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Apartado 89000, Caracas 1080A, Venezuela,
*e-mail: ecastro@usb.ve

Recibido el 8 de marzo de 2005; aceptado el 7 de febrero de 2006

Approximated analytic solutions for wave propagation in graded-index optical fiber have been found in the case of a parabolic profile.
Approximants with high accuracy are presented that are much better than those found by other authors. A two-point quasi-rational method
and two-point Pad́e approximants are used in this work. The approximants are explicitly determined for the azimuthal eigenvaluesl = 0, 1, 2

and the mth mode numbersm = 0, 1, 2, 3.
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En el presente trabajo, se obtuvieron soluciones analı́ticas aproximadas para la propagación de ondas en fibraśopticas con indice gradual
en el caso de perfil parabólico. Los aproximantes obtenidos resultaron ser mas precisos que aquellas aproximaciones halladas previamente
por otros autores. En este trabajo se usaron los aproximantes cuasi-racionales a dos puntos y los aproximantes de Padé. Se determinaron
expĺıcitamente los determinantes para los autovalores azimutalesl = 0, 1, 2 y los modosm = 0, 1, 2, 3.

Descriptores: Aproximantes cuasi-racionales a dos puntos; fibrasópticas de indice graduado; propagación en gúıas de ondas y análisis de
los modos normales.
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1. Introduction

An optical fiber waveguide is made of a glass core surrounded
by a lower-index cladding. These are low-loss optical waveg-
uides and are valuable in optical communications and other
closely related fields [1-7].

Graded-index waveguides display relatively little transit-
time variation and it is possible to transmit very large electri-
cal bandwidths. These waveguides are made with a refractive
index that decreases gradually with the distance from the axis
of the optical fiber. The rays in an optical fiber such as this
one travel in curved paths. If a graded-index optical fiber is
made with a correct index profile, this can greatly suppress
modal dispersion, and consequently reduce group delay. The
modes in a graded-index optical fiber are more confined to
the core of the guide than those in a step-index optical fiber.

For most experimental applications, it is useful to make
the assumption that the true profile will not deviate much
from the perfect parabolic profile [1]. In a step-index optical
fiber, the modal spacing increases linearly with an increasing
mode order. For a parabolic index profile, modal spacing is
independent of the mode number.

As is well known, Whittaker functions [4] are the solu-
tion for the unbounded case; however, here we are interested
in an optical fiber of finite radius, that is, the bounded case
wherer ≤ a.

Exact solutions cannot be obtained for the case we are in-
terested in. Instead, the problem is treated using simple ray
analysis; numerical calculations for each particular case are
usually required [8]. Approximated solutions are presented
here that can be used instead of the numerical solutions, be-

cause of the high accuracy of the results, sufficient for most
applications. These solutions are different from those found
with the WKB-method, which is usually used for graded-
index optical fibers [1,9].

The two-point quasi-rational approximation method used
here is an improvement on the two-point Padé method [10],
and was applied initially in the computation of the plasma
dispersion function [11], and later for other different ar-
eas such as Coulomb scattering [12], quantum field the-
ory [13], special functions [14-21], classical mechanics [22],
solid state physics [23], quantum mechanics [24], applied op-
tics (transmittance calculations by circular apertures) [25,26].
This list of references, though incomplete, gives a good idea
of the method used here and its applications.

In this paper, the solution is formed by using, simulta-
neously, the boundary conditions at the center of the optical
fiber and a simplified boundary condition at its surface. The
solutions found here are good either close to or far from the
cutoff. However, in order to find the approximated solutions,
a simplification of the boundary conditions at the core sur-
face has been used. The solution on the core must be coupled
with the solution at the cladding, which in most cases can be
represented by the modified Bessel functions, assuming that
the energy irradiated outside the cladding is neglected. The
simplification performed here is for cases in which the energy
in the cladding is much smaller than that in the core. In this
case, the energy in the cladding could also be neglected and
the scalar treatment of the wave amplitude, the field functions
will be approximately zero at the surface. This condition has
been imposed on the asymptotic series to be used in order to
obtain the two-point quasi-rational approximants found here.
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Approximated solutions for wave propagation have been
found for multimode optical fibers with parabolic profiles for
different values ofl = 0, 1, 2 andm = 0, 1, 2, 3, wherel is
the azimuthal eigenvalue andm is associated with the mth
mode number. However, the procedure followed here can be
used for different values ofl andm than those specified here.
The form of our approximants is the same for all modes.

