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In this paper we propose a simple method to identify the unknown parameters and to estimate the underlying variables from a given chaotic
time series{z3(tx)}6=" of the three-dimensional &&sler systemRS). The reconstruction of thBS from its 3 — variable is known to

be considerably more difficult than reconstruction from its two other variables. We show that the system is observable and algebraically
identifiable with respect to the auxiliary outplut(zs), hence, a differential parameterization of the output and its time derivatives can be
obtained. Based on these facts, we proceed to form an extended re-parameterized system (linear-in-the -parameters), which turns out to be
invertible, allowing us to estimate the variables and missing parameters.

Keywords: Chaotic systems; inverse problem; estimation of parameters and variables.

Este articulo se presenta urétndo sencillo para recuperar el los fr@etros del modelo y para recuperar las variables no disponibles del
sistema cético de Rossler, a partir de el conocimiento de una serie de ti§mpds) k=n_Es muy bien sabido, que reconstruir este
sistema a partir de la variahtg es mas ditil que tratar de reconstruirlo a partir de las otras variables. Usando el hecho que este sistema es
identificable y algebraicamente observable con respecto a la transformhagi3), se procede a obtener una parametrizadiferencial de

la salida. Esta parametrizaci puede ser invertible bajo ciertas condiciones. Pezmithnos estimar pametros y variables desconocidas

del modelo.

Descriptores: Sistemas aaticos; problema inverso; estimaai de paametros y variables.

PACS: 02.60.Lj; 05.45.Gg, 05.45.Pq; 05.45+b

1. Introduction two variablesr; andz,. So, we approach the identification
problem using the algebraic properties of observability and

In the last two decades, considerable attention has been pdukntifiability of theRS. These properties allow us to find a

to the reconstruction of chaotic attractors from one or moralifferential parametrization of the recorded data and a finite

available variables (see the pioneering works by Taken [1]Jnumber of its time derivatives. Then, based on this parame-

Packarcet al. [2] and Saueet al. [3]). This is an interesting terization, we show that it is possible to recover the missing

and challenging topic that allows us to test the accuracy o$tates and the unknown parameters. This approach requires

some empirically derived models [4,5]. This inverse prob-the time derivatives (from first to third) of the data set, which

lem consists in recovering the underlying variables and unare solved with a digital differentiator [21].

known parameters from a partial knowledge of a particular  The rest of this paper is organized as follows. Section 2

chaotic system. There are two ways to approach this prokis devoted to studying some important algebraic properties of

lem. The first approach is based on embedding a time serigke RS. In Sec. 3, we establish the framework of the identi-

of the observed variables in a phase space. Roughly speakinfization problem and introduce a digital filter for estimation

the vector state is constructed with the time delayed values aif the time derivatives of the recorded data set. Section 4

the measured scalar quantity [6—11]. The other approach eypresents the results of the simulations. Section 5 is devoted

ploits control theoretical ideas, such as inverse system desigo giving some conclusions. Finally, in the Appendix we pro-

and system identification, generally using Kalman'’s filters,vide a proof of the proposition.

Luenberger’s observers and high gain observers [12—19].

According to the second approach, we recover (approxi2  pProblem Definition

mately) the set of non-available parameters and the remaining

states of th&kS, based on the knowledge of a recorded timeConsider th&RSwhich is defined by a set of three differential

series, which is the sampling variabte from theRS*. We  equations,

emphasize that the observability index of R® with respect

to variablexs is the smallest of the three states. A small in-

dex indicates little information content, which implies great &y = 21 + axa,

difficulties [20]. That is, identification of th&S from x3- )

variable poses more problems than utilizing any of the other &3 = b+ w3(e1 = ©), @)

T = —(1‘2 + 1‘3),
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where the coefficients,b, an ¢ are adjustable constants. Definition 1: Consider an undetermined system of ordinary
Originally, this system, introduced by Ott@Bsler, arose out differential equations

of work in chemical kinetics [22]. This system presents a

chaotic behavior in a large neighborhood{af = b = 0.2, e (t,X, X, p) -0, (4)

