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Uniformly accelerated observers in special relativity
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The red shift for an electromagnetic wave measured by two observers in a uniformly accelerated frame, which, according to the equivalence
principle, should correspond to a gravitational red shift, is calculated as well as the bending of light rays.
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Se calcula el corrimiento al rojo para una onda electroratiggn medido por dos observadores en un sistema de referencia uniformemente
acelerado, el cual, de acuerdo con el principio de equivalencia, debe corresponder a un corrimiento al rojo gravitacionad, las
desviacdbn de rayos de luz.
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1. Introduction wherew is the velocity of the inertial frame’Svith respect

Just like in Newtonian mechanics, in the special theory of rel0 the inertial frame S ang = (1 — ”2/02)71/2_' one obtains
ativity the inertial frames of reference play an essential roldhe transformation formula for the acceleration of a particle
(see, for example, Refs. 1,2) and the Lorentz transformations (1— U2/62)3/2

give the relationship between the space-time coordinates of al, = vz Ga

events measured in two different inertial frames. However, (1~ vug/c?)

in Newtonian mechanics, as well as in special relativity, on&yherey,, = dz/dt is thez-component of the velocity of the
can make use of non-inertial reference frames. In fact, th@article anda, = du, /dt. Therefore, for a particle that has
equivalence principle states that, in the absence of gravitgy constant acceleratiorf, = ¢ with respect to an inertial

tional fields, a reference frame that is linearly accelerated i&ame < which instantaneously accompanies the particte (
locally identical to a reference frame at restin a gravitationabI =),

field. In particular, making use of the equivalence principle, 4z = (1— ui/CQ)S/Qg. 1)
it is possible to derive the existence of a gravitational red shift

for electromagnetic waves and of a bending of the light raysl hus, assuming that, = 0 for ¢ = 0,

by considering their propagation viewed from an accelerated

t
frame in the absence of a gravitational field (see, for example, Ug = 972- 2)
Refs. 3-5). References 3 and 4 contain computations of these V1+(gt/c)
effects based on Newtonian refations. The proper timery, of the accelerated particle is
The aim of this paper is to find, in the context of spe-

cial relativity, the red shift for an electromagnetic wave, mea- dt

: : ) * = [ V1-u/dt= | ——m——
sured by two observers in a uniformly accelerated frame sep- 70 / uz/e / V14 (gt/c)?

arated by a fixed distance, and the trajectory of a light ray. In c

Sec. 2 we derive the relationship between the space-time co- = —arcsinh(gt/c) (3)
ordinates of events measured by an inertial frame and a ref- g

erence frame whose origin has a constant acceleration witand the position

respect to an instantaneously co-moving inertial frame (see )

also Refs. 6-8). This coordinate transformation is employed =51 T (gt/c)2 4
in Sec. 3 to find the exact red shift formula and the bending g (gt/c)*, )
of light rays.

if the integration constant is conveniently chosen (see Eg. (6)
. . below). According to Egs. (3) and (4), the world-line of a par-
2. Observers with constant acceleration ticle with constant acceleration, parameterized by its proper
From the elementary Lorentz transformation formulae fortime, is given by

two inertial frames in the standard configuration, ) )

. c
t' =7t —vz/?), o =~z —ovt), ct = 7 sinh(g70/c), == 7 cosh(gro/c). 5)
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Equations (4) or (5) yield with respect to the inertial frame S [see Eqgs. (5) and (9)] are
simultaneous$or an observer moving along the world-line (5)
z? — (ct)® = (?/g)?, (6)  or (9). Now we construct a reference frame with coordinates

) ) ) ct’, «', whose origin coincides with the first accelerated ob-
hence the name of hyperbolic motion for the motion of aserver O [which follows the world-line (5)]; the space-time
particle with constant acceleration (see, for example, Ref. Zyoordinates:t, 2/, of any event P are defined in such a way

