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Approximated analytic solutions for wave propagation in graded-index optical fiber have been found in the case of a parabolic profile.
Approximants with high accuracy are presented that are much better than those found by other authors. A two-point quasi-rational method
and two-point Pag approximants are used in this work. The approximants are explicitly determined for the azimuthal eigénvalugs2

and the mth mode numbens = 0, 1, 2, 3.
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En el presente trabajo, se obtuvieron solucionesiticed aproximadas para la propagecie ondas en fibraspticas con indice gradual

en el caso de perfil paralico. Los aproximantes obtenidos resultaron ser mas precisos que aquellas aproximaciones halladas previamente
por otros autores. En este trabajo se usaron los aproximantes cuasi-racionales a dos puntos y los aproximaateSalde®acninaron
explicitamente los determinantes para los autovalores azimutalés 1,2 y los modosn = 0,1, 2, 3.

Descriptores: Aproximantes cuasi-racionales a dos puntos; fib@tcas de indice graduado; propagacen giias de ondas y atisis de
los modos normales.

PACS: 02.30 Mv, 42.81.Qb, 42.81.Ht

1. Introduction cause of the high accuracy of the results, sufficient for most
applications. These solutions are different from those found
An optical fiber waveguide is made of a glass core surroundedith the WKB-method, which is usually used for graded-
by a lower-index cladding. These are low-loss optical wavegindex optical fibers [1,9].
uides and are valuable in optical communications and other The two-point quasi-rational approximation method used
closely related fields [1-7]. here is an improvement on the two-point Badethod [10],
Graded-index waveguides display relatively little transit-and was applied initially in the computation of the plasma
time variation and it is possible to transmit very large electri-dispersion function [11], and later for other different ar-
cal bandwidths. These waveguides are made with a refractivéas such as Coulomb scattering [12], quantum field the-
index that decreases gradually with the distance from the axisry [13], special functions [14-21], classical mechanics [22],
of the optical fiber. The rays in an optical fiber such as thissolid state physics [23], quantum mechanics [24], applied op-
one travel in curved paths. If a graded-index optical fiber isics (transmittance calculations by circular apertures) [25,26].
made with a correct index profile, this can greatly suppresshis list of references, though incomplete, gives a good idea
modal dispersion, and consequently reduce group delay. Thsf the method used here and its applications.
modes in a graded-index optical fiber are more confined to | this paper, the solution is formed by using, simulta-
the core of the guide than those in a step-index optical ﬁber-neously, the boundary conditions at the center of the optical
For most experimental applications, it is useful to makefiper and a simplified boundary condition at its surface. The
the assumption that the true profile will not deviate muchsp|utions found here are good either close to or far from the
from the perfect parabolic profile [1]. In a step-index optical cutoff. However, in order to find the approximated solutions,
fiber, the modal spacing increases linearly with an increasing simplification of the boundary conditions at the core sur-
mode order. For a parabolic index profile, modal spacing igace has been used. The solution on the core must be coupled
independent of the mode number. with the solution at the cladding, which in most cases can be
As is well known, Whittaker functions [4] are the solu- represented by the modified Bessel functions, assuming that
tion for the unbounded case; however, here we are interestete energy irradiated outside the cladding is neglected. The
in an optical fiber of finite radius, that is, the bounded cassimplification performed here is for cases in which the energy
wherer < a. in the cladding is much smaller than that in the core. In this
Exact solutions cannot be obtained for the case we are ircase, the energy in the cladding could also be neglected and
terested in. Instead, the problem is treated using simple raghe scalar treatment of the wave amplitude, the field functions
analysis; numerical calculations for each particular case arill be approximately zero at the surface. This condition has
usually required [8]. Approximated solutions are presentedeen imposed on the asymptotic series to be used in order to
here that can be used instead of the numerical solutions, bebtain the two-point quasi-rational approximants found here.
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Approximated solutions for wave propagation have been Because of the axial and circular symmetry of the wave,
found for multimode optical fibers with parabolic profiles for the wave solution has the form
different values of = 0,1,2 andm = 0,1, 2,3, wherel is - - )
the azimuthal eigenvalue and is associated with the mth W(r,0,z) = W(r)exp [i(16 + B2)], @)
mode number. However, the procedure followed here can b\?/hereﬁ
used for different values dfandm than those specified here.
The form of our approximants is the same for all modes.

