1 + 3σ0ψ0
2 + 6φ0

2φ̄
0
2, (42)

φ̇0
1 = −ðφ0

2, (43)

φ̇0
0 = −ðφ0

1 + σ0φ0
2. (44)

Also, it is possible to write Eq. (40) in terms ofΨ as follows,

Ψ̇ = σ̇0 ˙̄σ0 + 2φ0
2φ̄

0
2. (45)

In the same way, the SC can be written in terms of the shear
σ0 and the Weyl scalarsψ0

n.
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3.1. The Mass and Bondi momentum

In a Bondi system, it is possible to define the four-momentum
vector for an asymptotically flat spacetime as [12],

P a = − 1
8π
√

2

∫

S

Ψl̃adΩ, (46)

where the vector̃la is given by

l̃a =
1

1 + ζζ̄
(1 + ζζ̄, ζ + ζ̄,−i(ζ − ζ̄), 1− ζζ̄), (47)

and wheredΩ = 4idζ ∧ dζ̄/P 2
0 is the area of the unit sphere.

Immediately from this definition it follows that the Bondi
mass can be written as

M = − c2

8π
√

2G

∫

S

ΨdΩ. (48)

The Bondi mass agrees with the usual definition of mass,e.g.
with the Schwarzschild mass, and it is positive in a neighbor-
hood ofI +. Now, taking the time derivative of (48), and
using Eq. (45), we have

Ṁ = − c2

8π
√

2G

∫

S

(σ̇0 ˙̄σ0 + 2φ0
2φ̄

0
2)dΩ, (49)

since the integral is always positive, the r.h.s of the last equa-
tion is negative,i.e.

Ṁ < 0 if σ̇0 6= 0. (50)

ThusṀ measures the amount of mass loss carried away as
gravitational radiation. Note that, in the astrophysical sys-
tems of major interest for the gravitational wave observato-
ries like LIGO, the contribution of the electromagnetic radia-
tion is several orders of magnitude less than the gravitational
one,e.g. in an astrophysical process such as binary coales-
cence.

4. The BMS group

The set of coordinate transformations atI + preserving the
conditions in the Bondi coordinates is called the Bondi-
Metzner-Sachs Group (BMS) [8,14,15]. This group is the
same as the asymptotic symmetry group that arises from the
infinitesimal generators,i.e. from the asymptotic Killing vec-
tors. Now, to construct the BMS group, we start considering
the following mapping

û = T (u, ζ, ζ̄), (51)

r̂ = Ṫ−1r, (52)

ζ̂ =
aζ + b

cζ + d
ad− bc = 1, (53)

whereu, ζ, and r are the standard Bondi-type coordinates.
Under this coordinate transformation all the relations de-
veloped up to this point are preserved. The fraction linear
transformations (53) are the only one-to-one mapping of the
sphere to itself. Then, the BMS group is defined by the
mapping (53) and the following restriction on the transfor-
mations (51),

û = K(u + α), (54)

whereα(ζ, ζ̄) is a regular arbitrary function on the sphere.
Now, it is possible to show from Eq. (54) and (53) that the
spherical metric transforms as [16],

4dζ̂d
¯̂
ζ

P̂ 2
0

= K2 4dζdζ̄

P 2
0

, (55)

where the conformal factorK associated with this transfor-
mation is given by

K = J−
1
2
P0

P̂0

,

= (1 + ζζ̄)[(aζ + b)(ā + ζ̄ + b̄)

+ (cζ + d)(c̄ζ̄ + d̄)], (56)

and where

J =
∂ζ

∂ζ̂

∂ζ̄

∂
¯̂
ζ
, (57)

P0 = 1 + ζζ̄, (58)

P̂0 = 1 + ζ̂
¯̂
ζ. (59)

Now, the infinite-parameter subgroup obtained by setting
K = 1,

ζ̂ = ζ, (60)

û = u + α, (61)

is known as the supertranslation subgroup. A supertransla-
tion α(ζ, ζ̄) moves points on each generator by an amount
α(ζ, ζ̄). This function can be expressed in terms of infinite
constants using, for example, a tensorial spin-s harmonic ex-
pansion [17] in the following way,

α = α0 + αiY 0
1i(ζ, ζ̄) + αijY 0

2ij(ζ, ζ̄) + ... (62)

In this expansion,α0, andαi represents the ordinary transla-
tions. For extra details about the Lorentz group and the BMS
transformations the reader could see Refs. [16,18].