In this work, two methods have been applied in order to
obtain the approximants: two-point quasi-rational method,
and two-point Pad́e method. However, in the main text only
the former is described in detail because the results are much
better than the latter. The two-point Padé results are consid-
ered in detail in the Appendix, and they are compared to the
main one. It is convenient to remember that the two-point
quasi-rational method is applied there in order to determine
suitable auxiliary functions as well as a suitable independent
variable (here exponential) in order to connect the power se-
ries and the asymptotic expansion.

As is detailed bellow, our results are good for all values
of r and characteristic parameters. There is no need to require
slow index variation, as happens when the WKB method of
approximation is used. Furthermore, the zeroth WKB ap-
proximation is good only for the ray optic treatment, where
the phase changes at the caustic or turning points are ignored
and, at the caustic point, the first-order WKB results fail. At
the turning point, the slope of the ray path changes sign, and
the ray bends toward the axis as a result of total internal re-
flection.

An important feature of the approximants is that they can
be derived or integrated symbolically, and the results will be
correct due to the high accuracy obtained. It is interesting to
point out that although the parabolic profile has been consid-
ered, the method described here can also be applied to other
patterns of graded index optical fibers.

The paper is organized as follows. In Sec. 2, we deter-
mine the values of the parameters for the power series and the
asymptotic expansions. In Sec. 3, we discuss the procedure
to obtain the two-point quasi-rational approximants. In Sec.
4, an analysis and discussion of results of the various approx-
imants are presented. Section 5 is devoted to conclusions.

2. Suitable expansions of the scalar field solu-
tions for graded- index optical fibers

The scalar field equation in cylindrical coordinates[1] is:

d2Ψ̃
dr2

+
1
r

dΨ̃
dr

+
1
r2

d2Ψ̃
dθ2

+
d2Ψ̃
dz2

+ k2
0n

2(r)Ψ̃ = 0;

k0 =
2π

λ0
, (1)

wherek0 andλ0 are the wave number and wave length in the
vacuum respectively, andn2(r) is the optic-index profile of
the optical fiber.

Because of the axial and circular symmetry of the wave,
the wave solution has the form

Ψ̃(r, θ, z) = Ψ̃(r) exp [i(lθ + βz)], (2)

whereβ is the propagation wave number alongz and l is
an integer number, called the azimuthal eigenvalue. Thus,
Eq. [1] becomes

d2Ψ(r)
dr2

+
1
r

dΨ(r)
dr

+
[
k2
0 n2(r)−β2− l2

r2

]
Ψ(r)=0. (3)

For this paper, a parabolic profile will be assumed, that is,

n2(r) = n2
0

[
1− 2 ∆

( r

a

)2
]

, (4)

where∆ is the relative refractive index difference between
core and cladding, and depends on the core indexn0 and
cladding indexnc as

∆ =
n2

0 − n2
c

2n2
0

. (5)

The dimensionless independent variableρ will be used

ρ =
r

a
. (6)

Thus the differential equation can be written as

d2φ(ρ)
dρ2

+
1
ρ

dφ(ρ)
dρ

+
[
g1 − g2ρ

2 − l2

ρ2

]
φ(ρ) = 0, (7)

where the parametersg1 andg2 denote

g1 = a2 (k2
0 n2

0 − β2), g2 = 2∆ a2 k2
0 n2

0. (8)

In this paper, two ways have been used to find approxi-
mate solutions for this functionφ(ρ):

1) the two-point quasi-rational method, and

2) the two-point Pad́e method.

However the results of the first method are much better than
those of the second method, which will only be shown briefly
in Appendix A.

