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A numerical study of stiffness effects on some high order splitting methods
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In this paper we compare operator splitting methods of first, second, third and fourth orders that are applied to problems with stiff matrices.
In order to efficiently solve the resultant subproblems is necessary to use implicit Runge-Kutta methods. It is known that, in this context,
the precision order of operator splitting schemes is reduced. Furthermore, we propose a fifth order operator splitting method that is obtained
by applying Richardson extrapolation to a fourth order method. All methods are tested with a model problem with matrices such that its
condition number is taken up to 20,000. Our conclusion is that order reduction is more severe for low order operator splitting methods.
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En este trabajo se comparan métodos de descomposición de operadores déordenes uno, dos, tres y cuatro, que se aplican a problemas cuyas
matrices son de tipo rı́gido. A fin de poder resolver eficientemente los problemas intermedios que aparecen es necesario aplicar métodos
de Runge-Kutta de tipo implı́cito. Se ha observado que en estas condiciones, el orden de precisión de los esquemas de descomposición de
operadores se reduce. Se propone además un ḿetodo de descomposición de operadores de orden cinco que se obtiene al aplicar extrapolación
de Richardson a un esquema de orden cuatro. Todos los métodos se aplican a un problema modelo con matrices cuyo número de condición
se incrementa hasta 20,000. Se concluye que el fenómeno de reducción de orden es ḿas severa para los métodos de orden bajo.

Descriptores:Descomposicíon de operadores; matriz rı́gida; extrapolacíon de Richardson; ḿetodos de Runge-Kutta implı́citos.
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1. Introduction

High-order operator decomposition methods are important
in the solution of many theoretical physics differential
equations, in particular non-linear equations likereaction-
diffusion differential equations. These equations describe the
change in density of substances that spread in space and react
chemically with other substances. This equations of this kind
are often stiff [1].

We are interested in the analysis of the effect of theorder
increaseof such methods on the relative errors of their re-
sults, especially in the case ofstiff differential equations. In
this paper we study the effect of both the order of the operator
decomposition methods and the stiffness of the differential
equations involved over the relative errors of results.

Verwer and Sportisse’s work ([1], 1998), in which they
achieved this analysis for first and second order operation de-
composition methods, is a background reference for this pa-
per. Previously, Goldman and Kaper ([2], 1996) studied third
order methods.

In addition, we present and analyze in this paper afifth
order methodwhich was obtained by applying Richardson’s
extrapolation (Stoer and Bulirsch, ([3], 2002) to a fourth or-
der method developed by Sornborger and Stewart ([4], 1999).

Stiff differential equations are equations where implicit
integration methods perform better, usually tremendously
better, than explicit ones ([5], pp. 1 to 14). Taking that into
account, we solved the initial value subproblems obtained by

applying operator decomposition methods with Runge-Kutta
implicit methods.

2. Operator decomposition methods

Given the following initial value problem

dφ

dt
= Aφ, t ∈ (0, T ] , (1)

with the initial condition

φ(0) = φ0, (2)

we are interested in solving (1) according to (2) in the case
thatA can be decomposed into a finite sum of simpler opera-
torsAi, as follows:

A = A1 + A2 + . . . + AM . (3)

Operator decomposition methods provide time discretization
schemes. This is achieved by dividing the interval(0, T ],
in which the problem is being solved, intos subintervals of
equal length∆t (time discretization step), with momentsti
in which the values of the solution are needed (we will use
the notationstn = n∆t andφn = φ(n∆t), n ≥ 1). Then,
given the value of the solution att = 0, for n > 1, φn+1 is
obtained from φn by solving a specific amount of simpler
problems of the form

dφ

dt
= Aiφ (4)
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For the rest of the paper, and in the numerical experiments,
we shall assume that operatorsAi are square matrices.

