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In this paper we compare operator splitting methods of first, second, third and fourth orders that are applied to problems with stiff matric
In order to efficiently solve the resultant subproblems is necessary to use implicit Runge-Kutta methods. It is known that, in this conte
the precision order of operator splitting schemes is reduced. Furthermore, we propose a fifth order operator splitting method that is obte
by applying Richardson extrapolation to a fourth order method. All methods are tested with a model problem with matrices such that
condition number is taken up to 20,000. Our conclusion is that order reduction is more severe for low order operator splitting methods.

Keywords:Operator splitting; stiff matrix; Richardson extrapolation; implicit Runge-Kutta methods.

En este trabajo se comparagiodos de descomposici de operadores dedenes uno, dos, tres y cuatro, que se aplican a problemas cuyas
matrices son de tipdgido. A fin de poder resolver eficientemente los problemas intermedios que aparecen es necesarioéapiioar m
de Runge-Kutta de tipo im@ito. Se ha observado que en estas condiciones, el orden degmestasios esquemas de descompaésiae
operadores se reduce. Se propone adeun nétodo de descomposigi de operadores de orden cinco que se obtiene al aplicar extrépolaci
de Richardson a un esquema de orden cuatro. Todosduxlos se aplican a un problema modelo con matrices ciuly@ro de condiéin

se incrementa hasta 20,000. Se concluye que éhiieno de reducon de orden es &s severa para los@todos de orden bajo.

Descriptores:Descomposidin de operadores; matrigida; extrapoladin de Richardson; 8todos de Runge-Kutta imipltos.

PACS: 02.70.Bf; 02.90.+p; 02.60.-x

1. Introduction applying operator decomposition methods with Runge-Kutta
implicit methods.

High-order operator decomposition methods are important
in th(nT solupon of many thgoretlcal ph.ysms. dlﬁgrentlal 2. Operator decomposition methods
equations, in particular non-linear equations lieaction-
diffusion differential equationsThese equations describe the Gjyen the following initial value problem
change in density of substances that spread in space and react do
chemically with other substances. This equations of this kind — = A¢, t € (0,7], (1)
are often stiff [1]. ) o dt N

We are interested in the analysis of the effect ofatger ~ With the initial condition
increaseof such methods on the relative errors of their re- #(0) = ¢y, 2
sults, especially in the case sfiff differential equationsin
this paper we study the effect of both the order of the operatof/€ are interested in solving (1) according to (2) in the case
decomposition methods and the stiffness of the differentiafhatA can be decomposed into a finite sum of simpler opera-
equations involved over the relative errors of results. tors 4;, as follows:

\/erwer gnd Spor_tisse’s_ work ([1], 1998), in which .they A=A +Ay+ ...+ Ay (3)
achieved this analysis for first and second order operation de-
composition methods, is a background reference for this paOperator decomposition methods provide time discretization

per. Previously, Goldman and Kaper ([2], 1996) studied thir¢Schemes. This is achieved by dividing the inter(@|T],
order methods. in which the problem is being solved, intosubintervals of

equal lengthAt¢ (time discretization step), with moments

in which the values of the solution are needed (we will use
the notationg”™ = nAt and¢™ = ¢(nAt),n > 1). Then,
given the value of the solution at= 0, forn > 1, ¢"*! is
obtained from ¢ by solving a specific amount of simpler
)Problems of the form

In addition, we present and analyze in this papéifth
order methodvhich was obtained by applying Richardson'’s
extrapolation (Stoer and Bulirsch, ([3], 2002) to a fourth or-
der method developed by Sornborger and Stewart ([4], 1999

