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An unphysical result for the Landau-Lifshitz equation
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An unphysical result for the Landau-Lifshitz equation of motion for a charged particle is presented. The similarity with the Lorentz-Dirac
equation is discussed. Indeed the reaction force obtained for the uniform electric field vanishes when the motion is parallel to it in both cases.
A discussion of this unphysical result is given and the need for of an expression for the radiation rate of energy for the Landau-Lifshitz theory
is emphasized.
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Se presenta un resultado no fı́sico en la ecuación de movimiento de Landau-Lifshitz para una partı́cula cargada. Se discute la similitud con
la ecuacíon de Lorentz-Dirac. En efecto, la fuerza de reacción a la radiacíon obtenida para el caso de un campo eléctrico constante y paralelo
al movimiento se anula en ambos casos. Se realiza un análisis del resultado no fı́sico y se hacéenfasis en encontrar una expresión de la taza
de enerǵıa radiada en la teorı́a de Landau-Lifshitz.
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1. Introduction

The search for an equation of motion for a point charged
particle which considers a term due to radiation effects be-
gan with the work carried out by Abraham, Lorentz, and
Planck [2] practically at the same time at the end of the nine-
teen century and beginning of the twentieth. The appearance
of quantum mechanics left the problem to one side. Nev-
ertheless, since Dirac [1] obtained, the Lorentz-Dirac equa-
tion [LD] of motion for a charged point particle in 1938,
many discussions about its validity have appeared. Indeed,
it is one of the most controversial equations in the history of
physics [2]. The third order time derivative term leads to run-
away and preaccelerated solutions. Asymptotic conditions
or appropriate boundary conditions are imposed on the equa-
tion in order to neglect the non-classical results [3], leaving
the corrections then to the quantum domain. Moreover, the
development of quantum electrodynamics by the middle of
the last century left this problem aside. Nevertheless, dur-
ing the seventh decade of the last century, Shen [4,5] showed
that there is a region over an Energy vs Field diagram where
quantum effects can be neglected and a classical equation is
required. Indeed, this region corresponds to the order of mag-
nitude analyzed in Plasma Physics and Astrophysics. More-
over, in this same order of ideas, this region permits us to
design an experiment to ascertain which is the equation for a
charged particle [6].

New proposals have appeared in the last four decades but
none with any appreciable impact, except for Sphon’s pro-
posal [16]. As an example, the Mo-Papas equation [7] has

been criticized by Shen [8], and the Cook series representa-
tion [9] was rejected by Peter [10] and Ares de Parga [11].
Bonnor proposed a radiating mass [12] and he criticized the
idea himself in the same paper, and it was discarded by Ares
de Parga [13] later on. The list of such examples is uncount-
able, but the result is that each time a promising idea ap-
pears, there is always a counterpart and the problem remains
open. The failure of an alternative equation and the formal
works realized by Synge [14] and Teitelboim [15] support-
ing the LD equation, indicate that the solution consists in
an adequate interpretation of it. Recently, Sphon [16] pre-
sented a mathematical work in which he proved that the old
LD equation must be restricted to its critical surface, yield-
ing the Landau-Lifshitz [17] equation [LL]. Indeed, Dirac’s
asymptotic condition forces the solution to be on the critical
manifold. So even if Landau and Lifshitz deduced their equa-
tion as the first order iteration of the LD equation, it has to be
taken into account that the solutions to this last equation are
the exact solutions to the old problems of the LD equation,
within the Shen region [5]. It must be pointed out that Her-
rera [18] obtained a particular equation which coincides with
the LL equation for fields with

∂Fµν

∂xσ
= 0.

