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Behavior of the Dynamic Stress Intensity Factor (DSIF) in cracked plates and tubular elements is analyzed. The finite Element Method was
used to validate the procedure used by Chen to determine DSIF in a centrally cracked plate loaded with a step function. Once the validation is
done, length and orientation of the crack are varied to determine their effect on wave propagation and DSIF values. To expand the study, the
analysis is also applied to cracked tubular elements. In all cases, DSIF variation is interpreted as a function of the stresses produced by the
interaction of the elastic waves with the boundaries of the structural element studied. Dependence of DSIF values on dilatational, transversal
and Rayleigh waves is seen. These elastic waves and their interaction with the structural element boundaries and crack surfaces determine
load and unload cycles at the crack tip affecting the stress field and DSIF values.
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En el presente estudio se analiza el comportamiento del Factor de Intensidad de Esfuerzos Dinámico en placas y elementos tubulares agri-
etados. Para alcanzar tal objetivo se emplea la técnica nuḿerica conocida como Ḿetodo del Elemento Finito validando primeramente su
aplicacíon al comparar los resultados con los obtenidos en el problema estudiado por Chen, el cual consiste en cargar dinámicamente una
placa centralmente agrietada mediante una función escaĺon. Una vez realizada la validación, se estudia la influencia de la longitud de la
grieta y su orientación y posteriormente se analiza el comportamiento de una sección tubular agrietada. En todos los casos, se evidencia el
comportamiento del Factor de Intensidad de Esfuerzos Dinámico, el cual es interpretado como una función de los esfuerzos generados por la
interaccíon de las ondas elásticas con las fronteras del elemento estructural estudiado. Se observa que existe una dependencia completa de
tal factor con respecto a las ondas dilatacionales, transversales y de Rayleigh. Por lo tanto, la interacción de las ondas elásticas y las fronteras
del elemento estructural determinan ciclos de carga y descarga en la punta de la grieta, afectando el campo de esfuerzos y particularmente la
configuracíon del Factor de Intensidad de Esfuerzos Dinámico.

Descriptores:Ondas eĺasticas; difraccíon; factor de intensidad de esfuerzos dinámico.

PACS: 62.20.-x; 62.20.Mk; 62.30.+d

1. Introduction

The presence of cracks in structural elements or mechanical
components is, to a certain point, a common case in industrial
installations. Such cracks are due to excessive loads, fatigue
or even manufacturing and installation defects, which are a
cause of reduction in structural integrity. To evaluate the ef-
fect of the presence of cracks in structural components, Frac-
ture Mechanics Theory is used; its origins can be referred to
Griffith [1]. This is adequate when quasistatic conditions are
present and the material shows linear elastic behavior.

In the case of dynamic problems, the inertial characteris-
tic of the problem is very important but its analysis is com-
plicated. One of the first contributions in this area is due
to Yoffe [2], who considered that cracks grow by propagat-
ing in a perpendicular direction to the maximum main stress.
Also, when its speed reaches 60% of the transversal wave
speed, cracks change their propagation direction and if such
speed increases, the cracks branches out. On the other hand,
Craggs [3] investigated semi-infinite cracks (penetrating from
the edge far into a body) under dynamic loading conditions
and stated that there is a speed limit for crack propagation
thus; his conclusions are similar to Yoffe’s.

Broberg [4] studied the case of stationary and running
cracks loaded by a stress wave for the case of transversal
wave propagation. For running cracks, he found that they

grow from an initial length with constant opposite velocities
at the two crack tips. His research has had considerable im-
pact in the field of dynamic fracture mechanics in stating that
the resistance must be proportional to the crack length in or-
der to comply with the motion. Baker [5] studied the case
of a semi-infinite crack in an infinite elastic body subject to
a tension load, which propagates at constant speed. This is
equivalent to the case of a semi-infinite crack which is being
impacted by a stress wave. He showed how stress concen-
trations behave as a monotonous increasing function, since
reflected waves are non existent. On the other hand, Sih [6]
studied the case of a crack under fluctuating stresses and im-
pulse loads. He mentioned that a typical elastic-dynamic
analysis can be used for determining the DSIF at the crack
tip versus time loading, crack geometry and material param-
eters. Such information is essential for a better understanding
of the response and fracture behavior of dynamically loaded
solids. With the same idea, Achenbach y Nuismer [7] as-
sessed the situation of a crack under a stress wave. Their
solutions are limited into structures of very large dimensions
compared with crack dimensions, thus boundary effects may
be neglected in the analysis. Taking in account the effect of
the boundaries includes additional analytic difficulties due to
the interaction between the crack and the boundaries of the
model. Consequently, analytical solutions only exist for se-
lected, relatively simple cases due to this complication.
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Freund [8] made a detailed study of Fracture Dynamic
problems, proposing solutions to different cases among
which the case of cracks under stress waves is considered. He
considered that the medium which contains the semi-infinite
crack is a homogeneous, isotropic and linear material, under
conditions of plane strain. The crack, which is initially sta-
tionary, is excited by a stress wave propagating at a constant
speed lower that the superficial wave speed. The stress field
and the DSIF were obtained by a linear relation.