Stiff differential equations are equations where implicit
integration methods perform better, usually tremendousl
better, than explicit ones ([5], pp. 1 to 14). Taking that into do _ A )

account, we solved the initial value subproblems obtained by dt
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For the rest of the paper, and in the numerical experiment&very method of the third or higher order with respect to time
we shall assume that operatotsare square matrices. must include at least one backward time development prob-
One of thefirst order operator decomposition methods lem [2] of the form

with M = 2 approaches the solution ¢f) on the interval p
v

(t",t"+1)by solving = A en (tn’thrl} 7 (16)
% = A, te(t" "], (5)  subject to a time condition:
with the initial condition ¢(¢") is known): v(t") = ¢(t"), 17)
v(t") = p(t"), (6)  Thus notation introduced in (13) becomes
Then it defines (—At) = e~ A2Bte=MiAtL (18)
¢nTE = o(t" ). (7)  In the same paper, Sornborger and Stewart [4] present sev-
eral third andfourth ordermethods. One of the third order
and solves schemes is names} and defined by
% = Asv, te (¢, "], (8) Ss(At) = (A)T(AL)(AD(AL(AHT,  (19)
with the initial condition Ss(At) = (240" (A1) (AL) (A1), (20)
o(t") = 6" ©) S3(At) = S3(At)S5(At). (21)
Finally it defines One of the fourth order methods is
S ) = (). (10) Su(At) = (AT (At)(ADT (—2a) (AT (AT, (22)
If matricesA; and A, are commutative, the following equal- Si(A1) = (AT (A (An(An) (At) (A1), (23)
ity holds: Sa(At) = (At)(At)(—2A0)T (At) (AN T (At), (24)
Pt HY) = 2Bttty (11) S1(At) = Sy(At)Si(At)S4(At). (25)

and the scheme (5)-(10) is exact. In the general case in whichnother way of obtaining high order time operator decompo-
Ay and A, are not commutative the scheme (5)-(10) is onlysition methods is to apply Richardson’s extrapolation to low

of the first order with respect to time. order methods. Thus the scheme
Likewise, assuming thad; and A, are commutative, the 4 1
following equality holds: Dy(At) = gSg(Azt/2)Sg(At/2) — gSz(At), (26)
(b(tn_H) — eAzAt/QeAlAteAgAt/2¢(tn). (12) where
This equality is the basis of Strang’s scheme [7]. Further ref- Sa(At) = (At)(At)T. @7)

erences can be found in Refs. 6 and 8. If matridesnd A,
are not commutative, Strang’s scheme is ofseeond order s optained by applying Richardson’s extrapolation to

with respect to time. _ Strang’s scheme (15). This scheme is studied in detail in De-
Using Sornborger and Stewart’s notation [4], scombes [9].
An even higher order time operator decomposition
(Af) = eA2dtghAL (13) g p p

method is obtained by applying Richardson’s extrapolation to

and considering that scheme (25). The result is the followifigth order method

1 1
eA2 Bt Bt Ar G eAz%eAl%eAl%eAz%, (14) D5(At) = £S4(At/2)54(At/2) - T554(At)' (28)
Eqg. (12) can be expressed as Scheme (5)-(10) can be applied to decomposition in three op-
erators by grouping two of them as follows:
o) = (1) (£ ' (t") (15)
S\ 2 2 ’ A=Ay + (Ay + A3). (29)
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FIGURE 2. Relative errors ofz-component of solutions to prob-

FIGURE 1. Relative errors ofc-component of solutions to prob- X h s
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lem (32)-(37) forn = 1 and matrizA; applied before matrixd,.