Sec. 3.8). . thatz’ is the spatial distance from the event P to the first ob-
The tangent vector of the world-line (5) server O, as measured by this observer,#imthe value that
d(ct) de the proper time of the first observer has simultaneously (with
o uh) ===, — respect to O) with the occurrence of P. Thus,
dTO dT()
c2
= c(cosh(gTo/c),sinh(gro/c)>, (7) ct = (g + x') sinh(gt'/c),
points along the time axis for an observer moving along this c? , ,
world-line, and T = (g +x > cosh(gt'/c), (11)
(B°,B") = (Sinh(gfo/C), cosh(gfo/«i)), (8)  which amounts to
2
is a unit space-like vector orthogonal t6/°,U*) (in the I+t — <C +m/> exp(Lgt’ /¢). (12)
sense thatB’)? — (B')? = —1, andB°U° — BU! = 0) 9

that defines the spatial direction for this observer (see, for , . 9 1o 5
example, Ref. 9). Hence, the parametric equations Therefore, the Minkowski line elemenst = 2dt? — dz

takes the form
2
C
ct = — sinh(g7o/c) + hsinh(gry/c), 2
g 0 ’ ds? = (1 + 92) dt'? — da'?. (13)
C
2

C
x = — cosh ¢) + hcosh c), 9 )
g (g7o/¢) (g70/) © (Note that ifgz’/c*> andgt’/c are small, Egs. (11) reduce to

the approximate expressions
obtained by adding the vecta B°, B') to the space-time PP P

coordinates (5), correspond to the world-line of a second ob- 2 1
server ahead of the first by a distarigeneasured by the first t~t, xo~ n +a’ + 59f’27
observer. (Note, however, that the parameteappearing

in Egs. (9) is not the proper time of the second observer itvhich agree with the Newtonian formulae.)

h # 0. See the discussion in the following section.) Equations (12) imply that, for a light ray propagating
Equations (9) also correspond to a hyperbolic motion, inalong thez-axis, (c?/g + z') exp(Fgt'/c) = const., where
fact ) ) the upper [resp. lower] sign corresponds to rays propagating
2% (ct)? = (C I h) ’ (10) in the positive [resp. negativael-direction. Hence, the total
g time (measured by the clock at O) employed by a light signal

but the second observer has the constant acceleratidf 90 from O toa point with” = h and back to O is equal to
g/(1+ gh/c?®) with respect to an inertial frame that instanta- 9%
neously accompanies the second obsemfeEf. (6)]. ZIn(1 + gh/c?),
Thus, two uniformly accelerated observers (or particles) g
must havedifferentaccelerations in order to remain separatedyhich amounts to a mean velocity
by a proper constant distance. The increasing velocities of
the two particles produce an increasing Lorentz contraction gh

in such a way that the two particles seem to approach each cIn(1 + gh/c?) 2c
other viewed from the inertial frame S, which corresponds to
a difference between the accelerations of the particles. The existence of this effect was also considered by Einstein

By construction, the events with space-time coordinatesin Ref. 3 and employed in finding the bending of light rays in
) a gravitational field.

(o Making use of Egs. (12), one can readily obtain the in-
— | sinh(gm/c¢), cosh(gry/c .
( (970/¢) 970/ )) verse relations to Egs. (11)

and 2 2
2 . r_ r+ct r_ ez &
(g + h) (smh(gro/c), cosh(gro/c)) ct 2 In (;1: mprl R x? — (ct) g (14)
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3. Applications wherez, andy, are constants. Then, according to Egs. (11)
and (16),
3.1. Red shift

2
xo = <C + x’) cosh(gt'/c),
At the origin of the reference frame &’ = 0), Eq. (13) g

reduces to sf = c2dt’?, thus showing that’ is indeed the 2

proper time,r,, measured by a clock placed at that point. Y =yo + ( + 33’) sinh(gt'/c),
Similarly, Eq. (13) implies that the time, measured by a g

clock fixed with respect to the accelerated framats’ = h, 2 =0.

is related ta’ by dr; = (1 + gh/c®)dt’ and therefore, .
Hencex? — (v' — v0)? = (¢?/g + 2')?, that is

gh
dri =1+ ) dro. 15 2\ 2
1 ( o2 0 (15) (x’ + Cg) + (y' . y0)2 _ 1:(2)7

Thus, by contrast with the case of an inertial frame, the clocks , . . . .
fixed with respect to ‘Scannot be svnchronized which means that the trajectory of the light ray with re-
P . ) .y ) . spect to the accelerated frame is an arc of the circle cen-
The gxactrelat_lon (_15) is equivalent to the approximate oo at—c? /g, yo, 0) with radius|zo|. If the light ray passes
one derived by Einstein [3] (see also Ref. 4), though, in the{hrough the origin of § we must to choose, = ¢2/g. For
present casey is only the acceleration of the clock at the g = 9.8 m/<, the radiusc?/g is approximately equal to 1

origin. The_ difference of accelerations of the. wo Cl‘?CkS iSIight-year. (The light ray traverses only half of the circle with
necessary in order for Eqg. (15) to be symmetric; that is, from, > —c2/gif 2o > 0.)