In this work, two methods have been applied in order to
obtain the approximants: two-point quasi-rational method, d°¥(r) ld‘I’(T)JF [kz nQ(r)—QQ—lQ] U(r)=0. (3)
and two-point Pagl method. However, in the main text only dr?2  r dr 0 r2 o
the former is described in detail because the results are mu
better than the latter. The two-point Racksults are consid-
ered in detail in the Appendix, and they are compared to the 2, 2 T\ 2
main one. It is convenient to remember that the two-point ni(r)=mny | 1-2A (g) ’ )

guasi-rational method is applied there in order to determine

suitable auxiliary functions as well as a suitable independenf’nere A is the relative refractive index difference between

variable (here exponential) in order to connect the power s¢S0'€ and cladding, and depends on the core indgxand

ries and the asymptotic expansion. cladding index:. as

As is detailed bellow, our results are good for all values n3 —n2
of r and characteristic parameters. There is no need to require A W' ®)
slow index variation, as happens when the WKB method of ) ) ] ) )
approximation is used. Furthermore, the zeroth WKB ap-1Ne dimensionless independent varigbleill be used
proximation is good only for the ray optic treatment, where _r ©6)
the phase changes at the caustic or turning points are ignored P=
and, at the caustic point, the first-order WKB results fail. At s the differential equation can be written as
the turning point, the slope of the ray path changes sign, and , ,
the ray bends toward the axis as a result of total internal re- d 1d l

An important feature of the approximants is that they cal
be derived or integrated symbolically, and the results will ng here the parameteys andg;
correct due to the high accuracy obtained. Itisinterestingto ¢, = a? (k2 nZ — %), go = 2A a® k2 n?. (8)
point out that although the parabolic profile has been consid-
ered, the method described here can also be applied to other In this paper, two ways have been used to find approxi-

patterns of graded index optical fibers. mate solutions for this functioa(p):

The paper is organized as follows. In Sec. 2, we deter-
mine the values of the parameters for the power series and the
asymptotic expansions. In Sec. 3, we discuss the procedure 2) the two-point Pad method.

to obtain the two-point quasi-rational approximants. In Sec.

4, an analysis and discussion of results of the various approxiowever the results of the first methgd are much better.than
imants are presented. Section 5 is devoted to conclusions. those of the second method, which will only be shown briefly
in Appendix A.

For the two-point quasi-rational method, the range of in-
terest(0, 1) for p must be extended to the ranf@ oo), in
order to have a power series around zero and an asymptotic

is the propagation wave number aloagand! is
an integer number, called the azimuthal eigenvalue. Thus,
Eq. [1] becomes

(E]or this paper, a parabolic profile will be assumed, that is,

denote

1) the two-point quasi-rational method, and

2. Suitable expansions of the scalar field solu-

tions for graded- index optical fibers expansion around infinity. There are several possibilities for
] o o ] ] this transformation; however, we have found good results us-
The scalar field equation in cylindrical coordinates[1] is: ing the following change of variable:

U 14V 1420 420 -
+ = + kgn*(r)¥ = 0;

p=1-e", ©)
P

which gives the new differential equation

Wy, 1 av
dy*  (1—e7v) dy

+e

wherek, and )\ are the wave number and wave length in the )
. . - . » l
vacuum respectively, ane?(r) is the optic-index profile of x g1 — ga(1—e¥)2 — (

—— | Y(y) =0, (10)
the optical fiber. 1—e¥)?
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whereg(p) = ¥(y). This change of variables is done in such the equation using the shooting method [27], with the bound-
a way that forp = 0, y = 0 and, forp = 1, y = oco. The ary initial condition ofay = 1 atp = 0, and compelling the
power series are easily obtained by the Frobenius method asinction¢(p) to converge to zero fgs = 1.
oo The values of the coefficients of the asymptotic expan-
U, (y) =y Z ai y', (11) sionforl =0,1,2andm = 0,1,2,3 are shown in Table II.
=0

where thez;’s are given in Table | for each mode with values
of [ from0to 2 andm = 0, 1,2, 3, and for experimental pa-
rameters: core index, = 1.5, cladding indexn, = 1.485,