4.1. Transformation between systems

In this subsection, we discuss the transformation laws be-
tween two frames. For that, we assume that the coordinates
of these frames are related by Eqs. (52), (54), and (60),i.e by
the following mapping,

û = T (u, ζ, ζ̄), (63)

r̂ = Ṫ−1r, (64)

ζ̂ = ζ. (65)
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Now, for this set of coordinates(û, r̂, ζ, ζ̄), one can build
a new tetrad system just following the steps of Sec. 2.1,
where the first null vector is chosen asl̂a = ∇aû. Then,
the remaining vectors are chosen to satisfy the orthonormal-
ity conditions. So, we get a new null tetrad, these vectors
are labeled as(l̂a, n̂a, m̂a, ¯̂ma). Also, one can find the rela-
tion between the null basis(la, na,ma, m̄a) obtained from
the coordinates(u, r, ζ, ζ̄) with the previous one given by
Eqs. (22-24). These equations can be expressed in the fol-
lowing way [4],

l̂a = Ṫ

(
la − L

r
m̄a − L̄

r
ma +

LL̄

r2
na

)
, (66)

n̂a = Ṫ−1na, (67)

m̂a = ma − L

r
na, (68)

¯̂ma = m̄a − L̄

r
na, (69)

where

L = −ð(u)T

Ṫ
, (70)

hereð(u) means applying theð operator keepingu as a con-
stant. Now, using the set of equations (66-69), it is possible
to expand the scalars defined in the new system in terms of
the scalars defined in the original frame. As an example, we
start withψ̂1,

ψ̂1 = −Cabc
d l̂an̂b l̂cm̂d,

= Ṫ

[
ψ1 − 3

L

r
ψ2 + 3

L2

r2
ψ3 − L3

r3
ψ4

]
.

Finally, assuming the “peeling” and using Eq. (52) we can
write,

ψ̂0
1 = Ṫ−3[ψ0

1 − 3Lψ0
2 + 3L2ψ0

3 − L3ψ0
4 ]. (71)

In the same way, we can find the transformation law for all
Weyl scalars, Maxwell scalars, and the spin coefficients (par-
ticularly the shear), which can be listed as follows [4],
Weyl scalars:

ψ̂0
0 = Ṫ−3[ψ0

0 − 4Lψ0
1 + 6L2ψ0

2 − 4L3ψ0
3 + L4ψ0

4 ],

ψ̂0
1 = Ṫ−3[ψ0

1 − 3Lψ0
2 + 3L2ψ0

3 − L3ψ0
4 ],

ψ̂0
2 = Ṫ−3[ψ0

2 − 2Lψ0
3 + L2ψ0

4 ], (72)

ψ̂0
3 = Ṫ−3[ψ0

3 − Lψ0
4 ],

ψ̂0
4 = Ṫ−3ψ0

4 .

Maxwell scalars:

φ̂0
0 = Ṫ−2[φ0

0 − 2Lφ0
1 + L2φ0

2],

φ̂0
1 = Ṫ−2[φ0

1 − Lφ0
2], (73)

φ̂0
2 = Ṫ−2φ0

2.

Shear:
σ̂0 = Ṫ−1[σ0 − ð(u)L− LL̇]. (74)

5. Physical interpretation of the asymptotic
scalars

In this section, we will discuss the physical interpretation of
some of the complex scalars used in the NP formalism. A
simpler way to introduce this topic, is to focus on the dom-
inant terms of the peeling expansion, and make a tensorial
spin-s harmonic expansion of these functions. The most im-
portant scalars in our analysis are the following,

ψ0
1 = ψ0i

1 (u)Y 1
1i(ζ, ζ̄) + ψ0ij

1 (u)Y 1
2ij(ζ, ζ̄),

ψ0
2 = ψ00

2 + ψ0i
2 Y 0

1i(ζ, ζ̄) + ψ0ij
2 (u)Y 0

2ij(ζ, ζ̄),

σ0 = σij(u)Y 2
2ij(ζ, ζ̄),

φ0
0 = φ0i

0 (u)Y 1
1i(ζ, ζ̄), (75)

φ0
1 = φ00

1 + φ0i
1 (u)Y 0

1i(ζ, ζ̄).