Numerical methods have been developed for the solu-
tion of problems in fracture dynamics such as those related
to the interaction of waves in cracked media. Such tech-
niques have been efficient in simulating cracked components
under various loads and boundary conditions. Among those
numerical methods, the Finite Difference Method has been
applied in solving wave propagation problems in cracked me-
dia. Chen [9] studied the case of a central cracked plate under
an impulsive load using the Finite Difference Method. He
found that the stress field in the plate, and particularly at the
crack tip, is controlled by the interaction of the stress waves
generated by the impulsive load. Variations of the DSIF ver-
sus time were found, and it was stated that interaction of elas-
tic waves participate in this variation.

Later, the case of a central cracked plate under an impul-
sive load was dealt by Frangi [10] using the Boundary El-
ement Method, and by Rodrı́guezet al. [11] using the Fi-
nite Element Method. In both cases, the dimensionless DSIF
(DSIF divided by the static value) agreed with the results
originally obtained by Chen [9,12].

2. Problem definition

Basically, the problem consists in the evaluation of stress
waves loading a stationary crack. By “stationary” we mean
that crack length is constant and crack tips remain perma-
nently fixed (see Hellan, Ref. 13) in a finite medium. In-
teraction between three types of elastic waves, the medium
boundaries, and crack surfaces are taken into account for
determining DSIF variation. In this kind of problem Chen [9]

FIGURE 1. Plate with a central crack 0.48 cm in length and step
type load pattern analyzed by Chen [9].

FIGURE 2. a) Simplified representation of an incident wave and
diffracted waves in a centrally cracked plate; b) DSIF variation pro-
duced by the interaction of diffracted waves in the plate shown in
Fig. 1.

was a pioneer and, with Finite Difference Method, analyzed
a plate with finite dimensions with a through central crack
subject to an axial tension step type load. This is shown
in Fig. 1. The mechanical and physical properties of the
material are as follows: Elastic module=1.7× 106Kg/cm2,
Poisson ratio = 0.3, and mass density = 5 g/cm3. In Fig. 2,
Chen’s results are compared with other methods [10, 11]. Ex-
cellent agreement is seen. The interaction of elastic waves
controls the behavior of the DSIF; this phenomenon is de-
scribed below.

Figure 2a shows a simplified representation of an im-
pulse load P(t) producing an incident elastic wave defined
as d1 which is reflected and diffracted by the crack, generat-
ing three types of diffracted waves: Rayleigh (r1), transverse
(s1) and dilatational (d2). In addition, d1 is reflected by the
face of the crack generating a dilatational wave, defined as
d3, which travels towards the edge of the plate and bounces
back to the crack tip generating r2, s2 and d4.

The influence of the incident and diffracted waves on the
DSIF values at the crack tip is described in Fig. 2b, where
it can be seen a complete tension load cycle from time 2.72
to 12µsec . In this period the DSIF has varied due to wave
interactions of diffracted waves by the plate edge and crack
faces. Additionally, it can also be seen that up to 2.72µsec
the crack is unloaded, since this is the time taken by the di-
latational wave d1 to travel from the edge of the plate to the
crack face.

As described before, once the crack face is reached by d1,
this wave is diffracted into r1, s1 and d2, and these diffracted
waves interact amongst themselves producing a variation of
the DSIF at the crack tip (see Fig. 2b). The most influencial
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FIGURE 3. Von Mises Stress field: a) for the plate at 0.2µsec after the load was applied, and b) at the crack tip at 6.59µsec .

effect on DSIF’s from the dilatational waves which initially
reach the crack face and are then reflected towards the plate
edges where the impulse load was applied, and return com-
pressing the faces of the crack (see d3 in Figs. 2a and 2b).
The effect of d3 can be interpreted as a compressive load
which forces the crack faces to close, producing a drop in
DSIF values from time 8.17µsec on. In a similar manner
to d1, once the crack face is reached by d3, this wave is
diffracted into r2, s2, and d4, and their interaction produces a
variation of the DSIF as shown in Fig. 2b.

Figure 3a shows a von Mises stress contour at 0.2µsec,
after the impulse load was applied at the top of the figure,
and the load travels towards the crack. As mentioned before,
it takes 2.72µsec for the load to reach the crack faces and
produce the diffraction phenomenon as previously described.
From Fig. 2b, the maximum stress concentration is reached
at 6.59µsec and a stress contour at the crack tip is shown in
Fig. 3b. As is known, there is a singularity at the crack tip,
which represents a stress field variation of the form r−1/2,
where r is the radial distance from the crack tip.