¢ = 5}, and it is considered to exhibit one of the simplest

poslil?sleviglfrllggv?:r&c; rsiif:r]. shows a highly complex where X T = (z;)i™ € R" is a state vector andP
3 ghly P T ¢ R' is a constant parameter vector. Suppose that there

behavior, which consists of a set of spikes with irregular__.
L . . . exists a smooth, local and one to one correspondence be-
amplitudé’, so that a convenient nonlinear coordinate trans- . : .
. : : i tween solutionX (¢) of systen{4) and an arbitrary function
formation for numerical purpose is presented as:

y(t) = h(t,X(t)) € R; then, stater; is said to be alge-

21 = T1, 29 = Ta, 23 = Inxs, braically observable with respect tgt) if it satisfies
with x3 # 0. Hence, in this new coordinate system, (1) be- fi(y, ..., yt™ P)
comes T = — s,
’ gl(y7ay()ap)
z1 = —2z9 —exp(z3), ) h .
' where f;, g; and h are smooth mapg/(*) is the k' deriva-
zZ2 = 21 + azg, tive of y, [, m and s are integers, withn < s. Variabley is
3= —c+ 21 + bexp(—z3). ?) the output If z; is observable for every = 1,...,n, then

we say that the system is completely observable.

This system, referred to as transforni®8, has only one non-  Definition 2: Under the same conditions as Definition 1. If
linear term,exp(z3). Evidently it is easier to study and an- we can find a smooth map : R — R’ such that

alyze than the original system (1), which involves two vari-

ables in the nonlinear termyz; . 0=W(y,4,...,y", P),

Remark 1: Because the estimation of the stafes , =2}

from variablexs has a very small observability index, then, then the parameter vectd? is said to be algebraically iden-
intuitively, it is not possible to recover (with high accuracy) tifiable with respect to the outpyt

the underlying states around a valley or a crest of the recordefht s, g system is algebraically observable if there exists a
signal z3; that is, an information portion is lost. This in- gyitable variable (output) such that all the variables can be
convenience is partially solved (numerically) using the non-yifferentially parameterized solely in terms pfand its re-
linear transformationrs = Inx3, which has the advantage spective time derivatives. Moreover, if vectBris a root of a

of smoothing the variable; peaks. Therefore, it is easier gjfferential parametric function of, we say that the system
to estimate and synchronize, numerically, the stateand g algebraically identifiable.

The problem addressed in this paper consists in determiningeﬁ
the unknown parametets b andc, from a given recorded set
{x3(tp)}E=""t, € 3} whereS is a discrete set of obser-
vation times

Indeed, we show that system (2) satisfies the previous
nitions when the outpuj = z3. Clearly, variables;
andz, can be rewritten as

71 = c—bexp(—y) + y;
S = (tl,tg,...,tn);tj+1 —tj =T

j=A{1,2,...,n—1}. ()
hence, system (2) is algebraically observable with respect to

Lainscselet al. [5] recover a global model from the; — vari- - the selected output. Moreover, from the third equation of (2),
able, by means of an Ansatz library. They employ embeddingye optain

methodology as a tool to derive a model in space spanned by

2y = —exp(y) — bexp(—y)y — ¥,

the state variable of the time-series itself, while generic func- ()= —¢— (1+ex )+ alex iy
tions of the other two state variables are formed. One disad- Y ( Py (exp(y) +3)
vantage of their method is the use of the Genetic Algorithm +b (1 tay+y — y) exp(—y). (5)

to obtain the inverse of some nonlinear transformations. In
contrast, we solve the problem in a straightforward way byginaily we conclude that system (2) is identifiable with re-

using some algebraic properties, which we discuss in the ”e>§tpect to the outpu, because the above differential parame-
section. terization of the outpuy can be written as

2.1. Some Algebraic properties oo
g prop 0=W(y 49,9, p)

We introduce two useful properties that the transforiR&l A
satisfies [18]. with p = [a, b, .
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3.  Model parameter estimation Remark 1: Another possibility for solving the problem is the
least-squares method. For instance, a convenient quadratic

The differential parameterization (5) can be rewritten as:  fynction may be:

S(t) = —c+ aFy(t) + bFy(t) + abFap(t) (6) ken

M(p)=>_ [~ctaFa(ty)+bFy(tr)+abFay(tr)—S ()]
0

where
S() =y (t)+(1+e* )y (1);

Fy()=(1+5" (1)~ (t))e v,

Fo(t)=e"+j(1), with ¢, € 3. In other words, finding the vectgris equiva-

r, (t):y(t)e—y(t). ) lent to m.in.imizingM(p) for p € R3. However, it is evidently
more efficient to recover the unknown parameters andc