TABLE |. Power series coefficients for the azimuthal eigenvalues
[l =0,1,2and mth-modeluUMBERS™Mm = 0, 1, 2, 3.

core radius: = 5um, length wave\, = 1.310um, and rela- I m  ao az a4 as as
tive refractive indexA = 0.00995. Note that the odd coeffi- 0 0 1 -2.6686  3.38977 -2.91395 1.84991
cients are zero. Figure 1 shows_ the refractive index profile o_f 0 1 1 -96589 24933 -33.6674 30.3563
t_he optical fiber, thou_gh the radius of th_e core must_ be speci- 5 1 208472 110261 -270.314  396.57
fied; however, there is no need to specify the cladding radius
b for these calculations 0 3 1 -36.8984 341983 -1428.46 3431.86

The following remarks are important as pertainingtothe 1 1 1 -7.24176 18554  -26.274  25.0029
above equation: point = 0 is singular, regular, andtheso- 1 2 1 -14.0239 66.6294 -163.257 250.397
Iutio_n§_0f the c_h_aracteristig equations are integers_. There_ areq 3 1 -232721 181603 -716.865 1726.75
two |n!t|al condmons_ to def!ne the solutlon_s of the differential 1 1  -6.68592 175678 -26.3609 26.7432
equation; however, if we discard the solutions that blow up at A 120049 648492 -136.844  220.064
infinity, only the valueay aty = 0 is needed to obtain the e ' e '

3 1 -18.9826  135.933 -524.219 1280.35

series. In order to normalize our solutiangis chosen in our 2
calculations to be equal to 1, and Table | has been constructed
according to this criterion. In summary, the boundary condi-
tions are:¥(oco) = 0 and¥(0) = 1if I = 0, and¥(0) =0 "
if [ is a positive integer, thati$,= 1, 2, etc.

The variable for the asymptotic expansion is conveniently
taken to be=—Y. Therefore, this expansion becomes

core cladding

n(r)

() =3 by, (12)
r=1

whereb, is taken to be zero in order thdt,(co) may be- 478
come zero. In this way there is only one coefficiento be

defined in the previous series, because all the other coeffi-
cients depend on the value of the slope of the solutigr) at r[pm]

p = 1. Once this slope has been found, the mappinfg s Ficure 1. Refractive index profile of the optical fiber as a function
performed through the transformation previously defined inof radiusr, a = 5um is the radius of the core, and b is the cladding
Eq.(9). The way to find that slope is by numerically solving radius.

[

4 a 6 8 10 b

TABLE Il. Asymptotic expansion coefficients for the azimuthal eigenvalue9), 1, 2 and mth-mode numbers = 1, 2, 3.

I m b1 ba bs ba bs be b7 bs

0 0 0.6179 0.3089 1.7587 -1.7213 1.3071 -3.4137 3.3173 -2.75373
0 1 -1.5838 -0.7919 2.8732 8.1022 0.0419 -7.8231 -8.3976 4.2790
0 2 2.2049 1.1025 -20.4468 -19.5031 52.1783 77.7168 -46.1255 -132.135
0 3 -2.6530 -1.3265 52.9923 37.6616 -307.62 -286.198 808.457 971.288
1 1 -0.5002 -0.2501 2.4332 3.2386 -2.9311 -7.5344 -1.0254 7.6937
1 2 0.4587 0.2293 -6.3794 -5.0437 25.4249 28.1298 -43.9364 -69.2621
1 3 -0.4158 -0.2079 10.9099 7.1358 -84.0269 -68.1663 299.64 296.446
2 1 -0.2146 -0.1073 1.7342 1.6273 -3.9848 -5.7906 3.4866 9.4386
2 2 0.1453 0.0726 -2.7212 -1.8755 14.9004 13.2321 -37.6614 -42.772
2 3 -0.1052 -0.0526 3.4394 2.0925 -33.2183 -23.8442 150.567 126.088
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TABLE IIl. Parameterp;’s of the two-point quasi-rational approximants, for the azimuthal eigenvaluees, 1,2 and mth-mode numbers
m=0,1,2,3.

