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It is shown that the knowledge of the solution of the Heisenberg equations for a given Hamiltonian allows us to find the corresponding
propagator up to a time-dependent phase factor, which gives the solution of tlieli@gler equation.
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Se muestra que el conocimiento de la sdindile las ecuaciones de Heisenberg para un hamiltoniano dado nos permite hallar el propagador
correspondiente hasta un factor de fase dependiente del tiempo, el cual da fanstéulei ecuadin de Schidinger.
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1. Introduction 2. From the solution of the Heisenberg equa-
_ o tions to the propagator

In the standard formulation of the non-relativistic quantum
mechanics, the time evolution of a quantum system can b&he solution of the Sckidinger equation
studied assuming that the state vector (or, equivalently, the
wavefunction) changes with the time, with the position and 3P@) _ () )
momentum operators being time-independent, or that the dt
state vector is fixed, with the observables changing with th
time according to the Heisenberg equations.

In view of the equivalence between these two approaches, (1)) = U(t, to) [¥(to)), )
one natural question is: Given the solution of the Heisenberg

equations for the position and momentum operators, is it posyherel (¢, t,) is a unitary operator, called the time develop-
sible to use it to find the solution of the S(")Hinger equation? ment operator, or time evolution operator, am(qt()» repre-
The aim of this paper is to show that the answer is, essersents the state of the quantum system at some initialtime
tially, yes: If one has the solution of the Heisenberg equationghen, Eq. (1) is equivalent to
for the position and momentum operators (in the case of spin-
0 particles), then one can find the propagator or, equivalently, ihaU(t’ to) = HU(t,t) @)
the time evolution operator, up to a phase factor that only de- ot T
pends on the time. The propagator determines the solution %ith the initial condition
the Schédinger equation if the wavefunction at some initial
time Is given. Ulto, to) = I, )
A closely related result was obtained in Ref. 1, where
the propagator for one-dimensional systems with timewhere” is the identity operator. According to Eq. (2), the
independent forces linear ipandp was calculated making  knowledge of the evolution operator amounts to having the
use of the Heisenberg equations, without noticing that a simso|ution of the Sclirdinger equation for any initial state.
ilar procedure is applicable to any Hamiltonian (not neces-  The evolution operator is usually given in an explicit
sarily time-independent or quadratic in the coordinates anghanner through its matrix elements with respect to the ba-
momenta) if one assumes that the solution of the Heisenbergs formed by the eigenstates of the position operator. For

equations is known, regardless of whether it has the sam@stance, in the case of a particle in one dimension, these ma-
form of the classical equations of motion or not. Anotheryiy elements are

point missing in Ref. 1 is the fact that actually the Heisen-
berg equations do not determine the propagator in a unique K(2' t;x,t0) = (&'|U(t, to)|x). (5)
way.

In Sec. 2 we present the basic equations, which are apFhe complex-valued functiok (z', ¢; z, to) is known as the
plied in Sec. 3 to find the propagator in the standard examplegropagator and, among other procedures, the path integral
considered in the textbooks, starting from the solution of thecan be employed to calculate it (seeg, Refs. 2 and 3, see
Heisenberg equations. also Ref. 4 and the references cited therein). (Usually a step

%an be expressed as
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functionf(t—ty) is included on the right-hand side of Eq. (5), equations depends on the specific form of the operafors
seee.g, Ref. 2, Sec. 2.6.) andG. In the examples considered below, Egs. (10) turn out

If Ais an operator representing some observable, the cote be of first order. (By contrast, in all these examples, the
responding operatod g, in the Heisenberg picture is defined Schibdinger equation for the wavefunction is a second-order
by partial differential equation.)

Ag(t) = Ul(t,to) AU (t, tp). (6) The system of Egs. (10fannot determine com-
pletely the propagator since it/(t,tq) *qU(t,to) and
U(t,to)~'pU(t, to) satisfy the Heisenberg equations, then so
doU(t,to)"1qU(t,to) andU (t,to) " *pU(t, to) if U(t,to) =
F(#®)U(t, o), for any non-vanishing complex-valued function
f(t). (In other words, if we multiply the operatdr (¢, ¢o)

. , . ... _appearing in Egs. (10) by an arbitrary functiont@hnly, this
which |s_analogous_ to the E_zqugtlon appearing in Ham'lton'a'?unction can then be eliminated from the equations, leaving
mechanics for the time der_|vat|ve of a function defined on thg, 1, unaltered.) In order fd¥ (t, to) andU (¢, to ) to be uni-
extended phase space, with the commutator replaced by ﬂ?&ry, the modulus of (£) must be equal to 1, that ig(t) is

Poisson bracket. - _ o a phase factor. (See the examples below and the discussion
By contrast with the Sclkidinger equation, which is com- given in Sec. 4.)

monly expressed as a partial differential equation, the Heisen-

berg equations are ordinary differential equations, which, in

some cases, can be readily solved (frequently taking advas- Examples

tage of their similarity with classical equations of motion). . .