For the two-point quasi-rational method, the range of in-
terest(0, 1) for ρ must be extended to the range(0,∞), in
order to have a power series around zero and an asymptotic
expansion around infinity. There are several possibilities for
this transformation; however, we have found good results us-
ing the following change of variable:

ρ = 1− e−y, (9)

which gives the new differential equation

d2Ψ(y)
dy2

+
1

(1− e−y)
dΨ(y)

dy
+ e−2y

×
[
g1 − g2(1− e−y)2 − l2

(1− e−y)2

]
Ψ(y) = 0, (10)
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whereφ(ρ) = Ψ(y). This change of variables is done in such
a way that forρ = 0, y = 0 and, forρ = 1, y = ∞. The
power series are easily obtained by the Frobenius method as

Ψp(y) = yl
∞∑

i=0

ai yi, (11)

where theai’s are given in Table I for each mode with values
of l from 0 to 2 andm = 0, 1, 2, 3, and for experimental pa-
rameters: core indexn0 = 1.5, cladding indexnc = 1.485,
core radiusa = 5µm, length waveλ0 = 1.310µm, and rela-
tive refractive index∆ = 0.00995. Note that the odd coeffi-
cients are zero. Figure 1 shows the refractive index profile of
the optical fiber, though the radius of the core must be speci-
fied; however, there is no need to specify the cladding radius
b for these calculations.

The following remarks are important as pertaining to the
above equation: pointy = 0 is singular, regular, and the so-
lutions of the characteristic equations are integers. There are
two initial conditions to define the solutions of the differential
equation; however, if we discard the solutions that blow up at
infinity, only the valuea0 at y = 0 is needed to obtain the
series. In order to normalize our solutionsa0 is chosen in our
calculations to be equal to 1, and Table I has been constructed
according to this criterion. In summary, the boundary condi-
tions are:Ψ(∞) = 0 andΨ(0) = 1 if l = 0, andΨ(0) = 0
if l is a positive integer, that is,l = 1, 2, etc.

The variable for the asymptotic expansion is conveniently
taken to bee−y. Therefore, this expansion becomes

Ψa(y) =
∞∑

r=1

br e−ry, (12)

whereb0 is taken to be zero in order thatΨa(∞) may be-
come zero. In this way there is only one coefficientb1 to be
defined in the previous series, because all the other coeffi-
cients depend on the value of the slope of the solutionφ(ρ) at
ρ = 1. Once this slope has been found, the mapping tob1 is
performed through the transformation previously defined in
Eq.(9). The way to find that slope is by numerically solving

the equation using the shooting method [27], with the bound-
ary initial condition ofa0 = 1 at ρ = 0, and compelling the
functionφ(ρ) to converge to zero forρ = 1.

The values of the coefficientsbj of the asymptotic expan-
sion forl = 0, 1, 2 andm = 0, 1, 2, 3 are shown in Table II.

TABLE I. Power series coefficients for the azimuthal eigenvalues
l = 0, 1, 2 and mth-modeNUMBERSm = 0, 1, 2, 3.

l m a0 a2 a4 a6 a8

0 0 1 -2.6686 3.38977 -2.91395 1.84991

0 1 1 -9.6589 24.933 -33.6674 30.3563

0 2 1 -20.8472 110.261 -270.314 396.57

0 3 1 -36.8984 341.983 -1428.46 3431.86

1 1 1 -7.24176 18.554 -26.274 25.0029

1 2 1 -14.0239 66.6294 -163.257 250.397

1 3 1 -23.2721 181.603 -716.865 1726.75

2 1 1 -6.68592 17.5678 -26.3609 26.7432

2 2 1 -12.0049 64.8492 -136.844 220.064

2 3 1 -18.9826 135.933 -524.219 1280.35

FIGURE 1. Refractive index profile of the optical fiber as a function
of radiusr, a = 5µm is the radius of the core, and b is the cladding
radius.