Previous results validate the application of ANSYS soft-
ware for the analysis of DSIF variation at the crack tip under
the effect of impulse loads. Further work will show the effect
of crack dimensions and crack orientation on DSIF, and the
case of DSIF in a tubular section.

3. Transient dynamic analysis

Transient dynamic analysis is a technique used to determine
the dynamic response of a structure under time-dependent
loads. In this context, when the loads are rapidly applied
to the cracked body, the inertial effects must be taken into
account, so that the response of the system is measured in a
“short-term period of time”. In this case of rapid loading, the
influence of the loads is transferred to the crack by means of
stress waves through the body, see Freund [14]. Therefore,
by using this technique, the displacements, strains, stresses
and forces can be determined as a time function.

The basic equation of motion solved by a transient dy-
namic analysis is:

[M ] ä (t) + [C] ȧ (t) + [K] a (t) = F̄ (t) , (1)

where, [M] = the mass matrix, [C] = damping ma-
trix, [K] = stiffness matrix, ä(t), ȧ(t), a(t) are accelera-
tion, velocity, and displacement vectors, respectively, and
F̄ (t)= load vector. At any given time, these equations can
be thought of as a set of static equilibrium equations that
also take into account inertia forces. The above equation is
solved using the Newmark time integration method for im-
plicit transient analysis, where dynamic displacementsu(t)
are obtained.

In the Newmark time integration method, the mass,
damping, and stiffness matrices are calculated as an initial
stage of the analysis. The way in which these matrices are
obtained for each finite element is by solving the following
equations:

Me
ij =

∫

Ωe

NiρNjdΩ, Ce
ij =

∫

Ωe

NiµNjdΩ

and

Ke
ij =

∫

Ωe

BT
i DBd

j Ω

For a detailed description of these equations see
Zienkiewics [15]. These equations are assembled to repre-
sent the complete model and to determine [M], [C], and [K],
respectively, which are symmetric. However, determination
of [C] is quite difficult due to the lack of knowledge about
viscous matrixµ. To avoid this difficulty, Rayleigh damping
is used (see Clough and Penzien [16] in which damping ma-
trix is proportional to mass and stiffness matrixes). Figure 4
shows how mass, damping and stiffness matrixes are used in
the Newmark time integration method.
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FIGURE 4. Flow diagram of Newmark time integration method applied to transient dynamic analysis.

FIGURE 5. Nodes used for the approximate crack-tip displace-
ments: a) half model, and b) full model.

FIGURE 6. Finite Element Model used to analyze a centrally
cracked plate (see the fine mesh at the proximity of the crack tip).

FIGURE 7. Effect of crack size and plate dimensions on DSIF.

FIGURE 8. DSIF variation for mode I versus crack orientation.
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A more complex case of transient analysis application is
when no-linear time behaviors are present. In such cases,
[M], [C], [K], or F(t) depend on the unknown vector u(t), and
therefore these matrices could be updated at each stage.

In dynamic fracture mechanics problems, the most impor-
tant parameter is the DSIF, which represents the stress singu-
larity of r−1/2 near the crack tip;r is the normal distance to
the crack tip (see Fig. 5). To evaluate this parameter, the
“quarter point element” is often used to model a stress and
displacement field near the crack tip. The DSIF is a function
of time t, and the way to evaluate it is by knowing the dis-
placements at the crack surfaces in a local coordinate system
for half and full models. Expressions used to determine the
DSIF such as Kdyn

I (t) can be found in [17].

4. Analysis of a centrally cracked plate

Figure 6 shows a fourth of the meshed model used (due
to symmetry simplifications) for the analysis of a centrally
cracked plate to determine DSIF using the Finite Element
Method incorporated in the ANSYS ver. 6 software. The
mesh has 62 elements, eight of which are located at the crack
tip, with their central nodes displaced one-fourth of the ele-
ment dimension in order to simulate the singularity that rep-
resents the crack tip, making it possible to determine the
DSIF. Since only one-fourth of the entire plate was mod-
eled, appropriate boundary conditions were determined to
provide continuity and symmetry for displacements and trac-
tions, horizontally and vertically.

Figure 7 shows DSIF values by increasing the crack size
on the previously described model. Material properties and
plate dimensions are the same as described in Sec. 2 and
Fig. 1, respectively, which represent the model used by Chen.
In this case, crack size was varied taking the following val-
ues: a= 0.24, 0.36, 0.48, and 0.60 cm. In general terms, the
DSIF plot in Figure 7 shows a similar pattern to that shown
in Fig. 2. By increasing the crack size, the DSIF is strongly

influenced by dilatational waves; this assumption is based
on the fact that, for longer cracks, Rayleigh and transversal
waves produced by crack diffraction take longer to interact
with the crack tips. Consequently, before interaction takes
place, the growth rate of the DSIF curves is similar to Baker’s

FIGURE 9. Cracked tubular section and step tension load applied.