| m Po p1 P2 D3 D4 Ps D6 p7 Ds

0 0 0.6179 0.1569 1.2289 -1.4048 0.315 0.0146 - - -

0 1 1.584 1.525 1.561 3.6737 -6.9425 2.4101 - - -

0 2 2.205 -4.528 -12.588 24.896 8.546 -28.804 10.906 - -

0 3 -2.653 5.889 39.311 -86.899 -91.159 258.438 -29.654 -164.886 73.126
1 1 -0.500 0.973 0.996 -1.533 -1.474 2.132 -0.593 - -

1 2 0.459 -1.194 -4.020 11.759 1.043 -22.727 19.817 -5.138 -

1 3 -0.416 1.584 6.521 -31.214 10.384 102.560 -174.559 109.681 -24.541
2 1 -0.215 0.413 1.047 -1.885 -0.849 1.908 0.397 -1.150 0.335
2 2 0.145 -0.478 -1.602 6.621 -1.914 -16.018 23.715 -13.033 2.563
2 3 -0.105 0.431 2.086 -10.667 3.689 42.819 -80.259 55.953 -13.946

TABLE IV. Parametersy;’s of the two-point quasi-rational approximants, for the azimuthal eigenvalaes, 1, 2 and mth-mode numbers
m=0,1,2,3.

| m q1 q2 q3 q4 gs d6 qr gs

0 0 -0.24594 -0.73429 1.57908 -0.99027 0.3201 - - -

0 1 -1.46303 1.55997 -0.63802 0.07458 0.11043- - - -

0 2 -2.55364 484114 -5.96457 5.49909 -3.1196 0.93054 - -

0 3 -2.71981 6.51649 -10.6335 15.2787 -17.4547 16.676 -10.6535 3.50395
1 1 -2.44535 4.09631 -4.40347 3.38235 -1.58464 0.38568 - -

1 2 -3.10195 6.69354 -9.85432 10.7551 -7.76077 3.30417 -0.55633 -

1 3 -4.30862 12.7086 -27.1731 46.038 -57.7928 49.1245 -24.5294 5.52864
2 1 -2.42578 441721 -5.44469 5.41243 -4.03907 2.30213 -0.85586 0.17594
2 2 -3.78673 9.59381 -17.2342 23.6842 -23.7457 16.3963 -6.86105 1.35102
2 3 -4.59566 15.1605 -36.5257 71.6558 -110.945 120.291 -75.6813 20.6874

3. Two-Point quasi-rational approximations reproduce the singularities of the exact functions. The golden
for the solutions rule is that the function and the approximant should have the
same singularities in the region of interest. Undesirable sin-

. . . : ularities that might appear in the approximant must be lo-
The power series and asymptotic expansions previousl . . " )
P ymp b P gated outside of that region. Thus the auxiliary functions

found determine the form of the approximations to be use . . : .

in this problem. The strategy of these quasi-rational approxi—r.nUSt be chosen_m sucha way thafc the _undeswable singulari-

mants is to build an analytic bridge between the power serieges are located in the. negative axis or in the left-hand com-

and the asymptotic expansion, to obtain a unique analytic e)glex p Iaqe. Another _|mportan_t advantage of th e two-point
. . L9_ua5|-rat|onal approximants with respect to the&@atthod

racy of the analytic approximations obtained with this proce-IS better accuracy for an equal number of parameters, and

dure is high for the whole range of values, even in the regiorghizemfolr;the system of equations to obtain those parameters
where both expansions are not convergent. The results al® n Ft)h's. roblem. the auxiliary function for the approxi-
usually good for all values of the parameters, and are inde- IS p ' uxitiary unct pproxi

i -y i i Yy —1—
pendent of the radius of convergence of each expansion. mants will bee_ and the variable of_expansmn - 1=p.
For an approximant of order s, that is, a polynomial of degree