For any asymptotically flat axially symmetric spacetime, the
Komar integral [19] gives a precise notion of the angular mo-
mentum. The Komar formula uses the Killing vector field to
define the global angular momentum. Assuming that the axis
of symmetry is labeled as z-axis, the non-zero component of
the angular momentum can be written as follows [20],

Im[ψ0
1 − σ0ðσ̄0]z = −6

√
2G

c3
Jz. (76)

Since the real contribution of[σ0ðσ̄0]i is zero for any ax-
isymmetric spacetimes. One only need to use the real part of
ψ0i

1 to define the dipole mass moment as follows,

Re[ψ0
1 ]z = −6

√
2G

c3
Dz. (77)

Now, if the spacetime has no global symmetries, the mass
dipole-angular momentum two form will add some extra con-
tributions of the free dataσ0 and its derivatives. Notably, as
one can see in the literature, there are many definitions of
the angular momentum for isolated systems in general rel-
ativity. A recent living review [21] offers a complete sur-
vey of the main results in the field with the main motivations
and technical aspects of each definition, the fact that there is
no agreement among these alternative approaches reflects the
difficulty of the subject. Although, in a recent work together
with Kozameh [4], we introduced a new definition of dipole
mass moment-angular momentum tensor using the Winicour-
Tamburino linkage [22],

[
2ψ0

1 − 2σ0ðσ̄0 − ð(σ0σ̄0)
]i

=

− 12
√

2G

c2
[Di + ic−1J i]. (78)
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This definition allows to define the center of mass and write
the equation of motion of the center of mass linking the
time evolution with the emitted gravitational radiation. On
the other hand, as we discuss in Sec. 3, for a Bondi sys-
tem, there is a precise notion of mass and linear momentum.
Now, we can use thè = 0, 1 components of the tensorial
expansion previously introduced, and relateψ0

2 to the Bondi
4-momentum(M,P i), as shown in the following equations,

[
ψ0

2 + ð2σ̄0 + σ0 ˙̄σ0
] |`=0 = −2

√
2G

c2
M, (79)

[
ψ0

2 + ð2σ̄0 + σ0 ˙̄σ0
]i

= −6G

c3
P i. (80)

The ` ≥ 2 terms of the l.h.s of Eqs. (79) or (80), are the
so called “supermomentum” at null infinity. Now, in the NP
approach, the scalarΨ4 measures the gravitational radiation
received at null infinity. This scalar is related to the gravita-
tional wave modes as follows,

Ψ4 = ḧ+ − iḧ×, (81)

whereh+, h× are the plus mode, and cross mode of the grav-
itational wave in the transverse traceless gauge [23], respec-
tively. Thus, the complex function̈σ0, introduced in Eq. (36),
yields the gravitational radiation reaching at null infinity, and
σij

R = hij
+ , andσij

I = hij
× are the quadrupolar contributions

of the gravitational wave.
Finally, we focus on the Maxwell scalars, which give in-

formation about the electromagnetic contribution received at
I +. At this point, we can mention that the electric charge
is the zeroth order in the tensorial expansion ofφ0

1, and the
dipole electromagnetic moment corresponds to the` = 1
component ofφ0

0 [3,24], i.e,

φ00
1 =Q, (82)

1
2
φ0i

0 =pi + ic−1µi, (83)

wherepi, µi are the electric and magnetic dipole moment re-
spectively.

