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Crack effects on the propagation of elastic waves in structural elements
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Behavior of the Dynamic Stress Intensity Factor (DSIF) in cracked plates and tubular elements is analyzed. The finite Element Method was
used to validate the procedure used by Chen to determine DSIF in a centrally cracked plate loaded with a step function. Once the validation is
done, length and orientation of the crack are varied to determine their effect on wave propagation and DSIF values. To expand the study, the
analysis is also applied to cracked tubular elements. In all cases, DSIF variation is interpreted as a function of the stresses produced by the
interaction of the elastic waves with the boundaries of the structural element studied. Dependence of DSIF values on dilatational, transversal
and Rayleigh waves is seen. These elastic waves and their interaction with the structural element boundaries and crack surfaces determine
load and unload cycles at the crack tip affecting the stress field and DSIF values.

Keywords:Elastic waves; stress waves; diffraction; dynamic stress intensity factor.

En el presente estudio se analiza el comportamiento del Factor de Intensidad de Esfueamosd@n placas y elementos tubulares agri-

etados. Para alcanzar tal objetivo se emple&daita nurérica conocida como Btodo del Elemento Finito validando primeramente su
aplicacbn al comparar los resultados con los obtenidos en el problema estudiado por Chen, el cual consiste enaraigameinie una

placa centralmente agrietada mediante una meiscabn. Una vez realizada la validaci, se estudia la influencia de la longitud de la

grieta y su orientadin y posteriormente se analiza el comportamiento de unatsettdiular agrietada. En todos los casos, se evidencia el
comportamiento del Factor de Intensidad de Esfuerzoarbico, el cual es interpretado como una fémaile los esfuerzos generados por la
interaccon de las ondas &sticas con las fronteras del elemento estructural estudiado. Se observa que existe una dependencia completa de
tal factor con respecto a las ondas dilatacionales, transversales y de Rayleigh. Por lo tanto, labintdedasiondas &sticas y las fronteras

del elemento estructural determinan ciclos de carga y descarga en la punta de la grieta, afectando el campo de esfuerzos y particularmente |
configuracon del Factor de Intensidad de Esfuerzosabirco.

Descriptores:Ondas dsticas; difracdn; factor de intensidad de esfuerzosatimico.
PACS: 62.20.-x; 62.20.Mk; 62.30.+d

1. Introduction grow from an initial length with constant opposite velocities
at the two crack tips. His research has had considerable im-

The presence of cracks in structural elements or mechanicghct in the field of dynamic fracture mechanics in stating that
components is, to a certain point, a common case in industriahe resistance must be proportional to the crack length in or-
installations. Such cracks are due to excessive loads, fatiguer to comply with the motion. Baker [5] studied the case
or even manufacturing and installation defects, which are &f a semi-infinite crack in an infinite elastic body subject to
cause of reduction in structural integrity. To evaluate the efa tension load, which propagates at constant speed. This is
fect of the presence of cracks in structural components, Fragquivalent to the case of a semi-infinite crack which is being
ture Mechanics Theory is used; its origins can be referred timpacted by a stress wave. He showed how stress concen-
Griffith [1]. This is adequate when quasistatic conditions ararations behave as a monotonous increasing function, since
present and the material shows linear elastic behavior. reflected waves are non existent. On the other hand, Sih [6]

In the case of dynamic problems, the inertial characterisstudied the case of a crack under fluctuating stresses and im-
tic of the problem is very important but its analysis is com-pulse loads. He mentioned that a typical elastic-dynamic
plicated. One of the first contributions in this area is dueanalysis can be used for determining the DSIF at the crack
to Yoffe [2], who considered that cracks grow by propagat-tip versus time loading, crack geometry and material param-
ing in a perpendicular direction to the maximum main stresseters. Such information is essential for a better understanding
Also, when its speed reaches 60% of the transversal wavef the response and fracture behavior of dynamically loaded
speed, cracks change their propagation direction and if sucéplids. With the same idea, Achenbach y Nuismer [7] as-
speed increases, the cracks branches out. On the other hasdssed the situation of a crack under a stress wave. Their
Craggs [3] investigated semi-infinite cracks (penetrating fromsolutions are limited into structures of very large dimensions
the edge far into a body) under dynamic loading conditionscompared with crack dimensions, thus boundary effects may
and stated that there is a speed limit for crack propagatiobe neglected in the analysis. Taking in account the effect of
thus; his conclusions are similar to Yoffe’s. the boundaries includes additional analytic difficulties due to