One of thefirst order operator decomposition methods
with M = 2 approaches the solution of(1) on the interval
(tn, tn+1)by solving

dv

dt
= A1v, t ∈ (

tn, tn+1
]
, (5)

with the initial condition (φ(tn) is known):

v(tn) = φ(tn), (6)

Then it defines

φn+ 1
2 = v(tn+1). (7)

and solves

dv

dt
= A2v, t ∈ (

tn, tn+1
]
, (8)

with the initial condition

v(tn) = φ
n+ 1

2 . (9)

Finally it defines

φ(tn+1) = v(tn+1). (10)

If matricesA1 andA2 are commutative, the following equal-
ity holds:

φ(tn+1) = eA2∆teA1∆tφ(tn), (11)

and the scheme (5)-(10) is exact. In the general case in which
A1 andA2 are not commutative the scheme (5)-(10) is only
of the first order with respect to time.

Likewise, assuming thatA1 andA2 are commutative, the
following equality holds:

φ(tn+1) = eA2∆t/2eA1∆teA2∆t/2φ(tn). (12)

This equality is the basis of Strang’s scheme [7]. Further ref-
erences can be found in Refs. 6 and 8. If matricesA1 andA2

are not commutative, Strang’s scheme is of thesecond order
with respect to time.

Using Sornborger and Stewart’s notation [4],

(∆t) = eA2∆teA1∆t, (13)

and considering that

eA2
∆t
2 eA1∆teA2

∆t
2 = eA2

∆t
2 eA1

∆t
2 eA1

∆t
2 eA2

∆t
2 , (14)

Eq. (12) can be expressed as

φ(tn+1) =
(

∆t

2

)(
∆t

2

)T

φ(tn). (15)

Every method of the third or higher order with respect to time
must include at least one backward time development prob-
lem [2] of the form

−dv

dt
= Ajv en

(
tn, tn+1

]
, (16)

subject to a time condition:

v(tn) = φ(tn), (17)

Thus notation introduced in (13) becomes

(−∆t) = e−A2∆te−A1∆t. (18)

In the same paper, Sornborger and Stewart [4] present sev-
eral third and fourth ordermethods. One of the third order
schemes is namedS3 and defined by

S̃3(∆t) = (∆t)T (∆t)(∆t)(∆t)(∆t)T , (19)

Ŝ3(∆t) = (−2∆t)T (∆t)(∆t)(∆t), (20)

S3(∆t) = S̃3(∆t)Ŝ3(∆t). (21)

One of the fourth order methods is

S̃4(∆t) = (∆t)T (∆t)(∆t)T (−2∆t)(∆t)T (∆t)T
, (22)

Ŝ4(∆t) = (∆t)T (∆t)T (∆t)(∆t)T (∆t)(∆t), (23)

S4(∆t) = (∆t)(∆t)(−2∆t)T (∆t)(∆t)T (∆t), (24)

S4(∆t) = S̃4(∆t)Ŝ4(∆t)S4(∆t). (25)

Another way of obtaining high order time operator decompo-
sition methods is to apply Richardson’s extrapolation to low
order methods. Thus the scheme

D4(∆t) =
4
3
S2(∆t/2)S2(∆t/2)− 1

3
S2(∆t), (26)

where

S2(∆t) = (∆t)(∆t)T
. (27)

is obtained by applying Richardson’s extrapolation to
Strang’s scheme (15). This scheme is studied in detail in De-
scombes [9].

An even higher order time operator decomposition
method is obtained by applying Richardson’s extrapolation to
scheme (25). The result is the followingfifth order method:

D5(∆t) =
16
15

S4(∆t/2)S4(∆t/2)− 1
15

S4(∆t). (28)

Scheme (5)-(10) can be applied to decomposition in three op-
erators by grouping two of them as follows:

A = A1 + (A2 + A3). (29)
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FIGURE 1. Relative errors ofx-component of solutions to prob-
lem (32)-(37) forn = 1 and matrizA1 applied before matrixA2.