In some operator decomposition methods like the 0 . __Xcomponents
©-method [6], the operatad can only be decomposed into
two simpler operators. The most important property of all
the operator decomposition schemes analyzed in this pape
is the possibility of applying them in cases when an operator s
must be decomposed into more than two operators. This is'q',
a great advantage when solving problems such as Binghan$

.-
.
.
.-
.-
.-
.-

equations, in which it is convenient to decompose the prob- %
lem into three operators, as shown i@anghez [11]. S P
8 -10} 4
- —+——First Order
----- Strang’s method
3. Implicit Runge-Kutta methods ¢ 7 "2 Order Somborger
= = = -4th Order Descombes
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The application of high order operator decomposition meth-  _;54~ . . . o t, e
ods requires the solving of problems of the form -4 -3.5 -3 -2.5 -2 -1.5 -1
log10(time discretization step)
@ —Aw. te (tn thrl] (30) FIGURE 3. Relative errors ofc-component of solutions to prob-
dt o ’ ’ lem (32)-(37) forn = 3 and matrizA; applied before matrixi..

with the initial condition:

ot = B(™), (31) 4. Stiffness and condition number

Stiff differential equations are equations where implicit meth-

where ¢(t") is the solution obtained on the interval ods perform better than explicit ones ([5], pp. 1 to 14).
(t"~*,¢"] by the applied method. The condition numbepf a matrix is equal to the product

The derivatives from the differential Egs. (30) must beof its norm and the norm of its inverse. The condition hum-
discretized with a scheme at least as accurate as the correer of asymmetrical matrixequals the quotient of its greatest
sponding operator decomposition methods, to avoid decreasigenvalue over its lowest eigenvalue.
ing the accuracy of those methods. Besides, when the differ- Given an stiff differential equation of the form
ential equations from problem (30)-(31) are stiff [3], the solu- do
tions of those problems obtained with an explicit method are
not satisfactory unless an extremely short time step is used. dt
Therefore, a high order implicit method should be used tdf the operatorA is discretized either by finite differences or
solve such problems. In this paper, we chose the impliciby finite element method, the condition number of the re-
Runge Kutta 5th order Radau IIA method [5,10]. sulting matrix A4 is generally a good measurement of the

= A¢, t >0,
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stiffness of that equation. A greater condition number of the  _,

matrix A4 usually implies a greater stiffness.
The following initial value problem:

dv
— =A
a0
with the initial condition
v(0) = vy,
where
A= A+ A,
—-10™ 10" 1
A = o —10" 2 ,
1 1 -2
-1 0.5 0.25
A= | 01 0 01 ,
0.2 04 -1.0
1
Vo = 1 )
1

has the exact solution:

v(t) = vg exp(At).

Increasingn increases the condition number 4f, and

hence the stiffness of the differential Eq. (32).

(32)

(33)
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(35)
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37)
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FIGURE 5. Relative errors ofc-component of solutions to prob-
lem (32)-(37) forn = 4 and matrizA; applied before matrixd,.

5. Numerical results

Results were obtained for the first order method (5)-(10)
(represented graphically with the crossed line); Strang’s
method (15) (represented graphically with the line formed
with dots and dashes); the third order method defined
with (21) (represented graphically with the line formed with

dots); the fourth order methods (25) (represented graphically
with squares over a line) and (26) (represented graphically

This problem has been solved with each of the operatoith the line formed with dashes); finally, results were ob-
decomposition methods studied, using in each case differefgined for the fifth order method (28) (represented graphi-
values ofn to determine how the stiffness of the differential C&lly with circles over a line formed with dots). Relative er-
equation affects the results. The approximate solutions of°'s Were obtained fofA t=0.1, 0.01, 0.001 and 0.0001. The
tained have been compared to the exact solution to determirg@ndition number of the matri¥, is equal to 13.833 in all

their relative errors.
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FIGURE 4. Relative errors ok-component of solutions to prob-

lem (32)-(37) forn = 3 and matrizA; applied before matrixd,.

cases.

The relative errors of the andz components of the solu-
tions to the problem (32)-(37) with = 1 (condition number
of the matrix A; equal to 20.626) obtained with each ana-
lyzed method are graphed in Figs. 1 and 2, respectively. The
relative errors of theg component behave similarly to those
in Fig. 1. As expected, those figures show that the relative
errors of the solutions decrease with the order of the method
used. It also shows that methSd is more accurate thab,.