This makes it possible to build an extended re-parameterizedy means oProposition 1

linear system of the output and its time derivatives,

which is formed evaluating (6) at different times 31

{tk, tk_17tk_2, tk_g} C . This ylelds

Numerical Differentiators

A suitable method for estimating the time derivatives on

Plty, : th—3]Q = X[ty : t—3] ) 4 discrete set of recorded data was developed in Ref. 21.
where The method consists in approximating a window of data
{y(tk—w), ..., y(try} by means of an interpolating polyno-
=1 Fu(tp-3) Fo(tp-3) Fap(tr-3) mial
Bty : tys)— —1 Fu(tp—2) Fp(th—2) Fap(tr—2) ) k=N
BRI Fultie1) Fy(tie1)  Fa(tr—1)| y(t) = Z ap(t — (k= W)T)k, (11)
—1  Fu(ty) Fy(t) Fop(tr) 0
and where the coefficient§ay, . .., ax} are computed from the
least squares solution of
c S(tk—3)
Q=|"¢ . Nlte i tres] = S(tr—2) (10) 1 0 .. 0 ao y(te-—w)
b S(tk-1) 1 T .. TN a1 :
ab S(tr) : : : : T : (12)
Now, the following proposition allows us to estimate vector L wT WD)V ] Lay y(t)

Q, by computing a simple inverse matrix, under the foIIowmgN is the order of the interpolating polynomial/ -+ 1 is the

basic assumptions: ind it b @ is th lina i Th
A.1) The set of equations (1) has a chaotic behaviour,' NZOW POINIS NUMDET, and 1S the sampling time. - Thus,
the time derivatives of at times are

where the trajectories of tHeS are asymptotic to a compact
attractorA.

A.2) The time derivatives (from first to third) of the output
are always available.
Proposition 1: Consider the system (1) under assumptions
A.landA.2 Then, the inverse of matrix (9) exists almost for with ¢,y <s<t,. Notice that it is convenient to implement
any time. centered differentiators, because the §6ty(t;)} ., w
Proof: (the proof is given in the Appendix). is available Hence, it is possible to estimate the time
Remark 2: In order to simplify the following identifica- derivatives in the center of the moving window given by
tion method, we prefer to consider the relaxed case when = kT — WT'/2.
the system exhibits a chaotic behavior, instead of the case We select the spline-based interpolating polynomial to
when its behavior is periodical or quasiperiodical. If we con-approximate the selected set of data windows, since a lower-
sidered the second case, then it would be necessary to useder polynomial can be more accurate than higher-order
the Poinca maps, which leads to a highly sophisticated andpolynomialé”. In practice, decreasing the window size al-
elaborated analysis. Also, a characteristic of the attractor dbws a higher-frequency noise to pass. For a very sffall
the RS s that the signat:; is positive and is formed by a set the window size should be increased to capture more infor-
of spikes with irregular amplitude. Consequently, the time semation about the signal in order to smooth out the calcu-
riesy(tx) = In(x3(tx)) is well defined in the attractagk. A2 lated derivatives. For higher noise levels, we need to increase
will be relaxed by numerical calculation of the derivatives of the window size in order to filter out most of the noise. This
the recorded signdly(t)}5=" (from first to third); this can  works up to a certain limit, after which the error becomes in-
be done since(t;,) = In(z3(tx)); hence, the time derivatives dependent of the window size [15]. Also, an advantage of
of y can be computed using finite derivatives, as we show irthis method over other differentiators is its convenient tran-
the next section. sient behaviour.

, k=N dj
gj(])(s)z Zakw {(t—(k’—W)T)k}!t:s’ (13)
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4. Numerical Simulations Figures 4 to 6 show the numerical values of the parame-
) o . . tersa, b, andc, for the same time samplirf = 0.06 [s] and

The proposed identification scheme, (8) to (10), in conjuncy — ( 925 [s].

tion with the selected spline interpolate method, (11) to (13),  The obtained parameters are quite reasonable, particu-

is illustrated with some numerical simulations. For generaiarly for time samplingl’ = 0.025 [s]. However, to have

tion of the chaotic time series, we used a fourth-order Runges petter estimation of the parameters, the window size must

Kutta algorithm, with a precision @f decimal numbers, from - pe increased in order to avoid the ill-condition of the least-

t = 0tot = 5 seconds. The step size in the numerlcalswar(:‘.S method.