One of the differences of the two-point quasi-rational ap-g i the numerator, the form of the approximant will be
proximant and the two-point Padnethod is that a power se-

8 —1y
ries and an asymptotic expansion are used, instead of two oproz(y) = e~ W ( Ei:SO pi € th ) (13)
power series. Consequently, instead of using only fractional 14+3 oy ane ™

functions, we are forced to introduce non-fractional func- The(2s+ 1) parameterg;’s andg;’s will be determined
tions, which we have called auxiliary functions, in order to from the (2s + 1) coefficients coming from the power se-
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ries and asymptotic expansions previously found. There arevard manner:
several possibilities; however, the best results are usually ob- S pi(1— p)f
tained when the number of coefficients from the power series daprox(p) = (1 — p)! ( i=0"" h)
is about the same as that of the asymptotic expansions. In L+ b1 an(l—p)

Tables Il and IV, the parameters of the approximants with ! S opi(l—1L)

the highest accuracy are shown. Thgs are in Table Il = ( *) (1 TS an(l - T)h> - (16)
andg;,’s are in Table IV. The procedure followed to obtaining - “

these Tables is better explained by taking a particular cas% Results

for instance, let us explain how the's andg;,’s are obtained '

for the casd = 1 andm = 2. The order of the approxi- | this work, the approximanis,y.(p) for 1 = 0,1,2 and
mant is seven and we have 15 unknowns, gigtand seven ., _ ( 1 2 3 have been calculated. The order of each ap-
qn's (po to p7 andq, to g7). Eight equations are obtained by proximant increases until the accuracy of the approximation
equalizing the coefficients of the first eight terms of the powelgeems enough for most applications. Since the most impor-

a

expansion iry, obtained as tant function®(r) is for | = 0, these approximants are ob-
- . T . tainlczaq Withzhigt]rf:erfaccgracy tr(lja?hthose EOf:.l an(tjli: 2.0
- Yy i igure 2, the function and the approximant foe= 0,
1+ th’ (Z k! )] (yl Zaiy ) m :go are shown. Both functions Egincide on this scale.
h=t h=1 =0 However the difference between both functions is given in
T (—1)ttyt 7 T\ (—1)kikyk Fig. 3, amplified with al0* scale factor. The approximant
- Z T Di Z T in these figures has been obtained with a fifth-degree polyno-
=0 = k=0 mial. The maximum absolute error is about4 x 102,
+0(y®), (14)
1 \\
wherel = 1, but we have keptas a letter in order to clarify .
the method. The sum ovérandt correspond to the first eight 08 \
coefficients of the power expansion of"¥, e~ ande~™. AN
These equations correspond to the information correspondinga 0.6 AN
to small values of;. —~
In order to introduce the information coming for large © s .
values ofy, that is, values of neara, we need use the asymp- N
totic expansion. Here we must to equalize the first seven co- 02 I
efficients of the exponentials as follows
0 012 0.4 04‘6 0‘.8 1
- —hy - —Jjy p
L+ hzz:l n € ; bi e FIGURE 2. Two-point quasi-rational approximations of the radial

wave solutionp(p) as a function of the dimensionless radjusf
the fundamental mode= 0 andm = 0.

7
=e W (Zp, eiy> +0(y®). (15)
i=1

In this way a linear system of 15 equations with 15 un- _ 04¢ /\
knowns is obtained, and the results can be seen in the five%
rows of Tables Il and IV. = 03 /

As we noticed before, we have tried different arrange-
ments, increasing the number of equations from the power

lute error
(=
"~

/

series and decreasing those of the asymptotic expansions, an 2

viceversa, but the best result is the one shown. Arrange- ol \

ments decreasing the number of exponentials in the numer- y, \

ator and increasing those in the denominator, and viceversa e

have also been tested, but if the number of unknown param- 0 o2 s e 08 )
eters is fixed, better accuracy is obtained if there is an equal p

”“mbe'f of exponentials in the numerator and denominator 48 GURE 3. Amplified absolute error of the two-point quasi-rational
shown in Eq. (13). approximants for the scalar wave functig(p) versus the dimen-