TABLE II. Asymptotic expansion coefficients for the azimuthal eigenvaluesl = 0, 1, 2 and mth-mode numbersm = 1, 2, 3.

l m b1 b2 b3 b4 b5 b6 b7 b8

0 0 0.6179 0.3089 1.7587 -1.7213 1.3071 -3.4137 3.3173 -2.75373

0 1 -1.5838 -0.7919 2.8732 8.1022 0.0419 -7.8231 -8.3976 4.2790

0 2 2.2049 1.1025 -20.4468 -19.5031 52.1783 77.7168 -46.1255 -132.135

0 3 -2.6530 -1.3265 52.9923 37.6616 -307.62 -286.198 808.457 971.288

1 1 -0.5002 -0.2501 2.4332 3.2386 -2.9311 -7.5344 -1.0254 7.6937

1 2 0.4587 0.2293 -6.3794 -5.0437 25.4249 28.1298 -43.9364 -69.2621

1 3 -0.4158 -0.2079 10.9099 7.1358 -84.0269 -68.1663 299.64 296.446

2 1 -0.2146 -0.1073 1.7342 1.6273 -3.9848 -5.7906 3.4866 9.4386

2 2 0.1453 0.0726 -2.7212 -1.8755 14.9004 13.2321 -37.6614 -42.772

2 3 -0.1052 -0.0526 3.4394 2.0925 -33.2183 -23.8442 150.567 126.088
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TABLE III. Parameterspi’s of the two-point quasi-rational approximants, for the azimuthal eigenvaluesl = 0, 1, 2 and mth-mode numbers
m = 0, 1, 2, 3.

l m p0 p1 p2 p3 p4 p5 p6 p7 p8

0 0 0.6179 0.1569 1.2289 -1.4048 0.315 0.0146 - - -

0 1 1.584 1.525 1.561 3.6737 -6.9425 2.4101 - - -

0 2 2.205 -4.528 -12.588 24.896 8.546 -28.804 10.906 - -

0 3 -2.653 5.889 39.311 -86.899 -91.159 258.438 -29.654 -164.886 73.126

1 1 -0.500 0.973 0.996 -1.533 -1.474 2.132 -0.593 - -

1 2 0.459 -1.194 -4.020 11.759 1.043 -22.727 19.817 -5.138 -

1 3 -0.416 1.584 6.521 -31.214 10.384 102.560 -174.559 109.681 -24.541

2 1 -0.215 0.413 1.047 -1.885 -0.849 1.908 0.397 -1.150 0.335

2 2 0.145 -0.478 -1.602 6.621 -1.914 -16.018 23.715 -13.033 2.563

2 3 -0.105 0.431 2.086 -10.667 3.689 42.819 -80.259 55.953 -13.946

TABLE IV. Parametersqi’s of the two-point quasi-rational approximants, for the azimuthal eigenvaluesl = 0, 1, 2 and mth-mode numbers
m = 0, 1, 2, 3.

l m q1 q2 q3 q4 q5 q6 q7 q8

0 0 -0.24594 -0.73429 1.57908 -0.99027 0.3201 - - -

0 1 -1.46303 1.55997 -0.63802 0.07458 0.11043- - - -

0 2 -2.55364 4.84114 -5.96457 5.49909 -3.1196 0.93054 - -

0 3 -2.71981 6.51649 -10.6335 15.2787 -17.4547 16.676 -10.6535 3.50395

1 1 -2.44535 4.09631 -4.40347 3.38235 -1.58464 0.38568 - -

1 2 -3.10195 6.69354 -9.85432 10.7551 -7.76077 3.30417 -0.55633 -

1 3 -4.30862 12.7086 -27.1731 46.038 -57.7928 49.1245 -24.5294 5.52864

2 1 -2.42578 4.41721 -5.44469 5.41243 -4.03907 2.30213 -0.85586 0.17594

2 2 -3.78673 9.59381 -17.2342 23.6842 -23.7457 16.3963 -6.86105 1.35102

2 3 -4.59566 15.1605 -36.5257 71.6558 -110.945 120.291 -75.6813 20.6874

3. Two-Point quasi-rational approximations
for the solutions

The power series and asymptotic expansions previously
found determine the form of the approximations to be used
in this problem. The strategy of these quasi-rational approxi-
mants is to build an analytic bridge between the power series
and the asymptotic expansion, to obtain a unique analytic ex-
pression using the coefficients of both expansions. The accu-
racy of the analytic approximations obtained with this proce-
dure is high for the whole range of values, even in the region
where both expansions are not convergent. The results are
usually good for all values of the parameters, and are inde-
pendent of the radius of convergence of each expansion.