6. Application to stationary axisymmetric
spacetimes

Stationary axisymmetric spacetimes are of great importance
in General Relativity, astrophysics, Newtonian gravity, and
also in Post-Newtonian theories. Many sources like stars,
galaxies, accretion disks, and black holes are modeled under
these assumptions of temporal and axial symmetry. These
global symmetries play a central role in analytic calculations,
since they are very useful when the field equations are sim-
plified. In this section, we will focus on studying these kinds
of spacetimes. Now, following Ref. 25, we can introduce a

more general stationary axisymmetric metric in the standard
spherical coordinates(t, r, θ, ϕ) as follows,

ds2 = e2µ0dt2 − e2µ1dr2 − r2e2µ2dθ2

− r2e2µ3 sin2 θ(dϕ− ωdt)2, (84)

where the metric functionsµ0, µ1, µ2, µ3, andω are arbitrary
functions of(r, θ). The stationary and axisymmetric charac-
ter of (84), is reflected in the fact that the metric coefficients
are independent of the coordinatet, and the azimuthal angle
ϕ, and also that the spacetime is invariant under simultaneous
transformationst → −t andϕ → −ϕ. Now, we are consid-
ering spacetimes which are asymptotically flat in the neigh-
borhood of infinity, thus to ensure an adequate behaviour of
the line element (84), the metric functionsµ0, µ1, µ2, µ3,
and the angular velocityω must go to zero asr → ∞. Also
we choose the signature(+,−,−,−) in agreement with the
orthonormal conditions introduced in Sec. 2.1.

One of the main ingredients in the NP formalism is the
construction of a complex null tetrad(la, na, ma, m̄a). For
that, we introduce first an orthogonal tetrad constructed from
the timelike foliationt = const, then the normal vector to the
hypersurfaceΣt is given by

ta = [e−µ0 , 0, 0, ωe−µ0 ]. (85)

Now, onΣt we can find three spacelike vectors denoted by

ra = [0,−e−µ1 , 0, 0], (86)

ea
θ = [0, 0,−e−µ2

r
, 0], (87)

ea
ϕ = [0, 0, 0,− e−µ3

r sin θ
]. (88)

Also, the set of vectors(ta, ra, ea
θ , ea

ϕ) satisfy

gabt
atb = −gabr

arb = −gabe
a
θeb

θ = −gabe
a
ϕeb

ϕ = 1. (89)

Now, from these vectors we can build a null tetrad making
the following linear combinations,

la =
1√
2
(ta + ra), (90)

na =
1√
2
(ta − ra), (91)

ma =
1√
2
(ea

θ − iea
ϕ), (92)

m̄a =
1√
2
(ea

θ + iea
ϕ), (93)
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then, our null tetrad is given by the null vectors,

la =
[
e−µ0

√
2

,−e−µ1

√
2

, 0,
ωe−µ0

√
2

]
, (94)

na =
[
e−µ0

√
2

,
e−µ1

√
2

, 0,
ωe−µ0

√
2

]
, (95)

ma =
[
0, 0,−e−µ2

r
√

2
,

ie−µ3

√
2r sin θ

]
, (96)

m̄a =
[
0, 0,−e−µ2

r
√

2
,
−ie−µ3

√
2r sin θ

]
, (97)

and lowering the indices usinggab we find the conjugate
tetrad which is given by

la =
[

1√
2
eµ0 ,

1√
2
eµ1 , 0, 0

]
, (98)

na =
[

1√
2
eµ0 ,− 1√

2
eµ1 , 0, 0

]
, (99)

ma =

[
i√
2
rω sin θeµ3 , 0,

1√
2
reµ2 ,− i√

2
r sin θeµ3

]
, (100)

m̄a =

[
− i√

2
rω sin θeµ3 , 0,

1√
2
reµ2 ,

i√
2
r sin θeµ3

]
. (101)

Finally, we will assume the following potential vector

Aa = [χ,−Ar,−Aθ,−Aϕ], (102)

whereχ, Ar, Aθ, andAϕ are also functions of(r, θ). Now,
using the null tetrad, and the potential vectorAa, we can
compute all the quantities introduced in the previous sections
to solve this axially symmetric stationary metric in the NP
formalism. In the appendix A, we will show the general set
of equations, but in the next three subsections, we will re-
duce the metric given by Eq. (84) to the Reissner-Nordström,
Chazy-Curzon, and Kerr spacetimes, by solving an algebraic
system of five equations for the metric functions of (84), and
we will write all the complex scalars on the basis given by
Eqs. (94-97).