The Herrera equation has been solved for different
cases [18,19], giving apparently physical results. In the
same order of ideas Rorlhich [20] asserts, about the LL equa-
tion, “The result is an equation free of unphysical solutions.
The deeper mathematical meaning of this approximation can
be learned from Kunze and Spohn [21]”. Finally, we can
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conclude that nowadays the LL equation, within the Shen [5]
region, supported by the mathematical work done by Kunze
and Sphon [16,20], represents the solution for the description
of the motion of a classical point charge. Unlike the LD equa-
tion, an important result is that the LL equation eliminates
the runaway solutions and the preaccelerations. Preacceler-
ations survive even if we consider asymptotic conditions for
the LD equation. So the solutions for the LL equation or the
LD equation with asymptotic conditions, are different. In this
order of ideas, although we know that the physical solutions
will correspond to the LL equation, it will be interesting to
consider the differences between both equations for critical
situations. One of the critical situation, where unphysical re-
sults may appear, is for the simple case of a constant electric
field. Indeed, the LD equation [22,23] reaction force vanishes
when a constant electric field is applied in the same direction
as the initial motion. It should be noted, as Parrott has men-
tioned [23], that the LD equation and other equations present
the same problem. It is expected that, for the LL equation,
the result will be repeated. We shall discuss why this is an
unphysical result, and propose that the problem may not con-
sist in considering the solution on a critical manifold of the
LD equation, but in analyzing the classical deduction of the
LD equation.

2. Landau-Lifshitz equation

The Lorentz-Dirac [1] equation of motion for a charged par-
ticle is:

m
duµ

ds
= eFµνuν +

2
3
e2

[
d2uµ

ds2
− uµuν d2uν

ds2

]
. (1)

Here u is the four-velocity of a charged particle of
massm and chargee, s denotes its proper time,F is the
field, tensor for an external electromagnetic field and the
velocity of light is taken as unity. Solutions of this equa-
tion for some physical situation appear physically unrea-
sonable. Many authors have proposed modifications which
might result in physically reasonable solutions, including an
equation proposed in the classical text of Landau and Lif-
shitz [16,17,19,21]. As we mentioned above, although Lan-
dau and Lifshitz deduced the equation by means of an iter-
ation, for Sphon the solutions of the equation, must be con-
sidered to be the exact physical results. The Landau-Lifshitz
equation for a charged particle is:

m
duµ

ds
= eFµνuν + gµ

LL , (2)

wheregµ
LL represents the Landau-Lifshitz reaction force and

is expressed by:

gµ
LL =

2
3

e3

m

∂Fµν

∂xγ
uνuγ − 2

3
e4

m2
FµγFνγuν

+
2
3

e4

m2
(Fνγuγ) (F ναuα)uµ. (3)

For a constant electric field(∂Fµν/∂xγ = 0), the last
expression reduces to Herrera [18] reaction force,

gµ
LL = gµ

H =
2
3

e4

m2

× (−FµγFνγuν + (Fνγuγ) (F ναuα)uµ) . (4)

SinceFµν is skew-symmetric, for any vectoruν ,

Fµνuνuµ = Fνµuνuµ = 0. (5)

Thus the first tensor of Eq. (2),eFµνuν , is orthogonal
to u. The left side of Eq. (2),m (duµ/ds), is also orthogonal
to u. Hence, for the sake of consistency,gµ

LL must also be
orthogonal tou. If we consider a charged particle moving in
the direction of a constant electric field,(∂Fµν/∂xγ = 0),
for purposes of calculating the motion, Minkowskian space
is effectively two dimensional. From Eq. (5), it follows that
the first term of the Landau-Lifshitz reaction force, Eq. (4),
namely

2
3

e4

mc3
FµγFνγ uν (6)

must be in the direction ofu, that is, proportional tou. This
is because

ω := Fαβuβ

is orthogonal tou by Eq. (5), so that

FµγFνγuν

is orthogonal toω. In a two-dimensional space with a non-
degenerate inner product, as is the case, ifω is orthogonal
to u andv is orthogonal toω, thenv must be proportional
to u. Since the second term of the Landau-Lifshitz reaction
force is in the direction ofu, we can conclude thatgµ

LL is
proportional tou, which is also orthogonal tou. Hence it
must vanish. In others words, the reaction force vanishes in
this special case. As we mentioned above, the same result
is obtained for the LD equation and other equations. In the
next section we will explain why we consider this result to be
unphysical behavior.

