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Uniformly accelerated observers in special relativity
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The red shift for an electromagnetic wave measured by two observers in a uniformly accelerated frame, which, according to the equivalence
principle, should correspond to a gravitational red shift, is calculated as well as the bending of light rays.
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Se calcula el corrimiento al rojo para una onda electromagnética medido por dos observadores en un sistema de referencia uniformemente
acelerado, el cual, de acuerdo con el principio de equivalencia, debe corresponder a un corrimiento al rojo gravitacional, ası́ como la
desviacíon de rayos de luz.
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1. Introduction
Just like in Newtonian mechanics, in the special theory of rel-
ativity the inertial frames of reference play an essential role
(see, for example, Refs. 1,2) and the Lorentz transformations
give the relationship between the space-time coordinates of
events measured in two different inertial frames. However,
in Newtonian mechanics, as well as in special relativity, one
can make use of non-inertial reference frames. In fact, the
equivalence principle states that, in the absence of gravita-
tional fields, a reference frame that is linearly accelerated is
locally identical to a reference frame at rest in a gravitational
field. In particular, making use of the equivalence principle,
it is possible to derive the existence of a gravitational red shift
for electromagnetic waves and of a bending of the light rays
by considering their propagation viewed from an accelerated
frame in the absence of a gravitational field (see, for example,
Refs. 3-5). References 3 and 4 contain computations of these
effects based on Newtonian relations.

The aim of this paper is to find, in the context of spe-
cial relativity, the red shift for an electromagnetic wave, mea-
sured by two observers in a uniformly accelerated frame sep-
arated by a fixed distance, and the trajectory of a light ray. In
Sec. 2 we derive the relationship between the space-time co-
ordinates of events measured by an inertial frame and a ref-
erence frame whose origin has a constant acceleration with
respect to an instantaneously co-moving inertial frame (see
also Refs. 6-8). This coordinate transformation is employed
in Sec. 3 to find the exact red shift formula and the bending
of light rays.

2. Observers with constant acceleration
From the elementary Lorentz transformation formulae for
two inertial frames in the standard configuration,

t′ = γ(t− vx/c2), x′ = γ(x− vt),

wherev is the velocity of the inertial frame S′ with respect
to the inertial frame S andγ = (1− v2/c2)−1/2, one obtains
the transformation formula for the acceleration of a particle

a′x =
(1− v2/c2)3/2

(1− vux/c2)3
ax,

whereux = dx/dt is thex-component of the velocity of the
particle andax = dux/dt. Therefore, for a particle that has
a constant accelerationa′x = g with respect to an inertial
frame S′ which instantaneously accompanies the particle (i.e.
ux = v),

ax = (1− u2
x/c2)3/2g. (1)

Thus, assuming thatux = 0 for t = 0,

ux =
gt√

1 + (gt/c)2
. (2)

The proper time,τ0, of the accelerated particle is

τ0 =
∫ √

1− u2
x/c2 dt =

∫
dt√

1 + (gt/c)2

=
c

g
arcsinh(gt/c) (3)

and the position

x =
c2

g

√
1 + (gt/c)2, (4)

if the integration constant is conveniently chosen (see Eq. (6)
below). According to Eqs. (3) and (4), the world-line of a par-
ticle with constant acceleration, parameterized by its proper
time, is given by

ct =
c2

g
sinh(gτ0/c), x =

c2

g
cosh(gτ0/c). (5)
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Equations (4) or (5) yield

x2 − (ct)2 = (c2/g)2, (6)

hence the name of hyperbolic motion for the motion of a
particle with constant acceleration (see, for example, Ref. 2,
Sec. 3.8).

The tangent vector of the world-line (5)

(U0, U1) ≡
(

d(ct)
dτ0

,
dx

dτ0

)

= c
(

cosh(gτ0/c), sinh(gτ0/c)
)
, (7)

points along the time axis for an observer moving along this
world-line, and

(B0, B1) ≡
(

sinh(gτ0/c), cosh(gτ0/c)
)
, (8)

is a unit space-like vector orthogonal to(U0, U1) (in the
sense that(B0)2 − (B1)2 = −1, andB0U0 − B1U1 = 0)
that defines the spatial direction for this observer (see, for
example, Ref. 9). Hence, the parametric equations

ct =
c2

g
sinh(gτ0/c) + h sinh(gτ0/c),

x =
c2

g
cosh(gτ0/c) + h cosh(gτ0/c), (9)

obtained by adding the vectorh(B0, B1) to the space-time
coordinates (5), correspond to the world-line of a second ob-
server ahead of the first by a distanceh, measured by the first
observer. (Note, however, that the parameterτ0 appearing
in Eqs. (9) is not the proper time of the second observer if
h 6= 0. See the discussion in the following section.)

