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The solution of the Schr̈odinger equation obtained from
the solution of the Heisenberg equations
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It is shown that the knowledge of the solution of the Heisenberg equations for a given Hamiltonian allows us to find the corresponding
propagator up to a time-dependent phase factor, which gives the solution of the Schrödinger equation.
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Se muestra que el conocimiento de la solución de las ecuaciones de Heisenberg para un hamiltoniano dado nos permite hallar el propagador
correspondiente hasta un factor de fase dependiente del tiempo, el cual da la solución de la ecuación de Schr̈odinger.
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1. Introduction

In the standard formulation of the non-relativistic quantum
mechanics, the time evolution of a quantum system can be
studied assuming that the state vector (or, equivalently, the
wavefunction) changes with the time, with the position and
momentum operators being time-independent, or that the
state vector is fixed, with the observables changing with the
time according to the Heisenberg equations.

In view of the equivalence between these two approaches,
one natural question is: Given the solution of the Heisenberg
equations for the position and momentum operators, is it pos-
sible to use it to find the solution of the Schrödinger equation?

The aim of this paper is to show that the answer is, essen-
tially, yes: If one has the solution of the Heisenberg equations
for the position and momentum operators (in the case of spin-
0 particles), then one can find the propagator or, equivalently,
the time evolution operator, up to a phase factor that only de-
pends on the time. The propagator determines the solution of
the Schr̈odinger equation if the wavefunction at some initial
time is given.

A closely related result was obtained in Ref. 1, where
the propagator for one-dimensional systems with time-
independent forces linear inq andp was calculated making
use of the Heisenberg equations, without noticing that a sim-
ilar procedure is applicable to any Hamiltonian (not neces-
sarily time-independent or quadratic in the coordinates and
momenta) if one assumes that the solution of the Heisenberg
equations is known, regardless of whether it has the same
form of the classical equations of motion or not. Another
point missing in Ref. 1 is the fact that actually the Heisen-
berg equations do not determine the propagator in a unique
way.

In Sec. 2 we present the basic equations, which are ap-
plied in Sec. 3 to find the propagator in the standard examples
considered in the textbooks, starting from the solution of the
Heisenberg equations.

2. From the solution of the Heisenberg equa-
tions to the propagator

The solution of the Schrödinger equation

i~
d |ψ(t)〉

dt
= H |ψ(t)〉 (1)

can be expressed as

|ψ(t)〉 = U(t, t0) |ψ(t0)〉, (2)

whereU(t, t0) is a unitary operator, called the time develop-
ment operator, or time evolution operator, and|ψ(t0)〉 repre-
sents the state of the quantum system at some initial timet0.
Then, Eq. (1) is equivalent to

i~
∂U(t, t0)

∂t
= HU(t, t0), (3)

with the initial condition

U(t0, t0) = I, (4)

whereI is the identity operator. According to Eq. (2), the
knowledge of the evolution operator amounts to having the
solution of the Schr̈odinger equation for any initial state.

The evolution operator is usually given in an explicit
manner through its matrix elements with respect to the ba-
sis formed by the eigenstates of the position operator. For
instance, in the case of a particle in one dimension, these ma-
trix elements are

K(x′, t; x, t0) ≡ 〈x′|U(t, t0)|x〉. (5)

The complex-valued functionK(x′, t;x, t0) is known as the
propagator and, among other procedures, the path integral
can be employed to calculate it (see,e.g., Refs. 2 and 3, see
also Ref. 4 and the references cited therein). (Usually a step
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functionθ(t−t0) is included on the right-hand side of Eq. (5),
see,e.g., Ref. 2, Sec. 2.6.)

If A is an operator representing some observable, the cor-
responding operator,AH , in the Heisenberg picture is defined
by

AH(t) ≡ U(t, t0)−1AU(t, t0). (6)

Then, as a consequence of Eq. (3), the operatorAH obeys the
Heisenberg equation

i~
dAH

dt
= i~

(
∂A

∂t

)

H

+ [AH ,HH ], (7)

which is analogous to the equation appearing in Hamiltonian
mechanics for the time derivative of a function defined on the
extended phase space, with the commutator replaced by the
Poisson bracket.

By contrast with the Schrödinger equation, which is com-
monly expressed as a partial differential equation, the Heisen-
berg equations are ordinary differential equations, which, in
some cases, can be readily solved (frequently taking advan-
tage of their similarity with classical equations of motion).
According to Eq. (6), the solution of the Heisenberg equa-
tions involves the evolution operator. Hence, we can expect
that the solution of the Heisenberg equations for the coordi-
nates and momentum operators would determine the evolu-
tion operator and, hence, the solution of the corresponding
Schr̈odinger equation.

