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Wavelet analysis of chaotic time series
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In this work we analyzed experimental chaotic time series data from three known chaotic systems using the orthogonal wavelet transform.
The experimental electronic implementation of the chaotic systems was used to analyze them. The wavelet analysis of the experimental
chaotic time series, with a simple statistical approach, gives us useful information of such systems through the energy concentration at
specific wavelet levels.
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En este trabajo analizamos información de series de tiempo caóticas experimentales de tres sistemas caóticos conocidos, usando la transfor-
mada ortogonal ondeleta. Se llevó a cabo la implementación experimental electrónica de los sistemas caóticos, para su respectivo análisis.
El ańalisis ondeleta de las series de tiempo caóticas experimentales, con un simple enfoque estadı́stico, nos da información útil de dichos
sistemas, mediante la concentración de enerǵıa en ciertos niveles ondeleta.

Descriptores: Series de tiempo caóticas; ondeletas.

PACS: 05.45.-a; 05.45.Tp

1. Introduction

Chaotic behavior occurs in many experimental physical phe-
nomena. Various nonlinear electronic systems with this be-
havior have been constructed [4,6,7]. Making measurements
on such electronic chaotic circuits result in data with different
characteristics. Generally, these experimental data are pre-
sented as achaotic time series(CTS). This CTS provides use-
ful information for analysis and interpretation of the physical
system that produced it. It is interesting to determine some
of the system’s key properties by quantifying certain features
of the CTS. These properties can then help us to understand
the system’s behavior in the future.

Different methods arising from scientific investigation
have been introduced to analyze these CTS. Fourier analy-
sis is a well established and suitable tool for analyzing sta-
tionary time series, whose statistical properties do not vary
with time. The Fourier technique decomposes a signal into
harmonic components, where the basis functions are trigono-
metric functions. Another tool for analyzing time series is
the wavelet transform(WT) [10, 11]. The WT has been in-
troduced and developed to study a large class of phenomena
such as image processing, data compression, chaos, fractals,
etc. The basic functions of the WT have the key property of
localization in time(or space) and in frequency, contrary to
what happens with trigonometric functions. In fact, the WT
works as a mathematical microscope on a specific part of a
signal to extract local structures and singularities [10, 11].
This makes the wavelets ideal for handling non-stationary
and transient signals, as well as fractal-type structures. Be-
cause WT is a useful tool, many general aspects of nonlinear
time series analysis are reviewed in Refs. 1 and 9.

The goal of the current paper is to analyze experimen-
tal CTS using the logarithmic variance of the orthogonal

wavelet coefficients [2, 3]. The experimental CTS that we
analyzed are from three electronic systems called the Chua,
Rössler, and a chaotic generator circuit. These systems ex-
hibit chaotic dynamics. Their dynamics are extremely non-
linear, highly sensitive, and display short time correlations
and a broad range of frequencies. In these cases, the Fourier
transform(FT) does not appropriately describe the chaotic dy-
namics. On the other hand, the WT seems as a natural tool
for describing them [2,3].

The structure of this paper is as follows. Section 2
presents an overview of the wavelet transform in the continu-
ous and discrete versions. The experimental setup of the three
electronic chaotic circuits is briefly discussed in Sec. 3. Sec-
tion 4 gives the analysis applied to the experimental chaotic
time series. Finally, conclusions are presented in Sec. 5.

2. The Wavelet Transform

Let L2(R) denote the space of all square integrable functions
in R. In signal processing parlance, it is the space of func-
tions with finite energy. Letψ(t) ∈ L2(R) be a fixed func-
tion. The functionψ(t) is said to be awaveletif and only if
its FT ψ̂(ω) satisfies

Cψ =

∞∫

0

|ψ̂(ω)|2
|ω| dω < ∞. (1)

The relation (1) is called theadmissibility condi-
tion [10–13], which implies that the wavelet must have a zero
average

∞∫

−∞
ψ(t)dt = ψ̂(0) = 0, (2)
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and therefore must be oscillatory. In other words,ψ must be
a sort ofwave[10,11].