FIGURE 10. Finite Element Model for the cracked tubular section
analyzed.

FIGURE 11. Von Mises Stress field: a) for the complete model after 1µsec of load application, and b) at the crack tip after 17µsec.
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FIGURE 12. DSIF versus time for a centrally cracked tubular sec-
tion.

solution [5], in which the cracked plate has infinite dimen-
sions; thus, contributions of waves diffracted by the bound-
aries are nil.

The characteristic behavior of DSIF curves shown in
Fig. 7 illustrates the strong influence of plate dimensions and
crack size on the DSIF pattern.

In a second stage of the analysis, crack orientation has
been varied in the model described above, which represents
the problem assessed by Chen. Under these conditions, there
is a mixed fracture mode when the stress waves reach the
crack faces; in this study only mode I of the fracture has been
considered in order to determine the DSIF. Orientation has
been modeled by varying crack angles as follows: 0, 22.5,
45, 67.5, and 90◦.

Figure 8 shows DSIF variation versus crack orientation.
It can be seen that the DSIF for 0◦ is the case previously
studied, where the crack faces are perpendicular to the stress
wave. In the same figure, it can also be observed that, as the
angle is increased, DSIF values decrease. For the case of a
crack oriented at 90◦, dilatational waves do not have any in-
fluence; thus, the DSIF value is nil. Moreover, for 90◦, the
effect of waves diffracted by the crack faces is negligible.

Figure 8 also shows that, for crack orientation 22.5◦,
DSIF values are close to those for the 0◦ case. Also, curve
gradients for both cases are close, meaning that dilatational
waves interact similarly. For orientations 45, 67.5 and 90◦,
the curve gradients are different and the DSIF is reduced,
meaning that incident and reflected dilatational waves de-
crease in their interaction as the inclination is increased.

5. Analysis of a centrally cracked tubular sec-
tion

In this section, results obtained from plates are compared
with DSIF determined from a cracked tubular section. Tubu-
lar dimensions are: 12.2 cm long, 6.35 cm outside diameter
and 0.32 cm wall thickness. Crack size is 2 cm in length, and
material properties and applied load are the same as described
in Sec. 2 and Fig. 1, respectively (see Fig. 9).

The mesh used consists of 1312 Solid95 elements of the
ANSYS software. These elements have 20 nodes each; half

of the meshed model is shown in Fig. 10 due to symmetry
simplifications. As previously explained, boundary condi-
tions (were introduced into the model) to provide continuity
for displacements and tractions horizontally and vertically.
Mesh refinement at the crack tip can also be seen in Fig. 10.
As in the plate model to simulate the singularity, 24 elements
were used at the crack tip to determine the DSIF.

Figure 11a shows von Mises stress contours of the dilata-
tional wave traveling towards the crack at time 1µsec after
the load was applied. Figure 11b shows stress concentrations
at the crack tip at the time of the maximum DSIF value, which
is at 17µsec after the load was applied, as shown in Fig. 12.

From Fig. 12 it can be determined that the DSIF pattern
shown for this particular tubular section is quite similar to that
showed in the flat plate previously analyzed, thus indicating
that the stress waves are interacting similarly in both cases.
A generalized conclusion can only be obtained by comparing
results from analyses with varying diameter and thickness,
keeping crack and tubular section lengths constant in order
to rule out curvature effects. It can be expected that edge ef-
fects are nil for the case of stress waves traveling parallel to
the crack faces, since structural edges in tubular sections are
nonexistent in this direction. Figure 12 shows two loading
cycles where the second cycle which starts at 40µsec, pro-
duces DSIF of less magnitude than those from the first cycle.
This is due to the effect of a heavier influence of dilatational
wave interaction. For a elapsed time after the load is applied
that is much longer than shown in Fig. 12, wave diffractions
vanish and the stress field would become stationary; thus, di-
mensionless DSIF values would tend to 1.

6. Conclusions
DSIF shows strong variations due to the effect of reflected
and diffracted wave interactions with structural boundaries
and crack geometry. On the other hand the solution given by
B.R. Baker for a semi-infinite crack contained in an infinite
and elastic medium shows a growing function, since there can
be no effect from waves either reflected of diffracted by the
nearby boundaries.

For the centrally cracked plates and tubular section an-
alyzed, it has been observed that the effect of dilatational
waves on DSIF values at the crack tip is dominant. Interac-
tion of transversal and Rayleigh waves lower the maximum
stresses reached during each of the dilatational loading cy-
cles.

It has been preliminarily identified that, for centrally
cracked plates and cracked tubular sections, DSIF variation
due to wave interaction is similar in both cases and is mainly
driven by load and unload cycles of dilatational or compres-
sion waves.
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