Broberg [4] studied the case of stationary and runninghe interaction between the crack and the boundaries of the
cracks loaded by a stress wave for the case of transversaiodel. Consequently, analytical solutions only exist for se-
wave propagation. For running cracks, he found that theyected, relatively simple cases due to this complication.
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Freund [8] made a detailed study of Fracture Dynamic @)

problems, proposing solutions to different cases among PR s
which the case of cracks under stress waves is considered. H e 2,44 %sm S
considered that the medium which contains the semi-infinite — @ SA S
crack is a homogeneous, isotropic and linear material, under Pty — m% ég\%% — P
conditions of plane strain. The crack, which is initially sta- — g2 1914 —
tionary, is excited by a stress wave propagating at a constan — %; %E —
speed lower that the superficial wave speed. The stress fiel¢ S —
and the DSIF were obtained by a linear relation. b)

Numerical methods have been developed for the solu-
tion of problems in fracture dynamics such as those related °
to the interaction of waves in cracked media. Such tech-
niques have been efficient in simulating cracked components
under various loads and boundary conditions. Among those
numerical methods, the Finite Difference Method has been .
applied in solving wave propagation problems in cracked me-
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an impulsive load using the Finite Difference Method. He ,
found that the stress field in the plate, and particularly atthe  °———7;
crack tip, is controlled by the interaction of the stress waves time, usec
generated by the impulsive load. Variations of the DSIF ver-

FIGURE 2. a) Simplified representation of an incident wave and
Sdiffracted waves in a centrally cracked plate; b) DSIF variation pro-

tic waves participate in this variation. . duced by the interaction of diffracted waves in the plate shown in
Later, the case of a central cracked plate under an impulgig, 1,

sive load was dealt by Frangi [10] using the Boundary El-

ement Method, and by Rodjuezet al. [11] using the Fi- was a pioneer and, with Finite Difference Method, analyzed
nite Element Method. In both cases, the dimensionless DSI& plate with finite dimensions with a through central crack
(DSIF divided by the static value) agreed with the resultssubject to an axial tension step type load. This is shown
originally obtained by Chen [9,12]. in Fig. 1. The mechanical and physical properties of the
material are as follows: Elastic module=1x710°Kg/cn?,
Poisson ratio = 0.3, and mass density = 5 g/cim Fig. 2,

Basically, the problem consists in the evaluation of stres&hen's results are compared with other methods [10, 11]. Ex-
waves loading a stationary crack. By “stationary” we mearcellent agreement is seen. The interaction of elastic waves
that crack length is constant and crack tips remain permaE0ntrols the behavior of the DSIF; this phenomenon is de-
nently fixed (see Hellan, Ref. 13) in a finite medium. In- SCribed below. o . _
teraction between three types of elastic waves, the medium Figure 2a shows a simplified representation of an im-
boundaries, and crack surfaces are taken into account féSe load P(t) producing an incident elastic wave defined

determining DSIF variation. In this kind of problem Chen [9] @S d1 which is reflected and diffracted by the crack, generat-
ing three types of diffracted waves: Rayleigh (rl1), transverse

(s1) and dilatational (d2). In addition, d1 is reflected by the

2. Problem definition

— - face of the crack generating a dilatational wave, defined as
P(t) < T — P(t) g d3, which travels towards the edge of the plate and bounces
«—] IR —— ~ back to the crack tip generating r2, s2 and d4.
— — The influence of the incident and diffracted waves on the
DSIF values at the crack tip is described in Fig. 2b, where
4cm it can be seen a complete tension load cycle from time 2.72
to 12 usec . In this period the DSIF has varied due to wave

interactions of diffracted waves by the plate edge and crack
P(t)/ faces. Additionally, it can also pg seen 'Fhat up to 2uB2c _
P(t)=4080 kg/cm? the grack is unloaded, since this is the time taken by the di-
latational wave d1 to travel from the edge of the plate to the
crack face.
. As described before, once the crack face is reached by d1,
> time (US€C)  his wave is diffracted into r1, s1 and d2, and these diffracted
FIGURE 1. Plate with a central crack 0.48 cm in length and step waves interact amongst themselves producing a variation of
type load pattern analyzed by Chen [9]. the DSIF at the crack tip (see Fig. 2b). The most influencial
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NODAL SOLUTION AN