Let us define the functionψa,b by

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
, (3)

where b∈R is a translation parameter, whereas
a∈R+ (a 6= 0) is a dilation or scale parameter. The factor
a−1/2 is a normalization constant such thatψa,b has the same
energy for all scalesa. One notices that the scale parametera
in (3) rules the dilations of the spatial variable(t− b). In the
same way, factora−1/2 rules the dilation in the values taken
by ψ.

With (3), one is able to decompose a square integrable
functionf(t) in terms of dilated–translated wavelets.

We define thecontinuous wavelet transform(CWT for
short) off(t) ∈ L2(R) by

Tψ[f ](a, b) = 〈f, ψa,b〉 =

∞∫

−∞
f(t)ψ̄a,b(t)dt

=
1√
a

∞∫

−∞
f(t)ψ̄

(
t− b

a

)
dt, (4)

where〈 , 〉 is the scalar product inL2(R) defined as

〈f, g〉 :=
∫

f(t)ḡ(t)dt,

and the symbol“ ¯ ” denotes complex conjugation. The
CWT (4) measures the variation off in a neighborhood of
point b, whose size is proportional toa.

If we are interested in reconstructingf from its wavelet
transform (4), we follow the reconstruction formula, also
calledresolution of the identity[10,11]

f(t) =
1

Cψ

∞∫

0

∞∫

−∞
Tψ[f ](a, b)ψa,b(t)

dadb

a2
, (5)

it is now clear why we imposed (1).
However, some data are represented by a finite number of

values, so it is important to consider a discrete version of the
CWT (4). Generally, the orthogonal (discrete) wavelet is em-
ployed. This method associates the wavelets with orthonor-
mal bases ofL2(R). In this case, the wavelet transform is
performed only on a discrete grid of the parameters of dila-
tion and translation,i.e. a andb take on only integral values,
as will be seen below.

The expansion of an arbitrary signalx(t) on an orthonor-
mal wavelet basis takes the form

x(t) =
∑
m

∑
n

xm
n ψm,n(t), (6)

xm
n =

∞∫

−∞
x(t)ψm,n(t)dt, (7)

where the orthonormal wavelet basis functions are related ac-
cording to

ψm,n(t) = 2m/2ψ(2mt− n), (8)

with m andn as the dilation and translation indices, respec-
tively. The family of (8) can be obtained from (3), setting the
parametersa = 2−m andb = n/2m.

The contribution of the signal at a particular wavelet level
m is given by

xm(t) =
∑

n

xm
n ψm,n(t). (9)

Equation (9) gives us information of the time behavior of the
signal within different scale bands, and gives their contribu-
tion to the total signal energy. For us, we refer higher levels
to higher scales, as is discussed in Ref. 3.

Mallat [11] provides a computationally efficient algo-
rithm for computing efficiently (6) and (7). This algorithm
connects, in an elegant way, wavelets and filter banks. Asso-
ciated with the wavelet functionψ(t) is a corresponding scal-
ing function,ϕ(t), and scaling coefficients,am

n [10–13]. The
scaling and wavelet coefficients at scalem can be computed
from the scaling coefficients at the next finer scalem + 1
using

am
n =

∑

l

h[l − 2n]am+1
l , (10)

xm
n =

∑

l

g[l − 2n]am+1
l , (11)

whereh[n] andg[n] are typically called lowpass and highpass
filters in the associated analysis filter bank. Equations (10)
and (11) represent the fast wavelet transform (FWT) for com-
puting (7). Conversely, a reconstruction of the original scal-
ing coefficientsam+1

n can be made from

am+1
n =

∑

l

(h[2l − n]am
l + g[2l − n]xm

l ) , (12)

a combination of the scaling and wavelet coefficients on a
coarse scale. Equation (12) represents the inverse of FWT
for computing (6). It corresponds to the synthesis filter bank.