One of the differences of the two-point quasi-rational ap-
proximant and the two-point Padé method is that a power se-
ries and an asymptotic expansion are used, instead of two
power series. Consequently, instead of using only fractional
functions, we are forced to introduce non-fractional func-
tions, which we have called auxiliary functions, in order to

reproduce the singularities of the exact functions. The golden
rule is that the function and the approximant should have the
same singularities in the region of interest. Undesirable sin-
gularities that might appear in the approximant must be lo-
cated outside of that region. Thus the auxiliary functions
must be chosen in such a way that the undesirable singulari-
ties are located in the negative axis or in the left-hand com-
plex plane. Another important advantage of the two-point
quasi-rational approximants with respect to the Padé method
is better accuracy for an equal number of parameters, and
therefore the system of equations to obtain those parameters
is simpler.

In this problem, the auxiliary function for the approxi-
mants will bee−y and the variable of expansione−y = 1−ρ.
For an approximant of order s, that is, a polynomial of degree
s in the numerator, the form of the approximant will be

Ψaprox(y) = e−ly

( ∑s
i=0 pi e−iy

1 +
∑s

h=1 qh e−hy

)
(13)

The(2s + 1) parameterspi’s andqh’s will be determined
from the (2s + 1) coefficients coming from the power se-
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ries and asymptotic expansions previously found. There are
several possibilities; however, the best results are usually ob-
tained when the number of coefficients from the power series
is about the same as that of the asymptotic expansions. In
Tables III and IV, the parameters of the approximants with
the highest accuracy are shown. Thepi’s are in Table III
andqh’s are in Table IV. The procedure followed to obtaining
these Tables is better explained by taking a particular case;
for instance, let us explain how thepi’s andqh’s are obtained
for the casel = 1 andm = 2. The order of the approxi-
mant is seven and we have 15 unknowns, eightpi’s and seven
qh’s (p0 to p7 andq1 to q7). Eight equations are obtained by
equalizing the coefficients of the first eight terms of the power
expansion iny, obtained as

[
1 +

7∑

h=1

qh

(
7∑

k=1

(−1)khkyk

k!

)] (
yl

7∑

i=0

aiy
i

)

=

(
7∑

t=0

(−1)tltyt

t!

)(
7∑

i=0

pi

(
7∑

k=0

(−1)kikyk

k!

))

+O(y8), (14)

wherel = 1, but we have keptl as a letter in order to clarify
the method. The sum overk andt correspond to the first eight
coefficients of the power expansion ofe−hy, e−iy ande−ly.
These equations correspond to the information corresponding
to small values ofy.

In order to introduce the information coming for large
values ofy, that is, values ofr neara, we need use the asymp-
totic expansion. Here we must to equalize the first seven co-
efficients of the exponentials as follows

(
1 +

7∑

h=1

qh e−hy

)


7∑

j=1

bj e−jy




= e−ly

(
7∑

i=1

pi e−iy

)
+ O(y8). (15)

In this way a linear system of 15 equations with 15 un-
knowns is obtained, and the results can be seen in the five
rows of Tables III and IV.

As we noticed before, we have tried different arrange-
ments, increasing the number of equations from the power
series and decreasing those of the asymptotic expansions, and
viceversa, but the best result is the one shown. Arrange-
ments decreasing the number of exponentials in the numer-
ator and increasing those in the denominator, and viceversa,
have also been tested, but if the number of unknown param-
eters is fixed, better accuracy is obtained if there is an equal
number of exponentials in the numerator and denominator as
shown in Eq. (13).

Once the approximants are determined using the variable
y, the approximant inρ or r/a is obtained in a straightfor-

ward manner:

φaprox(ρ) = (1− ρ)l

( ∑s
i=0 pi(1− ρ)j

1 +
∑s

h=1 qh(1− ρ)h

)

=
(
1− r

a

)l
( ∑s

i=0 pi(1− r
a )i

1 +
∑s

h=1 qh(1− r
a )h

)
. (16)

4. Results

In this work, the approximantsφaprox(ρ) for l = 0, 1, 2 and
m = 0, 1, 2, 3 have been calculated. The order of each ap-
proximant increases until the accuracy of the approximation
seems enough for most applications. Since the most impor-
tant functionΨ(r) is for l = 0, these approximants are ob-
tained with higher accuracy than those forl = 1 andl = 2.