6.1. Reissner-Nordstr̈om spacetime

The Reissner-Nordström metric is a static solution of the
Einstein-Maxwell equations. This solution corresponds to
the gravitational field of a charged, non-rotating, spherically
symmetric body of massM and electric chargeQ. The line

element of this spacetime in spherical coordinates can be
written as

ds2 =
(

1− 2M

r
+

Q2

r2

)
dt2 −

(
1− 2M

r
+

Q2

r2

)−1

dr2

− r2(dθ2 + sin2 θdϕ2). (103)

Comparing to Eq. (84), and solving for the metric functions,
we find the following algebraic equations

µ0 =
1
2

ln
(

1− 2
M

r
+

Q2

r2

)
, (104)

µ1 = −1
2

ln
(

1− 2
M

r
+

Q2

r3

)
, (105)

µ2 = µ3 = ω = 0. (106)

Finally, replacing in the equations of Sec. A we can write,

φ0 = φ2 = 0, (107)

ψ0 = ψ1 = ψ3 = ψ4 = 0, (108)

σ = τ = κ = λ = ν = π = 0, (109)

and where

ψ2 = −M

r3
+ O

(
r−4

)
, (110)

φ1 = − Q

2r2
+ O

(
r−4

)
, (111)

ρ = − 1√
2r

+ O
(
r−2

)
, (112)

α = − cot θ

2
√

2r
, (113)

ε =
M

2
√

2r2
+ O

(
r−3

)
. (114)

As we can see from Eqs. (107) to (114), this exact solution is
a shear free solution sinceσ = 0.

6.2. Chazy-Curzon solution

The Chazy-Curzon solution corresponds to the simplest case
of the Weyl vacuum solutions. Note that if we start from
Eq. (84) and setµ3 = −µ0, andµ1 = µ2 = γ0 − µ0, with
γ0 = γ0(r, θ), we obtain the Weyl metric [26] in spherical
coordinates

ds2 =e2µ0dt2 − e2γ0−2µ0(dr2 + r2dθ2)

− r2e−2µ0 sin2 θdϕ2, (115)

where the Chazy-Curzon spacetime is obtained by setting,

µ0 = −M

r
,

µ1 = µ2 = −M2 sin2 θ

2r2
+

M

r
,

µ3 =
M

r
.
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Now, the Weyl scalars can be written in the following way,

ψ0 =
M3 (sin θ)2

2r5
+ O

(
r−6

)
,

ψ1 = − M3 sin θ cos θ

2r5
+ O

(
r−6

)
,

ψ2 = −M

r3
+ O

(
r−4

)
,

ψ3 =
M3 sin θ cos θ

2r5
+ O

(
r−6

)
,

ψ4 =
M3 (sin θ)2

2r5
+ O

(
r−6

)
.

Finally, the spin coefficients are given by,

σ = −
√

2M2 (sin θ)2

4r3
+ O

(
r−4

)
,

ρ = −
√

2
2r

+ O
(
r−2

)
,

τ =
√

2M2 sin θ cos θ

4r3
+ O

(
r−4

)
,

κ = −
√

2M2 sin θ cos θ

4r3
+ O

(
r−4

)
,

α = −
√

2 cot θ

4r
+ O

(
r−2

)
,

ε =
M
√

2
4r2

+ O
(
r−3

)
.

Since Chazy-Curzon is a vacuum non-charged solution of the
Weyl metric, it is clear that the Maxwell scalars will be zero.

6.3. Kerr spacetime

As a last example, we choose the Kerr metric which describes
the geometry of a spacetime in the vicinity of a rotating mass
M with angular momentumJ . This metric corresponds to
a vacuum non-charged solution of the Einstein equations. In
usual coordinates, the Kerr line element can be written as,

ds2 =
(

1− 2Mr

ρ̂2

)
dt2 − ρ̂2

∆
dr2 − ρ2dθ2

+
4Mra sin2 θ

ρ̂2
dtdϕ

−
(

r2 + a2 +
2Mra2

ρ̂2
sin2 θ

)
sin2 θ dϕ2, (116)

where ρ̂,∆, and a have been introduced for brevity, these
functions are given by

ρ̂2 = r2 + a2 cos2 θ,

∆ = r2 − 2Mr + a2,

a =
J

M
.