As discussed in Ref. 2, some degree of regularity is useful
on the wavelet basis for the representation to be well behaved.
To achieve this, a wavelet function should haven vanishing
moments. A wavelet is said to haven vanishing moments,
which will be denoted asψn(x), if and only if it satisfies

∞∫

−∞
xkψn(x)dx = 0, (13)

for k = 0, 1, . . . , n− 1, and

∞∫

−∞
xkψn(x)dx 6= 0, for k = n.
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FIGURE 1. Examples of some wavelet functions: (a) Haar wavelet,
and Daubechies wavelets b)db4, and c)db8.

FIGURE 2. Schematic diagrams of a) the Chua circuit,
and b) the nonlinear negative resistanceNR. The electronic
component values, to produce the double scroll attractor, are
C1=0.001µF, C2=0.01µF, L=1.8mH, R=5 kΩ, R1=750Ω,
R2 = R3 = 220Ω, andR4 = 1.2 kΩ. The diodes D1 and D2
are 1N914, the operational amplifier A1 is a TL082.

This means that a wavelet withn vanishing moments is
orthogonal to polynomials up to ordern− 1. In fact, the ad-
missibility condition (1) requires at least one vanishing mo-
ment. So the wavelet transform off(x) with a waveletψn(x)
with n vanishing moments is nothing but a “smoothed ver-
sion” of thenth derivative off(x) on various scales. In fact,
when someone is interested in measuring the local regularity
of a signal this concept is crucial [10,11].

Figure 1 shows the analyzing wavelet functions that we
used in this paper. The Haar wavelet function, shown in
Fig 1a, is the simplest wavelet with a closed form. The
Daubechies wavelets are determined recursively from its
scaling function. Commonly, these wavelets, which are com-
pactly supported, are called DaubN and written asdbN ,
whereN corresponds to the order of the function. Some au-
thors use2N instead ofN . A more detailed treatment of this
subject can be found in [10,11].

3. Experimental Setup

In this section, we briefly describe the experimental imple-
mentation of three chaotic oscillators, in order to study the
experimental chaotic time series. These attractors, despite
their simplicity, exhibit chaotic dynamics that have received
wide coverage in different areas of mathematics, physics, en-
gineering and others [4,6–9].

3.1. Chua’s system

Chua’s oscillator is perhaps the simplest circuit that exhibits
complex dynamics of bifurcation and chaos. In particular, we
are interested in the chaotic attractor called a double scroll
oscillator. Chua’s circuit, shown in Fig. 2a, consists of two
capacitors, one inductor, one potentiometer, and a nonlinear
negative resistor (see Fig. 2b).

The dynamics of the Chua’s system are modelled by the
set of differential equations:

ẋ = α (y − x− f(x)) ,

ẏ = x− y + z,

ż = −βy,

(14)

wherex(t) = VC1/VB andy(t) = VC2/VB are the voltages
across the capacitorsC1 andC2, respectively, whereas the
current through the inductorL is z(t) = RiL(t)/VB . The
unit time has been normalized with respect to(RC2)−1. The
exact value of the break points of diodes,VB , depends on
the nature of diodes (Ge or Si). The parametersα = C2/C1

andβ = R2C2/L. The nonlinear negative resistor has the
following I − V characteristic:

f(x) = bx +
1
2
(a− b) [ |x + 1| − |x− 1| ] , (15)

where

a = −RR2/R1R3
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FIGURE 3. Chua’s attractor projected on the plane(x, y).

FIGURE 4. The schematic diagram of the chaotic Rössler circuit.
All op amps are type TL082, and the diode is 1N914.

and

b = −R[(R2R4 −R1R3)/R1R3R4].

A more detailed analysis of theI − V characteristic can be
found in Ref. 8. Figure 3 shows the double scroll attractor
generated by the Chua circuit of Fig. 2a.