Eg. (15) we obtain In a similar way one finds that the trajectory of any light

ray with respect to Ss a straight line parallel to the'-axis

dro = <1 + 9h> ' L= ¢? dry or a circle centered at some point with= —c? /g; in the lat-
2 2 +gh ter case, if the ray passes through the origin ‘ofi8 radius
g (—h) of the circle must be greater than or equattgg.
= (1 + T g/ & > dry, This result also follows from the fact that the light rays

are null geodesics of the space-time metric, which, in terms

which is of the form (15) with the roles of the clocks inter- ©f the coordinates of'Shas the form

changed, and//(1 + gh/c?) being the acceleration of the N 2
clock atz’ = h [see Eq. (10)]. ds? = (1 + gﬁ) Adt'? —da’? —dy’? —d2’? (17)

Equation (15) implies that the frequencies of a light sig- ¢
nal, for exampley, and vy, respectively, measured by ob- [cf. Eq. (13)]. Hence, the time taken by a light ray to go from

servers at’ = 0 andz’ = h, are related by a point R to another point Pis given by
gh F2
e (). |} v
¢ c 1+ ga'/c?
Py

(cf. Refs. 3,4).
and, by virtue of Fermat's principle of least time (see, for ex-

ample, Ref. 10), the light ray follows a geodesic of the three-

3.2. Bending of the light rays dimensional metric

2 2 2
Now we want to find the trajectory followed by a ray of light de’ + dy” + d2’ (18)
with respect to the accelerated franfe B this end, we note (1+ ga'/c?)?

that the Cartesian coordinates of an event in the direction

perpendicular to that of the relative motion of S arida& fsee also Ref. 11), which is the metric of the three-

dimensional hyperbolic space (see, for example, Ref. 12).

related by The geodesics of metric (18) are known to be circles whose
y=1vy, z2=2, (16)  planes are perpendicularter gz’/c? = 0 centered at points
with 1 + g2’ /c? = 0 or straight lines parallel to the-axis.
if the Cartesian axes of S and &e parallel. With respect to In order to compare the bending of the light rays

the inertial frame S, a light ray perpendicular to the accelerafound in this subsection with the well-known result ob-

tion of S can be represented by the parametric equations  tained in the framework of general relativity by means of the
Schwarzschild metric [1,2,9], we can findpproximately

xr=x9, Y=1yo+ct, z=0, the radius of curvature of the trajectory of a light ray at the
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point of closest approach to the mass producing the gravitagravity at a distance of the mass\/, according to Newton'’s

tional field. The curvature radiu®, of a plane curve defined law of gravitation, whichdiffers by a factor of 1/3 from the

by the equatiom = r(0), at a point whered/dd vanishes, is radius obtained above.

given by Thus, by contrast with the good agreement between the
1 1 iﬁ _ @ oy (19) red shift found in the preceding subsection and that given by
R r r2d92  d¢? ’ the general theory of relativity, there is a notorious difference

with « = 1/r. On the other hand, making use of the usualin the case of the bending of a light ray, in spite of the rel-

expression for the Schwarzschild metric, the trajectory of ativistic character of both approaches and especially of the

light ray in the gravitational field produced by a massis  origin of Einstein’s theory of gravitation.

given by the differential equation [2,9]

d*u _3GM ,
a2 +u= 2 u”,
where G is Newton’s constant of gravitation and=1/r.  The authors wish to thank Dr. G. Silva Ortigoza and the ref-
Thus, owing to Eq. (19), taking into account thatis eree for valuable suggestions. One of the authors (C.I.P.S.)
approximately the radial distance, the radius of curvathanks the Vicerrectéa de Investigaéin y Estudios de Pos-
ture of the trajectory of a light ray at the periastron isgrado of the Universidad AGhoma de Puebla for financial
R = c*r?/(3GM) ~ c?/(3g), whereg is the acceleration of support through the programme “La ciencia en tus manos.”
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