Solving forµ0, µ1, µ2, µ3, andω, we find

µ0 =
1
2

ln
(

2 Mr(a2 sin2 θ − a2 − r2) + (a2 + r2)ρ̂2

2 Mra2 sin2 θ + (a2 + r2)ρ̂2

)
,

µ1 =
1
2

ln
(

ρ̂2

∆

)
,

µ2 =
1
2

ln
(

ρ̂2

r2

)
,

µ3 =
1
2

ln
(

2 Mra2 sin2 θ + (a2 + r2)ρ̂2

r2ρ̂2

)
,

ω =
2Mra

2 Mra2 sin2 θ + (a2 + r2)ρ̂2
.

Finally, the Weyl scalars are given by,

ψ0 =
3
2

J2 sin2 θ

Mr5 + O
(
r−6

)
,

ψ1 =
3i

2
J sin θ

r4
+ O

(
r−5

)
,

ψ2 = −M

r3
+ O

(
r−4

)
,

ψ3 = −3i

2
J sin (θ)

r4
+ O

(
r−5

)
,

ψ4 =
3
2

J2 sin2 θ

Mr5 + O
(
r−6

)
,

and the asymptotic solution of the spin coefficients are the
following,

σ =
√

2
4

J2 sin2 θ

M2r3
+ O

(
r−4

)
,

ρ =
1√
2r

+ O
(
r−2

)
,

κ =
√

2
4

J2 sin θ cos θ

M2r3
+ O

(
r−4

)
,

τ = −
√

2
4

J
(
J cos θ − 6 iM2

)
sin (θ)

M2r3
+ O

(
r−4

)
,

α =
√

2
4

cot θ

r
+ O

(
r−3

)
,

ε = −
√

2
4

M

r2
+ O

(
r−3

)
.

Note that the angular momentum of the Kerr solution is given
by the imaginary part ofψ0

1 as we mention in Sec. (5). Addi-
tionally, the Kerr spacetime has not gravitational wave since
the Bondi free data is equal to zero,i.e. σ0 = 0.

7. Final remarks

In this article we give a brief review of the Newman-Penrose
formalism and the asymptotic structure of the spacetime.

Rev. Mex. Fis.63 (2017) 275-286
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This review has highlighted the importance of the complex
scalar functions introduced in the NP approach to describe
the dynamics of compact sources and its gravitational radia-
tions. We show how to compute the physical variables from
the fields received at null infinity, and we deduce the transfor-
mation laws for systems defined by different families of null
cuts. Finally, as an example, we use the asymptotic formula-
tion of the general relativity in a general stationary axisym-

metric metric. For that, we introduce a complex null tetrad
and we compute the Weyl scalars and spin coefficients, then
we reduce this general spacetime to some familiar exact so-
lutions.
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Appendix

A. Complex scalars and Spin Coefficients for a more general stationary axisymmetric spacetimes

In the following appendix, we present a set of equations derived from the line element (84). These equations correspond to the
Weyl and Maxwell scalars, and the spin coefficients computed from the tetrad basis introduced in Sec. 6. Now, starting with
the Weyl scalars we can write,

ψ0 = − sin2 θ

4
e−2 µ0−2 µ2+2 µ3

(
∂ω

∂θ

)2

− e−2 µ1

2r

∂

∂r
(µ2 − µ3)−e−2 µ1

4

(
∂µ0

∂r

∂

∂r
(µ3 − µ2) +

∂µ3

∂r

∂

∂r
(µ1 − µ3)

)

− e−2 µ1

4

(
∂

∂r
(µ2 − µ1)

∂µ2

∂r
+

∂2

∂r2
(µ2 − µ3)

)
− e−2 µ2

4r2

(
∂

∂θ
(µ2 − µ0 + µ3)

∂µ0

∂θ
+

∂

∂θ
(µ1 − µ2 − µ3)

∂µ1

∂θ

)

−e−2 µ2

4r2

(
∂2

∂θ2
(µ1 − µ0) + cot θ

∂

∂θ
(µ0 − µ1)