Figure 2, the function and the approximant forl = 0,
m = 0 are shown. Both functions coincide on this scale.
However the difference between both functions is given in
Fig. 3, amplified with a104 scale factor. The approximant
in these figures has been obtained with a fifth-degree polyno-
mial. The maximum absolute error is about0.44× 10−4.

FIGURE 2. Two-point quasi-rational approximations of the radial
wave solutionφ(ρ) as a function of the dimensionless radiusρ of
the fundamental model = 0 andm = 0.

FIGURE 3. Amplified absolute error of the two-point quasi-rational
approximants for the scalar wave functionφ(ρ) versus the dimen-
sionless radiusρ of the fundamental model = 0 andm = 0, after
amplification by a factor of104.
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Figure 4, the functions and approximants forl = 0 and
m = 1, 2 and3 are shown. On this scale, both functions, the
exact one and the approximate one are coincident. A dashed
line is used for the modem = 1, a dotted line form = 2,
and a dot-dashed line form = 3. For l = 0, the modem = 1
presents only a minimum,m = 2 shows a minimum and a
maximum, andm = 3 has two relative minima and one max-
imum.

FIGURE 4. Amplified absolute errors of the two-point quasi-
rational approximants for the scalar wave functionφ(ρ) versus the
dimensionless radiusρ. The dashed curve (- - -) corresponds to the
error of the wave model = 0 andm = 1, after amplification by
a factor of104. Similarly the dotted curve (· · · ) shows the error of
the wave model = 0 andm = 2, after amplification by a factor
of 103, and the dot-dashed curve (· - · - · ) represents the error of
the wave model = 0 andm = 3, after amplification by a factor
of 102.

FIGURE 5. Amplified absolute errors of the two-point quasi-
rational approximants for the scalar wave functionφ(ρ) versus the
dimensionless radiusρ. The dashed curve (- - -) corresponds to the
error of the wave model = 0 andm = 1, after amplification by
a factor of104. Similarly the dotted curve (· · · ) shows the error of
the wave model = 0 andm = 2, after amplification by a factor
of 103, and the dot-dashed curve (· - · - · ) represents the error of
the wave model = 0 andm = 3, after amplification by a factor
of 102.

The absolute errors of the approximants in Fig. 4 are
shown in Fig. 5. The same line-convention is kept here:
m = 1, a dashed line;m = 2, a dotted line, andm = 3,
a dot-dashed line. Since for the same values ofρ there are
zeros for the functionφ(ρ), in order to avoid infinite values,
no relative errors can be shown and the figures show only ab-
solute error. By overlapping Figs. 4 and 6, the relative errors
can be illustrated, once the scale factors are taken into ac-
count. In Fig. 5, these scale factors are104, 103 and102 for
m = 1, 2, 3, respectively. The maximum absolute errors

FIGURE 6. Two-point quasi-rational approximations of the radial
wave solutionφ(ρ) as a function of the dimensionless radiusρ.
Dashed (- - -), dotted (· · · ) and dot-dashed (· - · - ·) curves corre-
spond respectively to the three wave modesl = 1, m = 1; l = 1,
m = 2 andl = 1, m = 3.

FIGURE 7. Amplified absolute errors of the two-point quasi-
rational approximants for the scalar wave functionφ(ρ) versus the
dimensionless radiusρ. The dashed curve (- - -) corresponds to the
error of the wave model = 1 andm = 1, after amplification by a
factor of104. Similarly, the dotted curve (· · · ) shows the error of
the wave model = 1 andm = 2, after amplification by a factor
of 103, and the dot-dashed curve (· - · - ·) represents the error of
the wave model = 1 andm = 3, after amplification by a factor
of 102.
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FIGURE 8. Two-point quasi-rational approximations of the radial
wave solutionφ(ρ) as a function of the dimensionless radiusρ.
Dashed (- - -), dotted (· · · ) and dot-dashed (· - · - ·) curves corre-
spond respectively to the three wave modesl = 2, m = 1; l = 2,
m = 2 andl = 2, m = 3.