FIGURE 5. Rössler attractor: (a) inR3, (b)projected on the
plane(x, y).

3.2. Rössler system

The R̈ossler experimental circuit that we built in the lab was
based on the circuit proposed by Carroll in Fig. 4. The dia-
gram of this circuit is shown in Fig. 4.

The circuit is described by the equations

ẋ = α(−Γx− βy − λz),

ẏ = α (x + y(γ − 0.02)) ,

ż = α[g(x)− z],

(16)

whereα = 104 s−1, Γ is 0.05, β is 0.5, λ is 0.133, µ is 15,
and the functiong(x) is defined as

g(x) =

{
0 if x ≤ 3,

µ(x− 3) if x > 3.

Figure 5 shows the R̈ossler attractor generated by the
schematic diagram of Fig. 4.

3.3. Chaotic generator(CG)

This chaotic system has been employed for generalized syn-
chronization between two systems with different parame-
ters [7].

The electronic circuit of the CG is easily implemented in
an experimental way, and is shown in Fig. 6a. Depending on
the parameterk, the behavior of CG can be in regimes of pe-
riodic or chaotic oscillations [5, 7],i.e. k is the bifurcation
parameter.
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FIGURE 6. Schematic diagrams of a) the chaotic oscillator circuit,
and b) of the nonlinear converter N. The component values em-
ployed areC′ = 200 nF,C = 99.8 nF,L = 26.1 mH, r = 70 Ω,
R = 1139 Ω, R1 = 2.7 kΩ, R2 = R4 = 7.5 kΩ, R3 = 50 Ω,
R5 = 177 kΩ, andR6 = 2 kΩ. The diodes D1 and D2 are
1N4148, the operational amplifiers A1 and A2 are both TL082, and
the operational amplifier A3 is LF356N.

FIGURE 7. The chaotic attractors of the CG projected on the plane
(x, y) obtained experimentally for different values of the gain pa-
rameterk: a) 0.525, b) 0.465, c) and d)0.3865, e) 0.505 and
f) 0.4605. Figures c)-d) have different initial conditions.

The dynamics of the CG are modelled by the following
set of differential equations:

ẋ = y,

ẏ = z − x− δy,

ż = γ [kf(x)− z]− σy,

(17)

wherex(t) andz(t) are the voltages across the capacitorsC
andC ′, respectively. The parameterk is the gain of the non-
linear converterN at x = 0, andy(t) = J(t)(L/C)1/2 is
the current through the inductor. The unit time has been nor-
malized with respect to1/

√
LC. The parametersγ, δ andσ

depend on physical values of the circuit elements. The non-
linear converter circuit is shown in Fig. 6b. This converter
transforms the input voltagex(t) into the output voltage
which is expressed by the nonlinear functionF (x) = kf(x).
The non-linear behavior of the chaotic circuit is due to the
functioning of the on-off switch of the pair of diodes. The
nonlinear functionf(x) is given as

f(x) =





[(1− b)(1− w)R3 − bR1]x + R1VD

(R1 + (1− w)R3)a
if x > VD,

(
1− b

a

)
x if |x| ≤ VD,

[(1− b)wR3 − bR1]x−R1VD

(R1 + wR3)a
if x < −VD,

(18)

wherew is the balance parameter of the variable resistorR3,

a =
R2||R4

R5 + R2||R4
,

b =
R5||R4

R2 + R5||R4
,

andVD is the break point of the diodes. The functionf(x),
in (18), considers a sudden commutation of the diodes [5]. A
smooth commutation is also discussed in Ref. 5.