Once the approximants are determined using the variablgionless radiug of the fundamental mode= 0 andm = 0, after
y, the approximant irp or r/a is obtained in a straightfor- amplification by a factor of 0*.
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The absolute errors of the approximants in Fig. 4 are

m = 1,2 and3 are shown. On this scale, both functions, theshown in Fig. 5. The same line-convention is kept here:
exact one and the approximate one are coincident. A dashed = 1, a dashed line;m = 2, a dotted line, andn = 3,

line is used for the mode: = 1, a dotted line form = 2,
and a dot-dashed line fer = 3. For! = 0, the moden =1

a dot-dashed line. Since for the same valuep tiere are
zeros for the functio(p), in order to avoid infinite values,

presents only a minimump = 2 shows a minimum and a no relative errors can be shown and the figures show only ab-
maximum, andn = 3 has two relative minima and one max- solute error. By overlapping Figs. 4 and 6, the relative errors
can be illustrated, once the scale factors are taken into ac-

imum.
count. In Fig. 5, these scale factors afd, 10° and10? for
10 = m = 1,2,3, respectively. The maximum absolute errors
\ AN
NN
\
SN 02
\ N\,
\ “.\ \\
05 VN
AU N RN
\ v AN // k
\ \ — T \
@ \ \ N 0.1 ’/ N
\ \ X ' / \
= \ N PN N \
Y \ ~ V4 N\ \
0 A 7 Q. / \ \
VLY 2 /N T
\ ; Nl \ Y X,
N //A 0 / \ \} 4 TN
N e —_e \ VAN \‘\ Y
05 NS N S
~o 0.2 0.4 06 08 10 S~ % Vs
e L \\\ //,
F|<_3URE 4. Ar_nphfled absolute errors of the_two-pomt quasi- 010 2 ” o B To
rational approximants for the scalar wave functit(p) versus the o

dimensionless radiys The dashed curve (- - -) corresponds to the

error of the wave modé = 0 andm = 1, after amplification by
a factor of10*. Similarly the dotted curve (-) shows the error of
the wave modé = 0 andm = 2, after amplification by a factor
of 103, and the dot-dashed curve-(- - - ) represents the error of
the wave modé = 0 andm = 3, after amplification by a factor

of 10.

FIGURE 6. Two-point quasi-rational approximations of the radial
wave solutiong(p) as a function of the dimensionless radjus
Dashed (- - -), dotted (- ) and dot-dashed € - - -) curves corre-
spond respectively to the three wave motles 1, m = 1;1 = 1,
m=2andl =1, m = 3.

06

05

Absolute Error

0.4

02

Absolute Error

-0.2
0 0.2

-0.5
0

FIGURE 5. Amplified absolute errors of the two-point quasi-
rational approximants for the scalar wave functip) versus the
dimensionless radiys The dashed curve (- - -) corresponds to the
error of the wave modé = 0 andm = 1, after amplification by

a factor of10*. Similarly the dotted curve { - ) shows the error of
the wave modé = 0 andm = 2, after amplification by a factor
of 103, and the dot-dashed curve-(- - - ) represents the error of
the wave modé = 0 andm = 3, after amplification by a factor

of 10°.
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0.6

08 1.0

of 102,
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FIGURE 7. Amplified absolute errors of the two-point quasi-
rational approximants for the scalar wave functigfp) versus the
dimensionless radiys The dashed curve (- - -) corresponds to the
error of the wave modé= 1 andm = 1, after amplification by a
factor of 10%. Similarly, the dotted curve (-) shows the error of
the wave modé = 1 andm = 2, after amplification by a factor
of 102, and the dot-dashed curve-(- - -) represents the error of
the wave modé = 1 andm = 3, after amplification by a factor
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and they ard 03, 102, and10? for m = 1,2, 3, respectively.
The maximum errors are nowl x 1073, 0.08 x 10~2 and
0.18x10~2form = 1, 2, 3, respectively. Now, the maximum
errors are not so centered as in the previous céses, 1.
Another way to find approximants for the solutions of the
differential equation considered here is by using two-point
Pade methods, instead of the method previously described.
In this method, the form of the approximants is similar to
those in Eq. (16). However, the way to calculate the param-
eters is by two series expansions: one arogng 0, and
the other aroungh = 1. We have determined the parame-
tersp; andq, with this method for all the cases considered.
Using the same number of parametgrsand ¢;,, we have
determined those parameters by the two methods, two-point