JUL 22 2004
X 13:08:02

AN

JUL 22 2004
12:59:02

STEP=1

SUB =1

TIME=. 200E-06
SEQV (AVG)
DMX =.146E-03
SMN =.477E-04
SMX =2457

crack tip detail /

crack
— I
.477E-04 545.968 1092 1638 2184 3201 9509 15818 22126 28435
272.984 818.952 1365 1911 2457 6355 12663 18972 25280 31589

FIGURE 3. Von Mises Stress field: a) for the plate at Qu@ec after the load was applied, and b) at the crack tip at/&s8® .

effect on DSIF’s from the dilatational waves which initially The basic equation of motion solved by a transient dy-
reach the crack face and are then reflected towards the platemic analysis is:

edges where the impulse load was applied, and return com- B

pressing the faces of the crack (see d3 in Figs. 2a and 2b). [M]a(t) +[Cla(t) + [K]a(t) = F (1), (1)
The effect of d3 can be interpreted as a compressive load i )

which forces the crack faces to close, producing a drop i,yv_here, [M]_ = the mass matrix, [C] = damping ma-
DSIF values from time 8.}#&ec on. In a similar manner X, [K] = stiffness matrix, a(t), a(t), a(t) are accelera-

to d1, once the crack face is reached by d3, this wave ition, velocity, and displacement vectors, respectively, and

diffracted into r2, s2, and d4, and their interaction produces 4' ()= load vector. At any given time, these equations can
variation of the DSIF as shown in Fig. 2b. be thought of as a set of static equilibrium equations that

Figure 3a shows a von Mises stress contour ay@ec also take into account inertia forces. The above equation is

after the impulse load was applied at the top of the figureS0lved using the Newmark time integration method for im-
and the load travels towards the crack. As mentioned beford/iCit transient analysis, where dynamic displacemerits
it takes 2.72usec for the load to reach the crack faces andre obtained. o _
produce the diffraction phenomenon as previously described, N the Newmark time integration method, the mass,
From Fig. 2b, the maximum stress concentration is reache@@Mping, and stiffness matrices are calculated as an initial
at 6.59usec and a stress contour at the crack tip is shown iftage of the analysis. The way in which these matrices are
Fig. 3b. As is known, there is a singularity at the crack tip,obtaln_ed for each finite element is by solving the following
which represents a stress field variation of the forv/#, ~ €quations:
where r is the radial distance from the crack tip.

Previous results validate the application of ANSYS soft- My = /NmdeQ, Ci; = /NiﬂdeQ
ware for the analysis of DSIF variation at the crack tip under Qe Qe
the effect of impulse loads. Further work will show the effect
of crack dimensions and crack orientation on DSIF, and thé?lnd
case of DSIF in a tubular section. . B
Kf = / BI DBQ

3. Transient dynamic analysis Qe

Transient dynamic analysis is a technique used to determine FOr @ detailed description of these equations see
the dynamic response of a structure under time-dependeft€nkiewics [15]. These equations are assembled to repre-
loads. In this context, when the loads are rapidly applied®ent the complete model and to determine [M], [C], and [K],
to the cracked body, the inertial effects must be taken int¢€SPectively, which are symmetric. However, determination

account, so that the response of the system is measured irP4[C] IS quite difficult due to the lack of knowledge about
“short-term period of time”. In this case of rapid loading, the VISCOUS matrix.. To avoid this difficulty, Rayleigh damping

influence of the loads is transferred to the crack by means df Used (see Clough and Penzien [16] in which damping ma-