The relative errors obtained with = 2 (condition num-
ber of the matrixA, equal to 206.113) are similar to those
obtained when using = 1.

The relative errors of the andz components of the so-
lutions obtained witthh = 3 (condition number of the matrix
A, is equal to 2,061.113) are graphed in Figs. 3 and 4, re-
spectively. The relative errors of thecomponent behave
similar to those in Fig. 3. Those figures show that the relative
errors are greater than those obtained when 1.

The relative errors of the andz components of the so-
lutions obtained witlh = 4 (condition number of the matrix
A; is equal to 20,611.132) are graphed in Figs. 5 and 6, re-
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spectively. The relative errors of thecomponent behave

similarly to those in Fig. 5. In every case, the relative errors

of the solutions are much greater than those obtained wit
n = 3, especially for the higher order methods. It is remark-
able that, withn = 4 and time steps greater thatt=0.001,

the Strang method behaves like the fifth order method. For
lower time steps, the Strang method has the expected acc

racy.

In all cases, we considered only the decomposition of op
erator A into two matrices. Thus it was possible to analyze
the effect of inverting the order in which matricds and A,

are applied. This is done in the first order scheme, for exam-

ple, by substitutingd; with A, in (5) andA, with A, in (8).

There was no major difference in the accuracy obtained in

this way forn equal to 1, 2 or 3. The relative errors of the

andz components of the solution obtained in this case with
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FIGURE 6. Relative errors oz-component of solutions to prob-
lem (32)-(37) forn = 4 and matrizA; applied before matrixd,.

X components

=
Z
9]
()
=
©
£
o
> —+—+—First Order
SS9t S ee- Strang’s method
-------- 3rd Order
-10¢ /." -s—a-4th Order Sornborger
— — = -4th Order Descombes
-1} o -@--0- 5th Order
K
-12 : : : ' :
-4 -3.5 -3 -2.5 -2 -1.5 -1

log10(time discretization step)

FIGURE 7. Relative errors ofc-component of solutions to prob-
lem (32)-(37) forn = 4 and matrizA, applied before matrixd; .
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FIGURE 8. Relative errors ofz-component of solutions to prob-
lem (32)-(37) forn = 4 and matrizA, applied before matrixd; .

n = 4 are graphed in Figs. 7 and 8 respectively. Those fig-
ures show that the relative errors of the solutions obtained
with the StrangS, and D, methods are greater than the
corresponding relative error of the first order method for
At = 0.01 or 0.001. For smaller time step$p; and D,
provide the expected results.

Two things are observed in all cases. The first one is that
the relative errors of thg component and the relative errors
of theax components behave similarly. And the second one is
that the relative errors of thecomponent of the solutions are
smaller than the relative errors of theandy components.

6. Conclusions

1. Operator decomposition methods of the first, second,
third, fourth, and fifth order have been studied in this
paper. Results show that, as expected, the relative er-
rors of the methods studied decrease with the order of
the method used.

Results show that the relative errors of the methods
studied increase with the stiffness of the differen-
tial equations involved especially for the higher order
methods. But the increase in relative errors for high
order methods is not as drastic as reported in Verwer y
Sportisse [1], where only first and second order meth-
ods are discussed. As expected, the relative errors de-
crease monotonically with decreasing time steps.

In the case of stiff differential equations, Strasg

and D, methods behave suitable only when small time
steps are used. Inverting the order in which matri-
cesA; and A, are applied, the relative errors of these
methods oscillate and are greater than relative errors
obtained with lower order methods.

(2006) 129-134
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4. Afifth order operator decomposition method has been
developed. This method produces good results. There
was no major difference in the accuracy obtained by
inverting the order in which matriced; and A, are

J. SALCEDO-RUZ AND F.J. SANCHEZ-BERNABE

applied. In all cases considered, the relative errors ob-
tained with this method were smaller than those ob-

tained with the other methods analyzed, and does not
oscillate with the change in the time step.
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