In some operator decomposition methods like the
Θ-method [6], the operatorA can only be decomposed into
two simpler operators. The most important property of all
the operator decomposition schemes analyzed in this paper
is the possibility of applying them in cases when an operator
must be decomposed into more than two operators. This is
a great advantage when solving problems such as Bingham
equations, in which it is convenient to decompose the prob-
lem into three operators, as shown in Sánchez [11].

3. Implicit Runge-Kutta methods

The application of high order operator decomposition meth-
ods requires the solving of problems of the form

dv

dt
= Aiv, t ∈ (

tn, tn+1
]
, (30)

with the initial condition:

v(tn) = φ(tn), (31)

where φ(tn) is the solution obtained on the interval
(tn−1, tn] by the applied method.

The derivatives from the differential Eqs. (30) must be
discretized with a scheme at least as accurate as the corre-
sponding operator decomposition methods, to avoid decreas-
ing the accuracy of those methods. Besides, when the differ-
ential equations from problem (30)-(31) are stiff [3], the solu-
tions of those problems obtained with an explicit method are
not satisfactory unless an extremely short time step is used.
Therefore, a high order implicit method should be used to
solve such problems. In this paper, we chose the implicit
Runge Kutta 5th order Radau IIA method [5,10].

FIGURE 2. Relative errors ofz-component of solutions to prob-
lem (32)-(37) forn = 1 and matrizA1 applied before matrixA2.

FIGURE 3. Relative errors ofx-component of solutions to prob-
lem (32)-(37) forn = 3 and matrizA1 applied before matrixA2.

4. Stiffness and condition number

Stiff differential equations are equations where implicit meth-
ods perform better than explicit ones ([5], pp. 1 to 14).

Thecondition numberof a matrix is equal to the product
of its norm and the norm of its inverse. The condition num-
ber of asymmetrical matrixequals the quotient of its greatest
eigenvalue over its lowest eigenvalue.

Given an stiff differential equation of the form

dφ

dt
= Aφ, t > 0,

if the operatorA is discretized either by finite differences or
by finite element method, the condition number of the re-
sulting matrixAd is generally a good measurement of the
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stiffness of that equation. A greater condition number of the
matrixAd usually implies a greater stiffness.

The following initial value problem:

dv

dt
= Av, (32)

with the initial condition

v(0) = v0, (33)

where

A = A1 + A2, (34)

A1 =



−10n 10n 1
10n −10n 2
1 1 −2


 , (35)

A2 =



−1 0.5 0.25
0.1 0 0.1
0.2 0.4 −1.0


 , (36)

v0 =




1
1
1


 , (37)

has the exact solution:

v(t) = v0 exp(At).

Increasingn increases the condition number ofA1, and
hence the stiffness of the differential Eq. (32).

This problem has been solved with each of the operator
decomposition methods studied, using in each case different
values ofn to determine how the stiffness of the differential
equation affects the results. The approximate solutions ob-
tained have been compared to the exact solution to determine
their relative errors.

FIGURE 4. Relative errors ofz-component of solutions to prob-
lem (32)-(37) forn = 3 and matrizA1 applied before matrixA2.

FIGURE 5. Relative errors ofx-component of solutions to prob-
lem (32)-(37) forn = 4 and matrizA1 applied before matrixA2.

5. Numerical results

Results were obtained for the first order method (5)-(10)
(represented graphically with the crossed line); Strang’s
method (15) (represented graphically with the line formed
with dots and dashes); the third order method defined
with (21) (represented graphically with the line formed with
dots); the fourth order methods (25) (represented graphically
with squares over a line) and (26) (represented graphically
with the line formed with dashes); finally, results were ob-
tained for the fifth order method (28) (represented graphi-
cally with circles over a line formed with dots). Relative er-
rors were obtained for∆ t=0.1, 0.01, 0.001 and 0.0001. The
condition number of the matrixA2 is equal to 13.833 in all
cases.