Equations (9) also correspond to a hyperbolic motion, in
fact

x2 − (ct)2 =
(

c2

g
+ h

)2

, (10)

but the second observer has the constant acceleration
g/(1 + gh/c2) with respect to an inertial frame that instanta-
neously accompanies the second observer [cf. Eq. (6)].

Thus, two uniformly accelerated observers (or particles)
must havedifferentaccelerations in order to remain separated
by a proper constant distance. The increasing velocities of
the two particles produce an increasing Lorentz contraction
in such a way that the two particles seem to approach each
other viewed from the inertial frame S, which corresponds to
a difference between the accelerations of the particles.

By construction, the events with space-time coordinates

c2

g

(
sinh(gτ0/c), cosh(gτ0/c)

)

and (
c2

g
+ h

) (
sinh(gτ0/c), cosh(gτ0/c)

)

with respect to the inertial frame S [see Eqs. (5) and (9)] are
simultaneousfor an observer moving along the world-line (5)
or (9). Now we construct a reference frame with coordinates
ct′, x′, whose origin coincides with the first accelerated ob-
server O [which follows the world-line (5)]; the space-time
coordinatesct′, x′, of any event P are defined in such a way
thatx′ is the spatial distance from the event P to the first ob-
server O, as measured by this observer, andt′ is the value that
the proper time of the first observer has simultaneously (with
respect to O) with the occurrence of P. Thus,

ct =
(

c2

g
+ x′

)
sinh(gt′/c),

x =
(

c2

g
+ x′

)
cosh(gt′/c), (11)

which amounts to

x± ct =
(

c2

g
+ x′

)
exp(±gt′/c). (12)

Therefore, the Minkowski line element ds2 = c2dt2 − dx2

takes the form

ds2 =
(

1 +
gx′

c2

)2

c2dt′2 − dx′2. (13)

(Note that ifgx′/c2 andgt′/c are small, Eqs. (11) reduce to
the approximate expressions

t ' t′, x ' c2

g
+ x′ +

1
2
gt′2,

which agree with the Newtonian formulae.)
Equations (12) imply that, for a light ray propagating

along thex-axis,(c2/g + x′) exp(∓gt′/c) = const., where
the upper [resp. lower] sign corresponds to rays propagating
in the positive [resp. negative]x-direction. Hence, the total
time (measured by the clock at O) employed by a light signal
to go from O to a point withx′ = h and back to O is equal to

2c

g
ln(1 + gh/c2),

which amounts to a mean velocity

gh

c ln(1 + gh/c2)
≥ c.

The existence of this effect was also considered by Einstein
in Ref. 3 and employed in finding the bending of light rays in
a gravitational field.

Making use of Eqs. (12), one can readily obtain the in-
verse relations to Eqs. (11)

ct′ =
c2

2g
ln

(
x + ct

x− ct

)
, x′ =

√
x2 − (ct)2 − c2

g
. (14)
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3. Applications

3.1. Red shift

At the origin of the reference frame S′ (x′ = 0), Eq. (13)
reduces to ds2 = c2dt′2, thus showing thatt′ is indeed the
proper time,τ0, measured by a clock placed at that point.
Similarly, Eq. (13) implies that the timeτ1 measured by a
clock fixed with respect to the accelerated frame S′ atx′ = h,
is related tot′ by dτ1 = (1 + gh/c2)dt′ and therefore,

dτ1 =
(

1 +
gh

c2

)
dτ0. (15)

Thus, by contrast with the case of an inertial frame, the clocks
fixed with respect to S′ cannot be synchronized.

The exactrelation (15) is equivalent to the approximate
one derived by Einstein [3] (see also Ref. 4), though, in the
present case,g is only the acceleration of the clock at the
origin. The difference of accelerations of the two clocks is
necessary in order for Eq. (15) to be symmetric; that is, from
Eq. (15) we obtain

dτ0 =
(

1 +
gh

c2

)−1

dτ1 =
c2

c2 + gh
dτ1

=
(

1 +
g

1 + gh/c2

(−h)
c2

)
dτ1,

which is of the form (15) with the roles of the clocks inter-
changed, andg/(1 + gh/c2) being the acceleration of the
clock atx′ = h [see Eq. (10)].