According to Eq. (6), the solution of the Heisenberg equa-We now present some stgndard one-dimensional examples,
tions involves the evolution operator. Hence, we can expeclfSually considered in the literature.
that the solution of the Heisenberg equations for the coordi:

nates and momentum operators would determine the evold)’-'l' Propagator of a free particle

tion operator and, hence, the solution of the correspondingyen though the propagator of a free particle can be obtained

Schibdinger equation. . as a particular case of the propagators calculated below, it
In order to simplify the expressions below, we shall as-y;| pe instructive to start with this simple example.
sume that there is one position operator and one momentum i r7 — 2 /9, thenHy = py2/2m and the Heisenberg

operator only. The equations corresponding to more gener%lquations (8) give
cases can be readily obtained. The solution of the Heisenberg

Then, as a consequence of Eq. (3), the opetapobeys the
Heisenberg equation

A2 i (aA
ot

1 >H+ [Am, Hy), (7)

equations % _ b dgf _o. (11)
qu o 1 H de o 1 H 8 m
a E[QH’ 1), ar ﬁ[pH’ 1], () The solution of the second equation (11pis(t) = const.,

i.e, U(t,to) " 'pU(t, tg) = const. and, by evaluating both

must be of the form [see Eq. (6)] sides of this equation at= ¢, we find that

U(tvtO)iqu(tvtO) :F(qvpv t)» U(t to)ilpU(t to) —p

U(ta t())_lpU(tat()) :G(q7p7 t)v (9)
[see Eq. (4)].
whereF'(q, p,t) andG/(q, p, t) are operators made out@fp, In a similar manner, from the first equation in (11) we
andt (see the examples below). Equations (9) are equivalerdptain
t—1t
to Ut to) " qU (k1) = LI

(@'|qU (t, to)|)
(@'[pU (t, to)|x)

(@'U(t,to) F|z), [cf. Eq. (9)]. Hence,
<$/|U(tv tO)G|x>a

pU(ta tO) :U(t’ to)pa

that is, t—t
qU(ta tO) = 0

U(t,to)p +Ul(t,to)g.  (12)
2@ Ut o)) =(2'|U (L, to) Flx),

ho,, ,

—— (2" |U(t,to)|x) ={z'|U(t, to)G|x 10

g (7 Vo)) SO G (0 @ pU (¢, to)la) = (&/|U ¢, to)pla).
[see,e.g, Ref. 2, Chap. 2, Eq. (188)]. These last equations
constitute a system of differential equations for the propagal-€-
tor (z'|U (¢, t9)|z) containing partial derivatives of the prop- 7

: 0 ) ho .,
agator with respect ta: and 2’ only. The order of these T (@ t3,t0) = — 7 - K (2, 62, to)

The first equation in (12) amounts to
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(which means thaf((x', t; z,ty) depends on: andz’ only
through their difference).
in (12) is equivalent to

t—1o h\ 0
"K(2' t;2,t0) = —— | = K2 t;x,t
x (‘T y U T, 0) m ( 1) O (I’ y U5 Ty O)

+zK (2, t;2,t0).

Thus, we readily obtain

(13)

: /)2
K(I/7t;xat0) = Fexp |:m(xx):| ’

2h(t — to)

where the factoF' may be a function of — ¢y only. In order
to find F* we make use of Eq. (4) in the form

tlintl K2 t;z,t0)de =1, (14)
—1lo
which gives

lim F w - 1.

t—to m

This condition determines the functioA up to a time-
dependent factor whose limit asgoes tot, is equal to 1.
The simplest choice is

m
F=,—Fi—-+
27Tih(t—t0)

and it can be verified that with thig, the expression given
by (13) satisfies Eq. (3) withl = p?/2m.