The relative errors of thex andz components of the solu-
tions to the problem (32)-(37) withn = 1 (condition number
of the matrixA1 equal to 20.626) obtained with each ana-
lyzed method are graphed in Figs. 1 and 2, respectively. The
relative errors of they component behave similarly to those
in Fig. 1. As expected, those figures show that the relative
errors of the solutions decrease with the order of the method
used. It also shows that methodS4 is more accurate thanD4.

The relative errors obtained withn = 2 (condition num-
ber of the matrixA1 equal to 206.113) are similar to those
obtained when usingn = 1.

The relative errors of thex andz components of the so-
lutions obtained withn = 3 (condition number of the matrix
A1 is equal to 2,061.113) are graphed in Figs. 3 and 4, re-
spectively. The relative errors of they component behave
similar to those in Fig. 3. Those figures show that the relative
errors are greater than those obtained whenn = 1.

The relative errors of thex andz components of the so-
lutions obtained withn = 4 (condition number of the matrix
A1 is equal to 20,611.132) are graphed in Figs. 5 and 6, re-
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spectively. The relative errors of they component behave
similarly to those in Fig. 5. In every case, the relative errors
of the solutions are much greater than those obtained with
n = 3, especially for the higher order methods. It is remark-
able that, withn = 4 and time steps greater that∆ t=0.001,
the Strang method behaves like the fifth order method. For
lower time steps, the Strang method has the expected accu-
racy.

In all cases, we considered only the decomposition of op-
eratorA into two matrices. Thus it was possible to analyze
the effect of inverting the order in which matricesA1 andA2

are applied. This is done in the first order scheme, for exam-
ple, by substitutingA1 with A2 in (5) andA2 with A1 in (8).
There was no major difference in the accuracy obtained in
this way forn equal to 1, 2 or 3. The relative errors of thex
andz components of the solution obtained in this case with

FIGURE 6. Relative errors ofz-component of solutions to prob-
lem (32)-(37) forn = 4 and matrizA1 applied before matrixA2.

FIGURE 7. Relative errors ofx-component of solutions to prob-
lem (32)-(37) forn = 4 and matrizA2 applied before matrixA1.

FIGURE 8. Relative errors ofz-component of solutions to prob-
lem (32)-(37) forn = 4 and matrizA2 applied before matrixA1.

n = 4 are graphed in Figs. 7 and 8 respectively. Those fig-
ures show that the relative errors of the solutions obtained
with the StrangS2 and D4 methods are greater than the
corresponding relative error of the first order method for
∆t = 0.01 or 0.001. For smaller time steps,S2 and D4

provide the expected results.
Two things are observed in all cases. The first one is that

the relative errors of they component and the relative errors
of thex components behave similarly. And the second one is
that the relative errors of thez component of the solutions are
smaller than the relative errors of thex andy components.

6. Conclusions

1. Operator decomposition methods of the first, second,
third, fourth, and fifth order have been studied in this
paper. Results show that, as expected, the relative er-
rors of the methods studied decrease with the order of
the method used.

2. Results show that the relative errors of the methods
studied increase with the stiffness of the differen-
tial equations involved especially for the higher order
methods. But the increase in relative errors for high
order methods is not as drastic as reported in Verwer y
Sportisse [1], where only first and second order meth-
ods are discussed. As expected, the relative errors de-
crease monotonically with decreasing time steps.

3. In the case of stiff differential equations, StrangS2

andD4 methods behave suitable only when small time
steps are used. Inverting the order in which matri-
cesA1 andA2 are applied, the relative errors of these
methods oscillate and are greater than relative errors
obtained with lower order methods.
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4. A fifth order operator decomposition method has been
developed. This method produces good results. There
was no major difference in the accuracy obtained by
inverting the order in which matricesA1 andA2 are

applied. In all cases considered, the relative errors ob-
tained with this method were smaller than those ob-
tained with the other methods analyzed, and does not
oscillate with the change in the time step.
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