FIGURE 9. Amplified absolute errors of the two-point quasi-
rational approximants for the scalar wave functionφ(ρ) versus the
dimensionless radiusρ. The dashed curve (- - -) corresponds to the
error of the wave model = 2 andm = 1, after amplification by a
factor of104. Similarly, the dotted curve (· · · ) shows the error of
the wave model = 2 andm = 2, after amplification by a factor
of 103, and the dot-dashed curve (· - · - ·) represents the error of
the wave model = 2 andm = 3, after amplification by a factor of
102.

are0.23×10−4, 0.9×10−3 and0.53×10−2 for m = 1, 2, 3,
respectively. Though the maximum errors tend to be in the
central region, near the center the error ofl = 0, m = 1 is
very near to zero.

The criteria used in Figs. 4 and 5 are followed in Figs. 6
and 7, forl = 1 and them = 1, 2, 3 and latter in Fig. 8
and Fig. 9, forl = 2 andm = 1, 2, 3. The scale factors in
Fig. 7 are the same as that in Fig. 5; however, the largest er-
rors are now:0.44× 10−4 for m = 1, 0.5× 10−3 for m = 2
and0.29× 10−2 for m = 3. Here the largest errors are more
centered than in the case forl = 0, described in Fig. 5. Refer-
ring now tol = 3, described in Figs. 8 and 9, the scale factors
of the absolute errors are now different from previous ones,

and they are103, 102, and102 for m = 1, 2, 3, respectively.
The maximum errors are now1.1 × 10−3, 0.08 × 10−2 and
0.18×10−2 for m = 1, 2, 3, respectively. Now, the maximum
errors are not so centered as in the previous cases,l = 0, 1.

Another way to find approximants for the solutions of the
differential equation considered here is by using two-point
Pad́e methods, instead of the method previously described.
In this method, the form of the approximants is similar to
those in Eq. (16). However, the way to calculate the param-
eters is by two series expansions: one aroundρ = 0, and
the other aroundρ = 1. We have determined the parame-
terspi andqh with this method for all the cases considered.
Using the same number of parameterspi and qh, we have
determined those parameters by the two methods, two-point
quasi-rational and two-point Padé. After that, we proceeded
to compare the accuracy of both approximants and we found
that the accuracy of the one presented here is always better
than those described in the Appendix. In general, that ac-
curacy is about one or two orders of magnitude higher (the
order of magnitude considered here is a factor of 10).

5. Conclusions

Analytic approximated solutions for wave propagation in
quadratic graded-index optical fibers has been found. The
accuracy of the approximants found here is much better than
previous approximations found for other authors through
WKB or any other method. No difference between approxi-
mated and computed functions can be found for figures with
regular sizes. The absolute errors form = 0, 1 andl = 0, 1
are always lower than10−4, and close to10−3 for l = 2. For
m = 2, the errors are always lower than10−3 for l = 0, 1, 2.
For m = 3, the maximum error is10−2, for l = 0, 1, 2 and
the errors are lower than10−2 for l = 0, 1. Clearly the ac-
curacy of our approximant is very good and it can be used
for most of the actual applications. The approximated solu-
tion can be derived and integrated like symbolic functions if
needed.

Our approximants are obtained by using two-point quasi-
rational methods,just described. The accuracy of the approx-
imants using two-point Padé method is always lower than
those obtained here for approximants of an equal number of
parameters to be determined.

The main idea of those approximants is to combine ra-
tional functions with auxiliary functions in such a way that
the singularities of the approximated function coincides with
those of the actual function in the region of interest. Keep-
ing this in mind, the method presented here can be applied
to other multimode optical fibers with a graded index profile
with different structures from the parabolic case considered
here.
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FIGURE 10. Amplified absolute errors of the two-point Padé
method and the two-point quasi-rational approximants for the
scalar wave functionφ(ρ), versus the dimensionless radiusρ.
The wave model = 1 and m = 1 is represented by a dashed
curve (- - -) in the case of two-point Padé approximation errors af-
ter amplification by a factor of102, and the dotted curve (· · · ) cor-
responds to the error of the two-point quasi-rational approximation,
after amplification by a factor of104.