(15)

3.2. One-dimensional harmonic oscillator

Taking H as the standard Hamiltonian for a one—dimensionalNheree

harmonic oscillator, we obtain the equations

dgn _ pu dpy

2
= s = —Mmnw s
at  m dt Gl
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that is,

Similarly, the second equation

2K (2 t;m,t0) = weosw(t — to)K (', t; 2, t0)

sinw(t —tg) A 0 ,
ekt SVl O
mw i oz (@', 85, %0),
h o , . /
f?K(x b x,to) = —mwzsinw(t — 6o) K (2, t; z, to)
i oz

h
—cosw(t — to)faﬂK(az’, tix,to).
i0x

The solution of these equations is

K2/ t;z,t0)

imw[(2? + 2?) cosw(t — tg) — 22’ }

=F
P { 2hsinw(t — to)

whereF' is a function oft — ¢y only. In this case, Eq. (14)

yields
lim F\/thsmw(t —tp)

t—to mw

=1

)

which is satisfied withF' given,e.g, by Eq. (15) or by

mw

F= .
\/27rihsinw(t —to)

A straightforward computation shows that with this last ex-
pression, Eq. (3) is satisfied with the standard Hamiltonian
H =p*/2m + %mquz.

3.3. Particle in a uniform field

Letting

2
=2 —eFyq,
2m

andE are constants, we have

dgg _ pu dpr

a  m’ a

with the solution

which have the form of the classical equations of motion for

a one-dimensional harmonic oscillator. Hence,

sinw(t —t
qr = cosw(t —tg) g+ 7( O)p,
mw

pg = —mwsinw(t — tg) g + cosw(t — to) p,
which is equivalent to the equations
(@'|qU (¢, to)|z) = cosw(t — to){z'|U(t, t0)qlz)

sinw(t —
1) 0 1, o),

(@' |pU (t, to)|z) = —mwsinw(t — to)(z'|U (¢, to)q|x)
+ cosw(t — to)(x'|U(t, to)p|x),

pa = eE(t —to) + p,

el t—1t

0
QH:%(t*tOVJF p+aq.

m

Proceeding as in the foregoing examples we obtain the
equations

(@'[pU(t, to)|z) = eE(t — to)(z'|U(t, to)|x)
+ (' |U (t, to)plx),

(@ qU 1, to) ) = ot — 10)* (Ut t0) )
+ U to)pla) + (& U (E o))

Rev. Mex. Fis63(2017) 287-290



290 G.F. TORRES DEL CASTILLO

which are equivalent to the propagator up to a time-dependent phase factor. This in-
o ) ) determinacy is a consequence of the fact that if we replace
T K@ 6, t0) = eB(t — to) K(2',t; 2, to) the HamiltonianH, by H + h(t), whereh(t) is a multiple of
b the identity operator that depends on the time only, then this
— ——K (', t; 2, tp), additional term commutes with all operators, and the Heisen-
! Z"E berg equations (8) are left unchanged. On the other hand, the
/ . _eL N2 /. termh(t) does not disappear from the Sotinger equations
TR B to) = 2m (t = to) K (@', ;. o) (1) am(j 23), and even the addition of a constant to the Hamil-
h(t—to) O tonian modifies the time evolution operator.

- 7 " K ,t' t
i m Oz (2,82, 0)

+xK (2 t;2,t0).

Whereas the Schdinger equation is closely related to
the Hamilton—Jacobi equation, the Heisenberg equations are
similar to the Hamilton equations expressed in terms of the
One can readily find that the solution of this system of equaPoisson bracket; a terf(t) added to the Hamiltonian has no

tions is given by effect in the Hamilton or the Heisenberg equations, but such a
K2/t to) term has consequences on the 8dimger and the Hamilton—
0 Jacobi equation. (In the case of the Sitinger equation, the
im , 5  eET?(x' + ) addition of a termi(t) to the Hamiltonian produces an ad-
= Fexp {QﬁT [(x — )"+ m] } ; ditional time-dependent phase factor on the state vector, the

. . wavefunction, or the time evolution operator.
whereT =t — to, andF' is a function oft — ¢y only. In or- P )

der to satisfy Egs. (3) and (4) with the Hamiltonian specified The re;ult pre.sented n th.|s paper is analogous to t.he
) fact that, in classical mechanics, one can use the solution
above, the functiod” has to be taken as

of the Hamilton equations to find a complete solution of the

F— [ m exp {_i(eEVT?’] . Hamilton—-Jacobi equation. The solution of the system of
2mihT 24hm equations (10) constitute a relatively easy way of finding the
Alternatively, Egs. (3) and (4) are satisfied with propagator, in comparison with other standard procedures,
provided that we already have the solution of the Heisenberg
e equations(which, in general, may be a difficult task). An
2mihT even simpler procedure consists in making use of the con-
if we take H = p?/2m — eEq — (eE)*T?/8m. served operators that represent the initial position of the par-
ticle [5, 6], since one has to solve fewer equations. However,
4. Concluding remarks the relevant point here is that the solution of the Heisenberg

equations can be used to obtain the evolution operator.

As we have shown, the solution of the Heisenberg equations
for the position and momentum operators allows us to find
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