FIGURE 8. Two-point quasi-rational approximations of the radial
wave solutiong(p) as a function of the dimensionless radjus
Dashed (- - -), dotted (- ) and dot-dashed ¢ - - -) curves corre-
spond respectively to the three wave motles2, m = 1;1 = 2,

quasi-rational and two-point Pad After that, we proceeded

to compare the accuracy of both approximants and we found

that the accuracy of the one presented here is always better
than those described in the Appendix. In general, that ac-

m=2andl =2,m = 3.

05

-05 \

Absolute Error

0.4

0.6

0.8

curacy is about one or two orders of magnitude higher (the
order of magnitude considered here is a factor of 10).

5. Conclusions

Analytic approximated solutions for wave propagation in
quadratic graded-index optical fibers has been found. The
accuracy of the approximants found here is much better than
previous approximations found for other authors through
WKB or any other method. No difference between approxi-
mated and computed functions can be found for figures with
regular sizes. The absolute errors for= 0,1 and! = 0,1

are always lower thah0~—#, and close td0~2 for [ = 2. For

m = 2, the errors are always lower thad=3 forl = 0, 1, 2.
Form = 3, the maximum error i§0~2, for{ = 0,1, 2 and

p the errors are lower that—2 for [ = 0,1. Clearly the ac-
FIGURE 9. Amplified absolute errors of the two-point quasi- curacy of our approximant is very good and it can be used
rational approximants for the scalar wave functig(p) versus the  for most of the actual applications. The approximated solu-
dimensionless radiys The dashed curve (- - -) corresponds to the tion can be derived and integrated like symbolic functions if
error of the wave modé= 2 andm = 1, after amplificationby a  peeded.
factor of 10*. Similarly, the dotted curve (~)_s_,hov_vs the error of Our approximants are obtained by using two-point quasi-
the wave modé = 2 andm = 2, after amplification by a factor - rayiona| methods,just described. The accuracy of the approx-
of 107, and the dot-dashed curve-(- - -) represents the error of ) 4 using two-point Pé&dmethod is always lower than
the wave modé = 2 andm = 3, after amplification by a factor of . .
102, those obtained here for approximants of an equal number of
parameters to be determined.

are0.23x 10~4,0.9 x 10~3 and0.53 x 10~2 form = 1,2, 3, The main idea of those approximants is to combine ra-
respectively. Though the maximum errors tend to be in thdional functions with auxiliary functions in such a way that
central region, near the center the erroi 6t 0, m = 1is  the singularities of the approximated function coincides with
very near to zero. those of the actual function in the region of interest. Keep-

The criteria used in Figs. 4 and 5 are followed in Figs. 6I"9 this in mind, the method presented here can be applied
and 7, forl = 1 and them = 1,2,3 and latter in Fig. 8 (o other multimode optical fibers with a graded index profile
and Fig. 9, forl = 2 andm = 1,2,3. The scale factors in With different structures from the parabolic case considered

Fig. 7 are the same as that in Fig. 5; however, the largest efere-

rors are now0.44 x 10~* form =1,0.5 x 1072 form = 2

and0.29 x 102 for m = 3. Here the largest errors are more Acknowledgments

centered than in the case fo= 0, described in Fig. 5. Refer-

ring now tol = 3, described in Figs. 8 and 9, the scale factorswe would like to thank the referee for several suggestions
of the absolute errors are now different from previous oneswhich improved our first manuscript.
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o8 the well known procedure gives two solutions, one is loga-
rithmic and the other is algebraic. We will not take into ac-
06 N count the logarithmic solution because of the finite value of
5 / AN ¢(p) at the axis, that is, fop = 0.
th.l 04 AN \\ Similarly at the boundary = 1, the series expansion will
B // \\\\ be
E / \\ I
s AN it C C
2 " Sl = (1—p) |1+ &1~ p)”] . (19)
< v o “ON y=1
0 frm—=" —— In order to find the parametefs andg;, the previous series
[Egs. (18) and (19)] are multiplied by the denominator of the
02 approximant
0 0.2 0.4 0.6 0.8 1.0
S .
) P | 143 4 (1-p))
FIGURE 10. Amplified absolute errors of the two-point Fad J=1