The different attractors projected on the plane(x, y), gen-
erated by the CG, are shown in Fig. 7. These attractors can be
obtained just by changing the gain parameterk. We choose
the value of the gaink to be equal to0.525 and0.465 for the
attractors of Fig. 7a-b, respectively. These attractors take the
shape of a family of double scroll oscillations. For the attrac-
tors of Fig. 7c-d, we select the value ofk = 0.3865, but with
different initial conditions. These attractors take the shape of
a family of Rössler systems. Whereas in Fig. 7e-f the CG
generates thin attractors, which correspond to the values of
k = 0.505, andk = 0.4605, respectively.

4. Chaotic Time Series

In order to study experimental CTS, we consider the log vari-
ance of the wavelet coefficients as a function of levelm. In
Ref. 3 numerical time series, considered as noise, coherent
structure, and chaos were studied. They showed that the vari-
ance plot of these time series has a well defined form. If the
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variance plot shows a maximum in a particular scale, which
means an energy concentration, it often corresponds to a co-
herent structure. The gradient for a noise time series turned
out to be zero in the variance plot; therefore it does not show
any energy concentration at specific wavelet level. This sta-
tistical approach shows both situations. In certain cases, the
gradient of some CTS have a similar appearance with Gaus-
sian noise at lower scales, so that these CTS do not present a
fundamental “carrier” frequency at any scale.

The acquired CTS’s consist of 32768 data, from thex(t)
state, with a sampling rate of 40,000 samples per second for
the R̈ossler and CG systems, and 125,000 samples per sec-
ond for Chua’s system. In this paper, we consider just clean
CTS, without noise. However, the possibility of analyzing
CTS with noise will be examined in another publication.

The first experimental system examined was Chua’s
chaotic oscillator. Figure 8a shows a small part of Chua’s
data, 0.01 seconds. This corresponds to 1,250 points of
this CTS. Figure 8b shows a semi-logarithmic plot of the
wavelet coefficient variances as a function of levelm. The
db4 wavelet was used to obtain this result. At levelm = 11
there appears a peak, and it is plotted in isolation in Fig. 8c.
Despite the fact that a “small” peak appears, there is no indi-
cation of a representative energy concentration of the signal
at this level. The gradient is close to zero, so that this signal
would seem to have noise behavior. On the other hand, Fig. 9
shows a substantial component of the signal. This is the sum
of six levels with the major energy concentration. It is use-
ful to see how the shape of the analyzing wavelet is impor-
tant. Note that there exists a greater similarity with the Haar
wavelet (Fig. 9b) with the CTS than thedb4 wavelet(Fig. 9a).
This is because the CTS presents discontinuities, as does the
Haar wavelet.

FIGURE 8. a) Experimental time data for Chua’s system, b) wavelet
coefficient variance, and c) 11th wavelet level.

FIGURE 9. Sum of six different wavelet levels with a)db4 wavelet,
and b) Haar wavelet.

FIGURE 10. a) Experimental time data for R̈ossler system, b)
wavelet coefficient variance, c) 12th wavelet level, and d) sum of
12-13th’s wavelet levels.

The second CTS was generated from the Rössler system.
Figure 10a shows 0.0512 seconds of Rössler data, which cor-
responds to 2048 points in the series. The variance plot of the
wavelet coefficients is shown in Fig. 10b. Thedb8 wavelet
was used to analyze this CTS. The 12th level has the major
energy concentration, but it does not properly show the struc-
ture of the CTS (see Fig. 10c). We can observe that the whole
CTS is dominated by two levels,m = 12 andm = 13, where
the higher energy concentration is found. Therefore, we con-
sider it pertinent to add these levels. In Fig. 10d, we can
observe that the most substantial component of the CTS is
found at these two levels. In contrast to this experimental re-
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sult, [3] presented a numerical time series, and a high energy
concentration was found at just one level. However, the high
energy concentration at a few levels is a little surprising, both
experimentally and numerically. We expected an energy con-
centration similar to Chua’s system since chaotic signals are
similar to noise with broadband.