3. Unphysical result

If a classical charged particle is accelerated, a momentum is
transferred to the field; thus, from momentum balance, a re-
action force must act on the charged particle. Indeed, a re-
action force will be needed to describe a Bremsstrahlung ef-
fect (“braking radiation”), which is physically observed when
charged particles are decelerated by a force in the direction
of their motion (e.g. when a beam of charged particles hits
a target). Even if the electric field is not constant, it can
be considered to be constant for a short time or simply that
the beam of particles is exposed in a uniform electric field.
We should note that the result is similar for the LD equa-
tion [22, 23], as we predicted in the introduction. Moreover,
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in his famous paper about classical radiation of accelerated
electrons, Schwinger [24] expressed the ratio of power lost
in radiation to power gained from external sources as:

P
dE
dt

=
2e2

3mc2

dE

mc2dx
, (7)

for high energy electrons. He commented: “It is evident that
radiation losses in a linear accelerator are negligible, unless
the accelerating field supplies energy of the ordermc2 in a
distance equal to the classical radius of the electron!”. In
the same order of ideas, for typical linear accelerators, Jack-
son [25] numerically calculated the energies gained, showing
that radiation losses are completely negligible. The same will
happen if the motion of the particle obeys the LL equation,
since the difference between the LL trajectory and the LD
trajectory is very small for the cases of linear accelerators.
Namely, the parameter which describes the difference is the
characteristic time of the electron,

τo =
2
3

e2

mc3
= 6.26× 10−24s,

and we can assert that the radiation losses, for linear cases,
are also negligible when the LL equation is considered. Nev-
ertheless, the unphysical result persists since radiation losses
are connected to the Larmor formula, which represents a
large distance of energy radiated by the particle; and for the
LL or LD equation, the reaction force vanishes and will not
explain the balance of energy, even if for certain cases the
energy losses are small.

4. Radiation rate of energy

The radiation rate of energy for a point charged particle must
be analyzed in order to understand the possible paradox that
we have just cited above. Indeed if we review the Lorentz-
Dirac theory, we can note that there are two kinds of radi-
ation and they are present in the Lorentz-Dirac equation of
motion [2]. That is: the total radiation rate of energy leav-
ing the particle in its neighborhood will consist in the so-
called bounded or attached radiation energy rate to the parti-
cle, which will proceed from fields that decay for large dis-
tances and the detached radiation energy rate which comes
from fields that are not attached to the particle, that is, the
radiation fields which contribute to large distance radiation.
The first one is related to the Schott term, which is an exact
differential, and is equal to:

P o
b = τomc

dao

dτ
; (8)

and the second which is related to the relativistic generaliza-
tion of the Larmor formula and is expressed as:

P o
d = τom

1
c
aµaµvo. (9)

When the Lorentz-Dirac equation is used in order to describe
the motion of a charged particle, it must be taken into account
that the total radiation rate of energy is the sum ofP o

b andP o
d .

So the Larmor formula will not give us the total radiation rate
of energy, but just the part of the energy radiated to a large
distance. The above paradox could be explained in the case
of Lorentz-Dirac theory since there exists another radiation
rate of energy. But for the Landau-Lifshitz theory, it is not
clear what the total energy radiation rate is.

5. Conclusion

More than a century after Abraham, Lorentz, Planck, and
later Dirac, claimed a third order derivative equation of mo-
tion, it is time to think that drastic changes must be made
to deal with the problem. Indeed, hyperacceleration is re-
sponsible for this whole issue. Although the mathematical
work done by Sphon is undeniable, this does not mean that
the result is physically acceptable, since the point of depar-
ture may be wrong. Indeed, the reasoning for obtaining the
LD equation is based on the use of the Maxwell stress tensor.
This latter is defined from electric and magnetic fields which
are made meaningful by the use of an equation of motion.
This equation of motion is a Lorentz equation and not the LD
equation. So we depart from the Lorentz equation of motion
for a charged particle and, after a mathematical process, we
obtain another equation of motion for the charged particle.
Something is misunderstood. In this order of idea, it is con-
venient to mention Galeriu’s comment [26]: “The physical
origin of this 4-force, which gives the acceleration energy, is
not clear, and the mechanism by which a charged particle ac-
quires rest mass from the field needs more investigation”. In
the case of the Landau-Lifshitz theory, an expression for the
radiation rate of energy must be improved.
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