method and the two-point quasi-rational approximants for the In the case of the power series of Eq. (19), before finding the
scalar wave functionp(p), versus t.he dimensionless radigs product, the denominator is expanded in powerg.ofThe
The wave modé = 1 andm = 1is represented by a dashed gecong step is to identify the coefficients of those expansions

curve (- - -) in the case of two-point Padipproximation errors af- i the corresponding ones in the denominator expansion
ter amplification by a factor of0°, and the dotted curve {-) cor-

responds to the error of the two-point quasi-rational approximation, L _
after amplification by a factor of0*. Z pi (1—p)".
i=0
Appendix In order to find unique values gf; and g;, the number of

equations must be equal to the number of unknown parame-
A different form for the approximated solution to Eq. (7) hastersp; andg;. To be precise, the number of equations must
been considered. The form of this approximated solution ide(2s+1); that is, the number of coefficients to be equalized
a little simpler than that proposed in the main text; howeverfor the powers irp plus those for powers il — p) must be
it is not so efficient. Here the word “efficient” is used in the (2s + 1).
sense of obtaining a given accuracy using the minimum num- There is no need to write down the values of all the pa-

ber of unknown parameters in the approximant. rameters; y g; for the two-point Paé method, since the ap-
Here the form of the approximants will be proximants to be used are those described above. However,
. LS (1= p)i to illustrate the results, the case- 1 andm = 1 will be de-
o(p)=1—p)p = (17)  scribed in detail. In this case the approximant is of the sixth

L+ Ej:l 4 (1=p)’ order, that is, there are sixth-de [ [ -
, , gree polynomials of in the nu

wherep; y g; are parameters to be determined. The selectioferator and denominator, as the approximant described in the

of the form is done considering that the function must be ongnain text. For the two-point Padmethod, the power series

atp = 0 and zero ap = 1, for I = 0, and the function must  aroundp = 0 andp = 1, for{ = 1 andm = 1, are

be zero app = 0, andp = 1 for I = 1 and2. Furthermore, - )

near zero the behavior of the function should be fike d(p)o = p— 7.2417p° + 18.554p° — 26.279p"

The auxiliary function(1 — p) is factored, because of the 9

boundary condition that the functiobi(r) must be zero at +25.002907 4, (20)

the surface of the cylinder = a, that is,¢(1) = 0. There . 9

is some freedom in the choice of the higher degree of the nu- ()1 = — 0.5002(1 — p) — 0.2501(1 — p)

merator and denominator. However, we have found that the 3 4

best results are obtained when both degrees are equal or about 251641 — p)” + 3.3634(1 — p)

the same. —3.0491(1 — p)® — 7.9842(1 — p)® +.... (21)

Now, the power expansion aroupd= 0 andp = 1 must

be found. The poinp = 0 is a singular regular point of the Figure 10 illustrates the errors, and they are compared

equation angp = 1 is a regular point. We know that the with the errors found in the main text. In order to get a clear

straightforward calculation described before leads to picture of both errors, the scale factor of both errors are dif-
o ferent, and the one shown in the main text has an extra fac-

g s -k tor of 100 compared with that of the two-point Raaethod,
#lp)o = dop (1 - ; P > ' (18) that is, the scale factors até* and102. The maximum er-

°, i . ”
Here, as usual there are two series which depend on the rod@@'s aré0.6 x 10™* and0.44 x 1077, for the two-point Padl
of the characteristic equation. However, here both solution§€thod and for the two-point quasi-rational approximant, re-

of the characteristic equation are equal integers. Thereforé,pecuvely'
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