)
+

i sin θ

4

(
∂ω

∂θ

∂

∂r
(µ2 − 3µ3 + 2µ0)− ∂2ω

∂θ∂r

)
e−µ0−µ1−µ2+µ3

− i sin θ

4

(
∂ω

∂r

∂

∂θ
(µ0 + µ1) +

2
r

∂ω

∂θ

)
e−µ0−µ1−µ2+µ3 , (A.1)

ψ1 =
r sin2 θ

2
∂ω

∂θ

∂ω

∂r
e−2 µ0−µ1−µ2+2µ3 +

ir sin θ

8

(
∂ω

∂r

∂

∂r
(µ2 + 9 µ3 − 3µ0 − 3µ1) + 3

∂2ω

∂r2

)
e−µ0−2 µ1+µ3

+
e−µ1−µ2

4r

(
∂

∂r
(µ2 − µ3)

∂µ3

∂θ
− ∂2

∂θ∂r
(µ3 + 3µ0)

)
+

3icos θ

8r

∂ω

∂θ
e−µ0−2µ2+µ3

+
5i sin θ

4
∂ω

∂r
e−µ0−2 µ1+µ3 +

isin θ

8r

(
∂

∂θ
(3µ1 − µ0 + 3 µ3 − µ2)

∂ω

∂θ
+

∂2ω

∂θ2

)
e−µ0−2µ2+µ3

+
e−µ1−µ2

4r

(
1
r

∂

∂θ
(3 µ0 + µ1)+3

∂

∂r
(µ2 − µ0)

∂µ0

∂θ
+

∂

∂r
(3 µ0 + µ3)

∂µ1

∂θ
−4cot θ

∂

∂r
(µ3 − µ2)

)
, (A.2)

ψ2 = −r2 sin2 θ

12

(
7

(
∂

∂r
ω

)2

+
1
r2

(
∂

∂θ
ω

)2
)

e−2 µ0−2µ2+2µ3 +
e−2 µ1

12
∂

∂r
(µ2 − µ1 + µ0)

∂µ2

∂r

+
e−2 µ1

12

(
10

∂

∂r
(µ0 − µ1)

∂µ0

∂r
+

∂

∂r
(µ3 − 2 µ2 − µ1 + µ0)

∂µ3

∂r

)
+

i cos θ

2
∂ω

∂r
e−µ0−µ1−µ2+µ3

+
e−2 µ1

12

(
∂2

∂r2
(µ3 + 10 µ0 + µ2) +

2
r

∂

∂r
(µ0 − µ1)− 2

r2

)
+

e−2µ2

12r2

∂

∂θ
(µ1 + µ3 − µ2 + 10 µ0)

∂µ1

∂θ

+
e−2µ2

12r2

(
∂

∂θ
(2µ2 − 2 µ3 + µ0)

∂µ3

∂θ
+

∂

∂θ
(µ0 − µ2)

∂µ0

∂θ

)
+

cot θ

12r2

(
∂

∂θ
(−4 µ3 + 2 µ2 + µ0+µ1)

)
e−2µ2

+
e−2µ2

12r2

(
∂2

∂θ2
(µ0 − 2 µ3 + µ1) + 2

)
+

i sin θ

4

(
∂

∂r
(µ3 − µ2)

∂ω

∂θ
+

∂

∂θ
(2µ3 − µ0 − µ1)

∂ω

∂r

)
e−µ0−µ1−µ2+µ3

+
i sin θ

4
∂2ω

∂θ∂r
e−µ0−µ1−µ2+µ3 , (A.3)
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ψ3 = −r sin2 θ

2
∂ω

∂θ

∂ω

∂r
e−2 µ0−µ1−µ2+2 µ3 − 2

8r2

∂

∂θ
(µ1 + 3 µ0)e−µ1−µ2−3i cos θ

8r

∂ω

∂θ
e−µ0−2 µ2+µ3

+
e−µ1−µ2

4r

∂2

∂θ∂r
(µ3 + 3 µ0) +

i sin θ

8r

(
∂

∂θ
(µ0 − 3 µ1 + µ2 − 3 µ3)