In order to simplify the expressions below, we shall as-
sume that there is one position operator and one momentum
operator only. The equations corresponding to more general
cases can be readily obtained. The solution of the Heisenberg
equations

dqH

dt
=

1
i~

[qH ,HH ],
dpH

dt
=

1
i~

[pH , HH ], (8)

must be of the form [see Eq. (6)]

U(t, t0)−1qU(t, t0) =F (q, p, t),

U(t, t0)−1pU(t, t0) =G(q, p, t), (9)

whereF (q, p, t) andG(q, p, t) are operators made out ofq, p,
andt (see the examples below). Equations (9) are equivalent
to

〈x′|qU(t, t0)|x〉 =〈x′|U(t, t0)F |x〉,
〈x′|pU(t, t0)|x〉 =〈x′|U(t, t0)G|x〉,

that is,

x′〈x′|U(t, t0)|x〉 =〈x′|U(t, t0)F |x〉,
~
i

∂

∂x′
〈x′|U(t, t0)|x〉 =〈x′|U(t, t0)G|x〉 (10)

[see,e.g., Ref. 2, Chap. 2, Eq. (188)]. These last equations
constitute a system of differential equations for the propaga-
tor 〈x′|U(t, t0)|x〉 containing partial derivatives of the prop-
agator with respect tox and x′ only. The order of these

equations depends on the specific form of the operatorsF
andG. In the examples considered below, Eqs. (10) turn out
to be of first order. (By contrast, in all these examples, the
Schr̈odinger equation for the wavefunction is a second-order
partial differential equation.)

The system of Eqs. (10)cannot determine com-
pletely the propagator since ifU(t, t0)−1qU(t, t0) and
U(t, t0)−1pU(t, t0) satisfy the Heisenberg equations, then so
do Ũ(t, t0)−1qŨ(t, t0) andŨ(t, t0)−1pŨ(t, t0) if Ũ(t, t0) ≡
f(t)U(t, t0), for any non-vanishing complex-valued function
f(t). (In other words, if we multiply the operatorU(t, t0)
appearing in Eqs. (10) by an arbitrary function oft only, this
function can then be eliminated from the equations, leaving
them unaltered.) In order forU(t, t0) andŨ(t, t0) to be uni-
tary, the modulus off(t) must be equal to 1, that is,f(t) is
a phase factor. (See the examples below and the discussion
given in Sec. 4.)

3. Examples

We now present some standard one-dimensional examples,
usually considered in the literature.

3.1. Propagator of a free particle

Even though the propagator of a free particle can be obtained
as a particular case of the propagators calculated below, it
will be instructive to start with this simple example.

If H = p2/2m, thenHH = pH
2/2m and the Heisenberg

equations (8) give

dqH

dt
=

pH

m
,

dpH

dt
= 0. (11)

The solution of the second equation (11) ispH(t) = const.,
i.e., U(t, t0)−1pU(t, t0) = const. and, by evaluating both
sides of this equation att = t0, we find that

U(t, t0)−1pU(t, t0) = p

[see Eq. (4)].
In a similar manner, from the first equation in (11) we

obtain

U(t, t0)−1qU(t, t0) =
(t− t0)p

m
+ q

[cf. Eq. (9)]. Hence,

pU(t, t0) =U(t, t0)p,

qU(t, t0) =
t− t0

m
U(t, t0)p + U(t, t0)q. (12)

The first equation in (12) amounts to

〈x′|pU(t, t0)|x〉 = 〈x′|U(t, t0)p|x〉,

i.e.,

~
i

∂

∂x′
K(x′, t; x, t0) = −~

i
∂

∂x
K(x′, t; x, t0)

Rev. Mex. Fis.63 (2017) 287-290



THE SOLUTION OF THE SCHR̈ODINGER EQUATION OBTAINED FROM THE SOLUTION OF THE HEISENBERG EQUATIONS 289

(which means thatK(x′, t; x, t0) depends onx andx′ only
through their difference). Similarly, the second equation
in (12) is equivalent to

x′K(x′, t; x, t0) =
t− t0

m

(
−~

i

)
∂

∂x
K(x′, t; x, t0)

+ xK(x′, t; x, t0).

Thus, we readily obtain

K(x′, t; x, t0) = F exp
[
im(x′ − x)2

2~(t− t0)

]
, (13)

where the factorF may be a function oft− t0 only. In order
to findF we make use of Eq. (4) in the form

lim
t→t0

∞∫

−∞
K(x′, t; x, t0) dx = 1, (14)

which gives

lim
t→t0

F

√
2πi~(t− t0)

m
= 1.

This condition determines the functionF up to a time-
dependent factor whose limit ast goes tot0 is equal to 1.
The simplest choice is

F =
√

m

2πi~(t− t0)
(15)

and it can be verified that with thisF , the expression given
by (13) satisfies Eq. (3) withH = p2/2m.