Appendix

A different form for the approximated solution to Eq. (7) has
been considered. The form of this approximated solution is
a little simpler than that proposed in the main text; however,
it is not so efficient. Here the word “efficient” is used in the
sense of obtaining a given accuracy using the minimum num-
ber of unknown parameters in the approximant.

Here the form of the approximants will be

φ̃(ρ) = (1− ρ) ρl

∑s
i=0 p̃i (1− ρ)i

1 +
∑s

j=1 q̃j (1− ρ)j
, (17)

wherep̃i y q̃j are parameters to be determined. The selection
of the form is done considering that the function must be one
at ρ = 0 and zero atρ = 1, for l = 0, and the function must
be zero atρ = 0, andρ = 1 for l = 1 and2. Furthermore,
near zero the behavior of the function should be likeρl.

The auxiliary function(1− ρ) is factored, because of the
boundary condition that the functionΨ(r) must be zero at
the surface of the cylinderr = a, that is,φ(1) = 0. There
is some freedom in the choice of the higher degree of the nu-
merator and denominator. However, we have found that the
best results are obtained when both degrees are equal or about
the same.

Now, the power expansion aroundρ = 0 andρ = 1 must
be found. The pointρ = 0 is a singular regular point of the
equation andρ = 1 is a regular point. We know that the
straightforward calculation described before leads to

φ̃(ρ)0 = ã0ρ
l

(
1 +

∞∑

k=1

ãkρk

)
. (18)

Here, as usual there are two series which depend on the roots
of the characteristic equation. However, here both solutions
of the characteristic equation are equal integers. Therefore,

the well known procedure gives two solutions, one is loga-
rithmic and the other is algebraic. We will not take into ac-
count the logarithmic solution because of the finite value of
φ(ρ) at the axis, that is, forρ = 0.

Similarly at the boundaryρ = 1, the series expansion will
be

φ̃(ρ)1 = c̃0(1− ρ)

[
1 +

∞∑
γ=1

c̃ρ(1− ρ)γ

]
. (19)

In order to find the parameters̃pi andq̃i, the previous series
[Eqs. (18) and (19)] are multiplied by the denominator of the
approximant

[1 +
∑s

j=1
q̃j (1− ρ)j ].

In the case of the power series of Eq. (19), before finding the
product, the denominator is expanded in powers ofρ. The
second step is to identify the coefficients of those expansions
with the corresponding ones in the denominator expansion

s∑

i=0

p̃i (1− ρ)i.

In order to find unique values of̃pi and q̃i, the number of
equations must be equal to the number of unknown parame-
ters p̃i and q̃i. To be precise, the number of equations must
be(2s+1); that is, the number of coefficients to be equalized
for the powers inρ plus those for powers in(1 − ρ) must be
(2s + 1).

There is no need to write down the values of all the pa-
rameters̃pi y q̃j for the two-point Pad́e method, since the ap-
proximants to be used are those described above. However,
to illustrate the results, the casel = 1 andm = 1 will be de-
scribed in detail. In this case the approximant is of the sixth
order, that is, there are sixth-degree polynomials of in the nu-
merator and denominator, as the approximant described in the
main text. For the two-point Padé method, the power series
aroundρ = 0 andρ = 1, for l = 1 andm = 1, are

φ̃(ρ)0 = ρ− 7.2417ρ3 + 18.554ρ5 − 26.279ρ7

+25.0029ρ9 + . . . , (20)

φ̃(ρ)1 =− 0.5002(1− ρ)− 0.2501(1− ρ)2

+ 2.5164(1− ρ)3 + 3.3634(1− ρ)4

− 3.0491(1− ρ)5 − 7.9842(1− ρ)6 + . . . . (21)

Figure 10 illustrates the errors, and they are compared
with the errors found in the main text. In order to get a clear
picture of both errors, the scale factor of both errors are dif-
ferent, and the one shown in the main text has an extra fac-
tor of 100 compared with that of the two-point Padé method,
that is, the scale factors are104 and102. The maximum er-
rors are0.6× 10−2 and0.44× 10−4, for the two-point Pad́e
method and for the two-point quasi-rational approximant, re-
spectively.
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