∂ω

∂θ
− ∂2ω

∂θ2

)
e−µ0−2 µ2+µ3

+
e−µ1−µ2

4r

(
− ∂

∂r
(µ3 + 3 µ0)

∂µ1

∂θ
+

∂

∂r
(µ3 − µ2)

∂µ3

∂θ
+ 3

∂

∂r
(µ0 − µ2)

∂µ0

∂θ

)

+
ir sin θ

8

(
∂

∂r
(3µ0 + 3µ1 − µ2 − 9 µ3)

∂ω

∂r
− 3

∂2ω

∂r2
− 10

r

∂ω

∂r

)
e−2µ0−2 µ1+µ3

+
cot (θ)

4r

∂

∂r
(µ3 − µ2) e−2µ2−µ0−µ1 , (A.4)

ψ4 = − sin2 θ

4

(
∂ω

∂θ

)2

e−2 µ0−2 µ2+2 µ3 +
e−2 µ1

4

(
∂

∂r
(µ3 − µ1 − µ0)

∂µ3

∂r
+

∂

∂r
(µ1 − µ2 + µ0)

∂µ2

∂r

)

− e−2 µ2

r2

(
∂

∂θ
(µ1 − µ3 − µ2)

∂µ1

∂θ
+

∂

∂θ
(µ3−µ0 + µ2)

∂µ0

∂θ
+

∂2

∂θ2
(µ1 − µ0)

)

+
e−2 µ1

4

(
∂2

∂r2
(µ3 − µ2)− 2

r

∂

∂r
(µ2 − µ3)

)
+

cot (θ)
4r2

∂

∂θ
(µ1 − µ0)e−2 µ2

+
i sin θ

4

(
∂

∂r
(µ2 − 3µ3 + 2µ0)

∂ω

∂θ
+

∂

∂θ
(µ1 − µ0)

∂ω

∂r
− ∂2ω

∂θ∂r
− 2

r

∂ω

∂θ

)
e−µ0−µ1−µ2+µ3 . (A.5)

Finally, we show the three Maxwell field scalars and the twelve spin coefficients defined in the NP approach,

Φ0 = − 1
2r

(
∂Aθ

∂r
− ∂Ar

∂θ

)
e−µ1−µ2 − 1

2r

(
∂Aϕ

∂θ
ω − ∂χ

∂θ

)
e−µ0−µ2 +

i csc θ

2r

∂Aϕ

∂r
e−µ1−µ3, (A.6)

Φ1 =
(

ω
∂Aϕ

∂r
− ∂χ

∂r

)
e−µ0−µ1 +

i csc θ

2r2

∂Aϕ

∂θ
e−µ2−µ3, (A.7)

Φ2 =
1
2r

(
∂Aϕ

∂θ
ω − ∂χ

∂θ

)
e−µ0−µ2 +

1
2r

(
∂Ar

∂θ
− ∂Aθ

∂r

)
e−µ1−µ2 − i csc θ

2r

∂Aϕ

∂r
e−µ1−µ3, (A.8)

σ = λ =
√

2
4

(
i sin θ

∂ω

∂θ
e−µ0−µ2+µ3 +

∂

∂r
(µ2 − µ3)e−µ1

)
, (A.9)

ρ = µ =
√

2
4

(
∂

∂r
(µ2 + µ3) +

2
r

)
e−µ1 , (A.10)

κ = −ν =
√

2
4r

∂

∂θ
(µ0 − µ1) e−µ2 , (A.11)

τ = −π = −
√

2
4r

(
i sin θr2 ∂ω

∂r
e−µ0−µ1+µ3 − ∂

∂θ
(µ0 + µ1) e−µ2

)
, (A.12)

α = −β =
i
√

2r sin θ

8
∂ω

∂r
e−µ0−µ1+µ3 +

√
2

4r
e−µ2

(
∂µ3

∂θ
+ cotθ

)
, (A.13)

γ = ε = −
√

2
8

(
i sin θ

∂ω

∂θ
e−µ0−µ2+µ3 + 2 e−µ1

∂µ0

∂r

)
. (A.14)
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