stress waves through the body, see Freund [14]. TherefordX iS proportional to mass and stiffness matrixes). Figure 4
by using this technique, the displacements, strains, stressS880WS how mass, damping and stiffness matrixes are used in
and forces can be determined as a time function. the Newmark time integration method.
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I. INITIAL CALCULATIONs |+ @ Form M. € and K matrices
b. Specify integration parameters
c. Calculate integration constants (blﬁ...ﬁbG )
d. Form effective stiffness matrix
K=K+bAM+bC
e. Specify initial conditions
Uy, l,, i 0
a. Calculate effective load vector
Il. FOR EACH TIME STEP | _ | _
F, =F +Mbu,_,, —byu,_,, —bstt,_,, )+ by, _, —bgr,_,, —Dgit,_,, )
b. Solve for node displacement vector at time ¢
¢. Calculate node velocities and accelerations at time t
d. Goto Step llLawith f=¢+ Ar
FIGURE 4. Flow diagram of Newmark time integration method applied to transient dynamic analysis.
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- ——a=048 ---a=060 \/\\
// // L ] N \\\
// ( 8 \‘\ \
\‘ %(t)‘ ? 4 ' § i 3 31 Baker’s solution \
. F/1 X, U ‘.v(t)‘ % '
. symmetry plane \5 kel
crack ti \\ crack tip § 2 1
N — 5 .
FIGURE 5. Nodes used for the approximate crack-tip displace-
ments: a) half model, and b) full model. ) A 5 8 10 N W
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time, ftsec
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I w1 22 2004 FIGURE 7. Effect of crack size and plate dimensions on DSIF.
10000 ~
8000 +
6000 +
w
9]
[a)
: J 4000 -
CRACK TIP DETAIL
2000 +
0 \
14
-2000 - [—0° o 225° & 45° o 675° x 90°]
time, 4¢Sec

FIGURE 6. Finite Element Model used to

analyze a centrally

cracked plate (see the fine mesh at the proximity of the crack tip). FIGURE 8. DSIF variation for mode | versus crack orientation.
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A more complex case of transient analysis application isnfluenced by dilatational waves; this assumption is based
when no-linear time behaviors are present. In such caseen the fact that, for longer cracks, Rayleigh and transversal
[M], [C], [K], or F(t) depend on the unknown vector u(t), and waves produced by crack diffraction take longer to interact
therefore these matrices could be updated at each stage. with the crack tips. Consequently, before interaction takes

In dynamic fracture mechanics problems, the mostimporplace, the growth rate of the DSIF curves is similar to Baker’s
tant parameter is the DSIF, which represents the stress singu-
larity of r—1/2 near the crack tip is the normal distance to P(t)
the crack tip (see Fig. 5). To evaluate this parameter, the X
“quarter point element” is often used to model a stress andT T [ T W T
displacement field near the crack tip. The DSIF is a function [ T T [ }
of time t, and the way to evaluate it is by knowing the dis- P(t)
placements at the crack surfaces in a local coordinate systen - P(t)=4080 kg/cm’
for half and full models. Expressions used to determine the
DSIF such as Ky”(t) can be found in [17]. time (usec)

4. Analysis of a centrally cracked plate l [ LT | J

Figure 6 shows a fourth of the meshed model used (due P(t)

to symmetry simplifications) for the analysis of a centrally . ) )
cracked plate to determine DSIF using the Finite Elemenf'GURE 9. Cracked tubular section and step tension load applied.
Method incorporated in the ANSYS ver. 6 software. The [___ I AN
mesh has 62 elements, eight of which are located at the cracl 1_ UL 22 2004
tip, with their central nodes displaced one-fourth of the ele-

ment dimension in order to simulate the singularity that rep-
resents the crack tip, making it possible to determine the
DSIF. Since only one-fourth of the entire plate was mod-
eled, appropriate boundary conditions were determined to
provide continuity and symmetry for displacements and trac-
tions, horizontally and vertically.