The last CTS’s to be analyzed were generated by the CG
system. In this case, we consider the CTS’s corresponding to
attractors of Figs. 7b, d and f. In order to analyze these CTS,
thedb8 wavelet was used.

First of all, we analyze the CTS from the attractor of
Fig. 7b. In Fig. 11a shows 0.03 seconds of CG data, 1200
points of the series. The log variance plot of the wavelet co-
efficient is shown in Fig. 11b, and presents a peak at level
m = 14. For this case, we can see in Fig. 11c, that there is no
representative energy concentration of this CTS. In order to
have a substantial component of this CTS, it was necessary
to sum six levels as the Chua’s case.

Secondly the CTS to study was from the attractor of
Fig. 7d. Figure 12a shows 0.01 seconds of CG data, 400
points of the series. The variance plot of the wavelet coef-
ficients is shown in Fig. 12b. We can observe a maximum
in the plot at levelm = 14. In Fig. 12c the 14th level is
plotted, and we see that this scale corresponds to the energy
concentration of the CTS, with a slight downward translation,
because of the DC component of this CTS.

The final CTS to consider comes from the attractor of
Fig. 7f, and is shown in Fig. 13a. This CTS has a “regu-
lar” pattern. The variance plot [Fig. 13b] shows an energy
concentration at levelsm = 12, m = 14, and perhaps at
m = 13. Note that the behavior of this log variance shows a
great similarity with the CTS of the R̈ossler system, with the

FIGURE 11. a) Experimental time data for CG system of Fig. 7b,
b) wavelet coefficient variance, and c) 14th wavelet level.

FIGURE 12. a) Experimental time data for CG system of Fig. 7d,
b) wavelet coefficient variance, and c) 14th wavelet level.

FIGURE 13. a) Time experimental data for CG system of Fig. 7f,
b) wavelet coefficient variance, and c) sum of the 12th and 14th
wavelet levels.

exception of the decreasing levelm = 13. Figure 13c shows
that the sum of the12th and14th wavelet levels has the high
energy concentration of the CTS.

The attractors in Figs. 7a, c and e, have a similar behavior
to that of the attractors in Figs. 7b, d and f, respectively.
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5. Conclusions

We have analyzed some experimental CTS using the dis-
crete wavelet transform, with a simple statistical approach.
In order to obtain useful information about chaotic systems,
this discrete transform has been applied to time series that
come from three experimental chaotic oscillators, the Chua,
Rössler and CG systems. For the experimental CTS from
Chua’s system, we observed that there is no energy concen-
tration at specific wavelet levels of the log variance. In fact,
this CTS would seem to have a noise behavior; the gradi-
ent of the log variance is close to zero. For this CTS, we
see how a wavelet function gives more representative infor-
mation of the signal than another wavelet function. For the
CTS from the attractor of Fig. 7b, corresponding to the CG
system, this also does not present any energy concentration.
On the other hand, the experimental CTS from the Rössler
system presents energy concentration at two wavelet levels
of the log variance. In this case, we consider that the sum
of these wavelet levels should be considered the carrier fre-
quency of the CTS. A different situation was presented in [3],
where this system was numerically analyzed, and it showed
an energy concentration at just one level. In addition, the last
CTS from the CG system presented an energy concentration

in one and two wavelet levels, respectively. We can conclude
that the maximum values at the higher wavelet levels, in the
log variance plot, provides high energy concentration, and it
could correspond to the “carrier” frequency of the CTS.

Despite the fact that we do not go deeply into the pros and
cons of using one wavelet over another, we consider, in order
to have a more complete analysis, that we should use analyz-
ing wavelets that bear a reasonable resemblance in form to
the function or signal.

Finally, there are a variety of methods for analyzing time
series, but without a doubt the method based on wavelet
analysis is one of the most appealing, and successful, ones.
In addition, for the first time to our knowledge, we apply
this wavelet analysis to experimental CTS, and we hope that
these results will inspire a further use of wavelet analysis for
chaotic time series.
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