3.2. One-dimensional harmonic oscillator

TakingH as the standard Hamiltonian for a one-dimensional
harmonic oscillator, we obtain the equations

dqH

dt
=

pH

m
,

dpH

dt
= −mω2qH ,

which have the form of the classical equations of motion for
a one-dimensional harmonic oscillator. Hence,

qH = cos ω(t− t0) q +
sin ω(t− t0)

mω
p,

pH = −mω sin ω(t− t0) q + cos ω(t− t0) p,

which is equivalent to the equations

〈x′|qU(t, t0)|x〉 = cos ω(t− t0)〈x′|U(t, t0)q|x〉

+
sin ω(t− t0)

mω
〈x′|U(t, t0)p|x〉,

〈x′|pU(t, t0)|x〉 = −mω sin ω(t− t0)〈x′|U(t, t0)q|x〉
+ cos ω(t− t0)〈x′|U(t, t0)p|x〉,

that is,

x′K(x′, t; x, t0) = x cos ω(t− t0)K(x′, t;x, t0)

− sin ω(t− t0)
mω

~
i

∂

∂x
K(x′, t;x, t0),

~
i

∂

∂x′
K(x′, t; x, t0) = −mωx sin ω(t− t0)K(x′, t; x, t0)

− cos ω(t− t0)
~
i

∂

∂x
K(x′, t; x, t0).

The solution of these equations is

K(x′, t; x, t0)

= F exp
{

imω[(x2 + x′2) cos ω(t− t0)− 2xx′]
2~ sin ω(t− t0)

}
,

whereF is a function oft − t0 only. In this case, Eq. (14)
yields

lim
t→t0

F

√
2πi~ sin ω(t− t0)

mω
= 1,

which is satisfied withF given,e.g., by Eq. (15) or by

F =
√

mω

2πi~ sinω(t− t0)
.

A straightforward computation shows that with this last ex-
pression, Eq. (3) is satisfied with the standard Hamiltonian
H = p2/2m + 1

2mω2q2.

3.3. Particle in a uniform field

Letting

H =
p2

2m
− eEq,

wheree andE are constants, we have

dqH

dt
=

pH

m
,

dpH

dt
= eE,

with the solution

pH = eE(t− t0) + p,

qH =
eE

2m
(t− t0)2 +

t− t0
m

p + q.

Proceeding as in the foregoing examples we obtain the
equations

〈x′|pU(t, t0)|x〉 = eE(t− t0)〈x′|U(t, t0)|x〉
+ 〈x′|U(t, t0)p|x〉,

〈x′|qU(t, t0)|x〉 =
eE

2m
(t− t0)2〈x′|U(t, t0)|x〉

+
t− t0

m
〈x′|U(t, t0)p|x〉+ 〈x′|U(t, t0)q|x〉,
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which are equivalent to

~
i

∂

∂x′
K(x′, t; x, t0) = eE(t− t0)K(x′, t;x, t0)

− ~
i

∂

∂x
K(x′, t; x, t0),

x′K(x′, t; x, t0) =
eE

2m
(t− t0)2K(x′, t; x, t0)

− ~
i
(t− t0)

m

∂

∂x
K(x′, t; x, t0)

+ xK(x′, t;x, t0).

One can readily find that the solution of this system of equa-
tions is given by

K(x′, t; x, t0)

= F exp
{

im
2~T

[
(x′ − x)2 +

eET 2(x′ + x)
m

]}
,

whereT ≡ t − t0, andF is a function oft − t0 only. In or-
der to satisfy Eqs. (3) and (4) with the Hamiltonian specified
above, the functionF has to be taken as

F =
√

m

2πi~T
exp

[
− i(eE)2T 3

24~m

]
.

Alternatively, Eqs. (3) and (4) are satisfied with

F =
√

m

2πi~T
if we takeH = p2/2m− eEq − (eE)2T 2/8m.

4. Concluding remarks

As we have shown, the solution of the Heisenberg equations
for the position and momentum operators allows us to find

the propagator up to a time-dependent phase factor. This in-
determinacy is a consequence of the fact that if we replace
the Hamiltonian,H, byH +h(t), whereh(t) is a multiple of
the identity operator that depends on the time only, then this
additional term commutes with all operators, and the Heisen-
berg equations (8) are left unchanged. On the other hand, the
termh(t) does not disappear from the Schrödinger equations
(1) and (3), and even the addition of a constant to the Hamil-
tonian modifies the time evolution operator.

Whereas the Schrödinger equation is closely related to
the Hamilton–Jacobi equation, the Heisenberg equations are
similar to the Hamilton equations expressed in terms of the
Poisson bracket; a termh(t) added to the Hamiltonian has no
effect in the Hamilton or the Heisenberg equations, but such a
term has consequences on the Schrödinger and the Hamilton–
Jacobi equation. (In the case of the Schrödinger equation, the
addition of a termh(t) to the Hamiltonian produces an ad-
ditional time-dependent phase factor on the state vector, the
wavefunction, or the time evolution operator.)

The result presented in this paper is analogous to the
fact that, in classical mechanics, one can use the solution
of the Hamilton equations to find a complete solution of the
Hamilton–Jacobi equation. The solution of the system of
equations (10) constitute a relatively easy way of finding the
propagator, in comparison with other standard procedures,
provided that we already have the solution of the Heisenberg
equations(which, in general, may be a difficult task). An
even simpler procedure consists in making use of the con-
served operators that represent the initial position of the par-
ticle [5,6], since one has to solve fewer equations. However,
the relevant point here is that the solution of the Heisenberg
equations can be used to obtain the evolution operator.
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