Figure 7 shows DSIF values by increasing the crack size
on the previously described model. Material properties and
plate dimensions are the same as described in Sec. 2 an =
Fig. 1, respectively, which represent the model used by Chen, crack t'iips
In this case, crack size was varied taking the following val-
ues: a= 0.24, 0.36, 0.48, and 0.60 cm. In general terms, the
DSIF plot in Figure 7 shows a similar pattern to that shownFicure 10. Finite Element Model for the cracked tubular section
in Fig. 2. By increasing the crack size, the DSIF is stronglyanalyzed.
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FIGURE 11. Von Mises Stress field: a) for the complete model aftgiséc of load application, and b) at the crack tip aftep@c.
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5 of the meshed model is shown in Fig. 10 due to symmetry
d simplifications. As previously explained, boundary condi-
: tions (were introduced into the model) to provide continuity
for displacements and tractions horizontally and vertically.
Mesh refinement at the crack tip can also be seen in Fig. 10.
As in the plate model to simulate the singularity, 24 elements
were used at the crack tip to determine the DSIF.
Figure 11a shows von Mises stress contours of the dilata-
tional wave traveling towards the crack at timg:dec after
the load was applied. Figure 11b shows stress concentrations
atthe crack tip at the time of the maximum DSIF value, which
is at 1usec after the load was applied, as shown in Fig. 12.
time, 1sec From Fig. 12 it can be determined that the DSIF pattern
FIGURE 12. DSIF versus time for a centrally cracked tubular sec- shown for this particular tubular section is quite similar to that
tion. showed in the flat plate previously analyzed, thus indicating
that the stress waves are interacting similarly in both cases.
solution [5], in which the cracked plate has infinite dimen-A generalized conclusion can only be obtained by comparing
sions; thus, contributions of waves diffracted by the boundresults from analyses with varying diameter and thickness,
aries are nil. keeping crack and tubular section lengths constant in order
The characteristic behavior of DSIF curves shown into rule out curvature effects. It can be expected that edge ef-
Fig. 7 illustrates the strong influence of plate dimensions andects are nil for the case of stress waves traveling parallel to
crack size on the DSIF pattern. the crack faces, since structural edges in tubular sections are
In a second stage of the analysis, crack orientation haBonexistent in this direction. Figure 12 shows two loading
been varied in the model described above, which represengycles where the second cycle which starts aj48c, pro-
the problem assessed by Chen. Under these conditions, thedgces DSIF of less magnitude than those from the first cycle.
is a mixed fracture mode when the stress waves reach thEhis is due to the effect of a heavier influence of dilatational
crack faces; in this study only mode | of the fracture has beemvave interaction. For a elapsed time after the load is applied
considered in order to determine the DSIF. Orientation haghat is much longer than shown in Fig. 12, wave diffractions
been modeled by varying crack angles as follows: 0, 22.5vanish and the stress field would become stationary; thus, di-
45, 67.5, and 90 mensionless DSIF values would tend to 1.
Figure 8 shows DSIF variation versus crack orientation. .
It can be seen that the DSIF fof @s the case previously ©- Conclusions

studied, where the crack faces are perpendicular to the streBsSIF shows strong variations due to the effect of reflected
wave. In the same figure, it can also be observed that, as thend diffracted wave interactions with structural boundaries
angle is increased, DSIF values decrease. For the case ohad crack geometry. On the other hand the solution given by
crack oriented at 90 dilatational waves do not have any in- B.R. Baker for a semi-infinite crack contained in an infinite

fluence; thus, the DSIF value is nil. Moreover, forr9the  and elastic medium shows a growing function, since there can
effect of waves diffracted by the crack faces is negligible.  be no effect from waves either reflected of diffracted by the

Figure 8 also shows that, for crack orientation 22.5 nearby boundaries.

DSIF values are close to those for thedase. Also, curve For the centrally cracked plates and tubular section an-
gradients for both cases are close, meaning that dilatationalyzed, it has been observed that the effect of dilatational
waves interact similarly. For orientations 45, 67.5 anl,90 waves on DSIF values at the crack tip is dominant. Interac-
the curve gradients are different and the DSIF is reducedion of transversal and Rayleigh waves lower the maximum

meaning that incident and reflected dilatational waves destresses reached during each of the dilatational loading cy-
crease in their interaction as the inclination is increased.  cles.

5. Analysis of a centrally cracked tubular sec- It has been preliminarily identified that, for centrally
' tion cracked plates and cracked tubular sections, DSIF variation

due to wave interaction is similar in both cases and is mainly
In this section, results obtained from plates are comparedriven by load and unload cycles of dilatational or compres-
with DSIF determined from a cracked tubular section. Tubu-sion waves.

lar dimensions are: 12.2 cm long, 6.35 cm outside diameter

and 0.32 cm wall thickness. Crack size is 2 cm in length, and\Cknowledgements

material properties and applied load are the same as describ&fie authors would like to thank the Instituto Mexicano del

in Sec. 2 and Fig. 1, respectively (see Fig. 9). Petbleo for the support given in producing this paper, and to
The mesh used consists of 1312 Solid95 elements of théhe editor’s reviewer for the valuable comments given to this

ANSYS software. These elements have 20 nodes each; hatfork.
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