Equation (15) implies that the frequencies of a light sig-
nal, for example,ν0 andν1, respectively, measured by ob-
servers atx′ = 0 andx′ = h, are related by

ν0 =
(

1 +
gh

c2

)
ν1

(cf. Refs. 3,4).

3.2. Bending of the light rays

Now we want to find the trajectory followed by a ray of light
with respect to the accelerated frame S′. To this end, we note
that the Cartesian coordinates of an event in the directions
perpendicular to that of the relative motion of S and S′ are
related by

y = y′, z = z′, (16)

if the Cartesian axes of S and S′ are parallel. With respect to
the inertial frame S, a light ray perpendicular to the accelera-
tion of S′ can be represented by the parametric equations

x = x0, y = y0 + ct, z = 0,

wherex0 andy0 are constants. Then, according to Eqs. (11)
and (16),

x0 =
(

c2

g
+ x′

)
cosh(gt′/c),

y′ = y0 +
(

c2

g
+ x′

)
sinh(gt′/c),

z′ = 0.

Hence,x2
0 − (y′ − y0)2 = (c2/g + x′)2, that is

(
x′ +

c2

g

)2

+ (y′ − y0)2 = x2
0,

which means that the trajectory of the light ray with re-
spect to the accelerated frame is an arc of the circle cen-
tered at(−c2/g, y0, 0) with radius|x0|. If the light ray passes
through the origin of S′, we must to choosex0 = c2/g. For
g = 9.8 m/s2, the radiusc2/g is approximately equal to 1
light-year. (The light ray traverses only half of the circle with
x′ > −c2/g if x0 > 0.)

In a similar way one finds that the trajectory of any light
ray with respect to S′ is a straight line parallel to thex′-axis
or a circle centered at some point withx′ = −c2/g; in the lat-
ter case, if the ray passes through the origin of S′, the radius
of the circle must be greater than or equal toc2/g.

This result also follows from the fact that the light rays
are null geodesics of the space-time metric, which, in terms
of the coordinates of S′, has the form

ds2 =
(

1 +
gx′

c2

)2

c2dt′2 − dx′2 − dy′2 − dz′2 (17)

[cf. Eq. (13)]. Hence, the time taken by a light ray to go from
a point P1 to another point P2 is given by

1
c

P2∫

P1

√
dx′2 + dy′2 + dz′2

1 + gx′/c2

and, by virtue of Fermat’s principle of least time (see, for ex-
ample, Ref. 10), the light ray follows a geodesic of the three-
dimensional metric

dx′2 + dy′2 + dz′2

(1 + gx′/c2)2
(18)

(see also Ref. 11), which is the metric of the three-
dimensional hyperbolic space (see, for example, Ref. 12).
The geodesics of metric (18) are known to be circles whose
planes are perpendicular to1+gx′/c2 = 0 centered at points
with 1 + gx′/c2 = 0 or straight lines parallel to thex′-axis.

In order to compare the bending of the light rays
found in this subsection with the well-known result ob-
tained in the framework of general relativity by means of the
Schwarzschild metric [1,2,9], we can find (approximately)
the radius of curvature of the trajectory of a light ray at the
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point of closest approach to the mass producing the gravita-
tional field. The curvature radius,R, of a plane curve defined
by the equationr = r(θ), at a point where dr/dθ vanishes, is
given by

1
R

=
1
r
− 1

r2

d2r

dθ2
=

d2u

dθ2
+ u, (19)

with u ≡ 1/r. On the other hand, making use of the usual
expression for the Schwarzschild metric, the trajectory of a
light ray in the gravitational field produced by a massM is
given by the differential equation [2,9]

d2u

dθ2
+ u =

3GM

c2
u2,

whereG is Newton’s constant of gravitation andu = 1/r.
Thus, owing to Eq. (19), taking into account thatr is
approximately the radial distance, the radius of curva-
ture of the trajectory of a light ray at the periastron is
R = c2r2/(3GM) ' c2/(3g), whereg is the acceleration of

gravity at a distancer of the massM , according to Newton’s
law of gravitation, whichdiffers by a factor of 1/3 from the
radius obtained above.

Thus, by contrast with the good agreement between the
red shift found in the preceding subsection and that given by
the general theory of relativity, there is a notorious difference
in the case of the bending of a light ray, in spite of the rel-
ativistic character of both approaches and especially of the
origin of Einstein’s theory of gravitation.
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