method was set t6 x 10~ *seconds. The parameter values  The second experiment was the same as the first one, ex-

were set ast = 0.25, b = 0.3 andc = 8, and the ini-  cept for the following abrupt variations in the values of the

tial conditions were set ag, (0) = 4.56, 22(0) = —1.69  parameters: it < 2.5s], then{a = 0.25,b = 0.3,¢ = 8},

and z3(0) = 0.07. The parameter values of the spline o, else{a = 0.25,b = 0.25,c = 6} for a sampling time

were selected a8 = 5 andW = 6. The evaluation of  _ 0.02[9.

the time derivatives was implemented at the moving time Figure 7 shows the values of the parameters obtained by

s = (k — 3)T. The estimation process was started afterihe numerical simulation in the second experiment. Notice

¢ > 0.5 seconds. _ that in the time intervak.5 < ¢ < 2.8 the estimation fails,

~ Figures 1 to 3 show the error evolution of each output'shecayse the abrupt variations in the parameters were intro-

time derivatives, defined by; = y9) — g@); forj = 1,2,3,  guced wher — 2.5[9.

for the time sampling” = 0.06 [s] andT" = 0.025 [s], re-

spectively. The behaviour of the method’s solution is con- os— 04—
sistent with the motioni,e. a better performance is obtained | © 7=0.06 a T=0.025
with smaller sampling time. 03
03 —
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5. Conclusions Let us begin to prove the proposition. Suppose that the
set of real functiong1, F,(t), Fy(t), Fap(t) } is linearly de-
The differential algebraic approach allows us to recover thgyendent on a time intervdl= [t:,t/] (t; is the time when the
parametric model of th&S from the knowledge of a given  trajectories of thaRS lie in the attracto. In practice; is

time series{xz3(tx) }1_,- We exploit the algebraic properties very small), where the functiong, (t), F}(t) and F, (¢) are

of observability and identifiability that ®ssler's model ful-
fills with respect to the auxiliary output = In(x3). This

given in (7). There are nonzero constantscs, ¢z, andc,,
such that

facts permits us to obtain a differential parameterization to

the output and its time derivatives (from first to third). The

& ("0 + () + s (1437 (1) — (1))

differential parameterization to the output contains the infor-
mation necessary for determining the remaining states and
the unknown parameters. So, we evaluate in different times

+e1 + ey(t)e ™™ =0,  (14)

this parameterization to form an extended over-parameterizesincey = In(z3), so thaty = z3 /x5 andy = (23 — xg)/xg,
linear system, which turns out to be invertible with respect towhich are well defined b1. Substituting the latter three re-
the new parameters. The identification approaches in conlations into (14), we have, after some manipulation, the fol-
bination with the spline method (to evaluate the time derivalowing differential equation:

tives) are illustrated by numerical simulations.
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Appendix

Proof of proposition 1:

The proof follows from the well-known Poindayw
Bendixon theorem and the following Lemma [19].
Lemma: If the real set of functiong®,(¢)}™, are linearly
independent in atime interval < t < ty, then the following

matrix
Dy (t1) D, (t1)

is nonsingular fot; <t <ty < ... <ty <ty

.2 . .2 .
_ 2c373 + c4T3T3 — Cow3T3 + 03x§ + clwg + 02x§

xs3

3 — a3 '
It should be noticed that; — cyx3 must be different from
zero, because the entiny; is well defined. Hencegxs
is a solution of a second order differential equation in the
time interval I. But this is a contradiction because by
the Poincak-Bendixon theorem [6], it is well known that a
second order differential equation cannot exhibit a chaotic
behaviour (recallingAl). Therefore, the real functions
{1, Fo(t), Fp(t), Fup(t)} are linearly independent in a time
interval I.

Of course, we need to select the time sefies(t,)}}_,
with ¢, € § = (t4,t2,...,t,), such thatlt;,t,] C I. Itis
necessary to take = 4 (see 6).

. Other authors describe tHeS by using the states,y and z.
Here, we use the variables x> andzs , because we use the
symboly to refer to the observed variable (available variable).

it. Much of this behavior is described by one-dimensional logistic

map, that is,the chaotic behavioref can be approximated to
the mapes x+1 = Azs,x (1 —x3,5); With zo > 0. Besides, the

initial conditionz3(0) > 0 leads tozs(t) > 0 forallt > 0,

hences(t) is well-defined [24, 25].

{z3(tx) }&=" is the single noise-free time series observed from
system (1).

iv. Above all if the data set;,y(t;)} _s_w includes local
abrupt changes in the valuesy(ft) for a steady change in the

value oft, then high-order interpolating polynomial produces
more oscillations around the abrupt changes.
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